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ABSTRACT We investigate the hypothesis that two classes
of Ca2+ currents, one quickly inactivated by Ca2' and one
slowly inactivated by voltage, contribute to bursting electrical
activity in pancreatic islets. A mathematical model of these
currents is fit to the experimental whole-cell current-voltage
and inactivation profiles, thereby fixing the Ca2+ conductance
and all activation and inactivation parameters. Incorporating
these currents into a model that includes delayed rectifier K+
channels and ATP-sensitive K+ channels, we show that only
abnormal bursting is obtained. Modification of activation
parameters to increase Ca2+ channel open times, as suggested
by experiment, yields a more robust bursting similar to that
observed in intact islets. This reinforces the suggestion that in
addition to ATP-sensitive K+ channels, Ca2+ channels may
serve as glucose sensors in the 13 cell.

I. Introduction

Pancreatic ,8 cells, when perifused in islets with physiological
glucose concentrations that induce insulin secretion, also
exhibit a rhythmic electrical activity called bursting (1-7).
Several K+ and Ca2l ion channels have been implicated in
bursting. Voltage-gated K+ and Ca2+ channels are thought to
be responsible for the action potential spikes (8), while
Ca2+-activated K+ channels (KCa) (9) and ATP-sensitive K+
channels (KATP) (10, 11) have been proposed as "trigger" or
"pacemaker" channels. Mathematical models that include
the voltage-gated channels and one or both of the trigger
channels have shown that both mechanisms can support
bursting (12, 13). Recent experimental evidence, however,
has called into question the relevance of both KCa channels
and KATP channels. Indeed, Kukuljan et al. (14) have shown
that charybdotoxin, which specifically inhibits KCa channels
in the /8 cell, has no effect on bursting, while Smith et al. (15)
conclude that the total KATP conductance changes by <10
pS per cell, a value that may be too small to account for
repolarization. Furthermore, isolated ,B cells and small clus-
ters can support bursting more regular than can be accounted
for by the small number of active KCa and KATP channels
in single cells.

Recently, Satin and Cook (16, 17) have proposed that slow
voltage inactivation of Ca2+ channels might be involved in
repolarization of the bursts. In addition to the fast (order of
75 ms) Ca2+ inactivation of Ca2+ channels (18), they report
evidence for voltage inactivation of calcium current on the
time scale of 1-10 s. Similar results are found in both HIT
cells (17) and cultured adult mouse cells (18), both of which
exhibit bursting-type electrical activity and insulin secretion.
Satin and Cook interpret their Ca2+ currents in terms of
distinct fast Ca2+-inactivated and slow voltage-inactivated
channels. In this paper, we develop a mathematical model of
these currents, which we combine with the delayed rectifier

K+ current (8) and a KATP current (15) to examine whole-
cell electrical activity and bursting.

II. HIT Cell Model for Ca21 Currents

The mathematical model developed in this section includes
two Ca2+ currents and two K+ currents. The calcium cur-
rents correspond to the fast Ca2'-inactivated and slow volt-
age-inactivated Ca2+ channels found by Satin and Cook (17)
in HIT cells (19, 20), while the K+ currents are due to the K+
delayed rectifier (8) and KATP channels with a constant
conductance whose value is set by the ATP/ADP ratio (21).
The K+ delayed rectifier has been analyzed by Sherman et al.
(22), who assigned it a maximal conductance of 2500 pS per
cell and the activation parameters in the Appendix. The
magnitude of the KATP conductance in mouse p cells has
been estimated to be 360 pS per cell in the presence of 8 mM
glucose (23). We use conductance values of this order in our
calculations and a K+ reversal potential of -75 mV (12, 13,
22). Standard values of the capacitance and cell area have
been adopted (22).
According to Satin and Cook (17), the whole-cell Ca2+

current consists of contributions from two classes of chan-
nels, which we write in the Goldman-Hodgkin-Katz form

ICa = gCaCaoV/[l- exp(2FV/RT)], [1]

where V is the membrane potential, RT/F is the usual thermal
voltage, Ca. is the external Ca2" concentration (mM), and 9ca
is the conductance-mM-', written as

gCa = gCa[POf'Xf + ms (V)J(1 - Xf)]. [2]

The first term in Eq. 2 represents the conductance of the fast
Ca2"-inactivated Ca2+ channels, which carry a fraction Xf of
the maximal conductance, gca. We use the domain model of
Sherman et al. (24) to describe Ca2+ inactivation. [See the
Appendix, where POf is the fraction of open channels, 0, in
the scheme (A5) and I is the state inactivated by the voltage-
dependent calcium concentration at the mouth of open chan-
nels, Cad(V).] The second term in Eq. 2 is the slow voltage-
inactivated Ca2+ conductance, for which ms'(V) is the steady-
state activation (assumed rapid), and J is the voltage-
dependent inactivation, which relaxes to its voltage-
dependent steady-state value, J(V), according to

dJ/dt = -[J - Jo(V)]/Tj(V), [3]

with the voltage-dependent time constant, rj.
The usual Boltzmann functional form is assumed for the

activation, m'(V). Based on Satin and Cook's observations
(17), the half-activation voltage is shifted 10 mV positive from
that for the steady-state activation, mr(V), for the fast
Ca2'-inactivated channels. Boltzmann-type formulas are
also assumed for the steady-state inactivation, JN(V), and the
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inactivation time, rj(V). Details of the functional forms and
parameters are given in the Appendix.
To describe the time course of the whole-cell voltage and

current we use the differential equation (12, 25, 37)

CdV/dt= -, Is, [4]

where C is the capacitance and the sum is over the appro-
priate ion currents. To fix parameter values for the Ca2'
channels, the Ca2+ current in Eqs. 1 and 2 is used by itself in
this expression. To analyze bursting activity, the KATP and
delayed rectifier K+ currents in the Appendix are also added
to the right-hand side of Eq. 4.
We have used the results of Satin and Cook's experimental

activation and inactivation measurements (17) to fit the
parameters of the two Ca2+ currents described above. We
have simulated three key types of experiments: (i) 40-ms and
10-s voltage clamp experiments at various test potentials
starting from a holding potential of -100 mV (to determine
peak I-V relationships and time course of activation and
inactivation); (ii) three-pulse protocols to measure inactiva-
tion due to 40-ms and 10-s conditioning at fixed potential; and
(iii) 100-ms conditioning pulses at + 10 mV to measure the I-V
relationship for the slowly inactivating current.
To simulate the first type of experiment, we utilized Eq. 4,

supplemented with Eqs. 1-3 and the dynamical equations for
fast Ca2+ inactivation of Sherman et al. (24). The resulting
peak I-V curve in 40-ms voltage clamp is shown in Fig. LA.
The maximal current of -65 pA and the general shape of the
curve below +50 mV is similar to that shown in figure 2B of
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FIG. 1. Simulated peak I-V curves (solid line), and simulated
inactivation curves determined via the three-pulse protocol incor-
porating either a 40-ms (triangles) or 10-s (circles) conditioning pulse.
(A) Results with the standard parameter set found to best reproduce
HIT cell data: Vmf = -3 mV, Smf = 10 mV, Vj = -40 mV, Sj = 7 mV,
Vms = 7 mV, S.s = 14 mV, Cao = 3 mM, k- = 0.002 ms-1, k* = 7.56
X 10-4 ms-1.mM-1.mV-1, Xf = 0.45, Rca = 3.92 x 103 pSmM-1, and
Tj = 30 s. (B) Results with the modified parameter set that gives good
bursting electrical activity; the differences from A are k* = 4.73 x

10-5 ms-1 mM-1 mV-1, Vmf = -8 mV, Vms = +2 mV.

Satin and Cook (17). With the "standard" parameter values
given in Fig. 1, we obtain somewhat higher currents below
-40 mV than were shown experimentally. This may be due
in part to the experimental method of leak subtraction since
Plant (18) finds somewhat larger fractional currents in this
range using 10 mM external Ca2+. The complete current time
records of these 40-ms simulations (data not shown) are
similar in time scale and magnitude to the data of Satin and
Cook (17). It should be noted that the measured inactivation
rates in HIT cells are faster than the rates measured in mouse
,f cells (18, 26). To account for this, as well as for the fact that
HIT inactivation is not lost after holding for 100 ms at -100
mV, the inactivation rate constant, kV, has been increased to
4 times the value used by Sherman et al. (24) and the
reactivation rate constant, k-, was decreased by nearly an
order of magnitude (see Appendix).
Good fits to the 10-s voltage clamp time records (figure 2A

in ref. 19), which show inactivation on the 1- to 7-s time scale,
are also obtained with the standard parameters given in Fig.
1. In good agreement with their measurements, the relaxation
time Tjis 0.84 s at V = +10 mV and 7.0 s at V = -20 mV.

Theoretical results for the 40-ms and 10-s inactivation
curves based on the standard parameter set are also shown in
Fig. 1. The protocol used for the simulations mimicked the
three-pulse protocol ofSatin and Cook (17)-namely, holding
at -100 mV followed by a 10-ms pulse at +10 mV; 150 ms at
-100 mV; 40 ms (or 10 s) at the conditioning potential; 40 ms
at -100 mV; and a final 10-ms pulse at +10 mV. The peak
currents in the first (Ipl) and final (Ip2) pulses to + 10 mV were
recorded, and the fraction of channels not inactivated (h) was
estimated from the formula h = IP2/lpl (18). We show results
for the 40-ms simulations only for potentials less than +20
mV since at higher potentials our theoretical expression for
Tj(V) becomes significantly smaller than the limiting value of
1 s reported experimentally (17). This leads to significant
inactivation of the slow-voltage inactivated current above
+20 mV even on the 40-ms time scale and, thus, to spurious
results. In the physiological region below +20 mV our 40-ms
inactivation curves reproduce the correct amount ofmaximal
inactivation (45%) and the overall shape of the inactivation
curves. Indeed, our simulations even capture the residual,
nearly constant, level of inactivation below -50 mV that is
seen experimentally. According to our calculations this is not
due to inactivation ofthe slow current, as speculated by Satin
and Cook (17), but rather to the kinetics of inactivation of the
fast-inactivated channels.
Our simulations of the 10-s inactivation protocol show

good agreement with experiments at all values of potential
(figure 4B in ref. 17). The increase in inactivation on this time
scale between -80 and 0 mV is the sum of the steady-state
voltage inactivation, J"(V), and the steady-state fast Ca2+
inactivation, hf(V) (see Appendix). Positive to 0 mV, the
steady-state value ofJ'(V) is essentially 0 and the decline of
inactivation (seen both in Fig. 1A and the experiment) is due
to a lengthening of the transition time from the open state to
the inactivated state as the potential approaches the reversal
potential of Ca2+.
As a final check on our Ca2+ currents, we carried out

100-ms conditioning pulses at +10 mV, followed by 40 ms
holding at -100 mV, and we measured the peak I-V curve of
the remaining current at various test voltages. The resulting
I-V curve (data not shown) is shifted -10 mV to the right and
decreased in magnitude by almost exactly 50% compared to
the unconditioned I-V curve in Fig. LA. This also is in good
agreement with Satin and Cook (17) (cf. their figure 8B). Our
simulation results for the conditioned I-V curve are within
10% of the theoretical curve obtained by setting POf = 1.3 x
10-3 and J = 0.90 in Eqs. 1 and 2, the values achieved after
conditioning. This lends support to the idea that conditioning
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at +10 mV predominantly inactivates the fast Ca2+-
inactivated channel.
While our standard set of Ca2+ channel parameters leads to

good agreement with Satin and Cook's HIT cell experiments
(17), we have not attempted to fit the data to better than
5-10%. We have settled on this degree of accuracy because
the experiments show a great deal of natural variation from
cell to cell. In an effort to reduce the juggling of parameters,
we have fixed many of them to agree with previous work (22,
24) and focused on obtaining a good set of parameters for the
slow channel, the maximal current fraction of the fast chan-
nels, and kinetic parameters for Ca2+ inactivation of the fast
channels. We note that previous attempts (27, 28) to explore
bursting in the , cell by using slow voltage-inactivating Ca2+
channels have employed parameters at serious odds with
both HIT and mouse cell experiments-e.g., a shift of the
slow voltage activation 25-28 mV negative rather 10 mV
positive of the fast voltage inactivation (28, 29).
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III. Analysis of Whole-Cell Electrical Activity

To analyze whole-cell electrical activity we used the fast and
slow Ca2+ currents given in Eqs. 1-3 along with the delayed
rectifier K+ and ATP-sensitive K+ currents described in the
Appendix. Having fixed the parameters of the Ca2+ currents,
the primary parameters varied in this section are rT, the rate
of activation of the delayed rectifier, and the total conduc-
tance of the ATP-sensitive K+ channel, GATP. We justify this
based on the facts that the rate of activation of the delayed
rectifier is known to be temperature dependent (30), while
GATP is a function ofglucose concentration (10, 11). While the
maximal value of GATP in the absence of glucose has been
estimated to be 5100 pS in mouse 8 cells, it is reduced by
some 80-90% in the presence of 8 mM glucose (15). In our
simulations, a gradual reduction of GATP through this range
leads to a slow depolarization of the membrane potential from
-75 mV to -68 mV. Reduction of GATP further to 235 pS
depolarizes the cell to -56 mV. Just below this value of GATP,
the membrane potential exhibits a kind of rhythmic, bursting
electrical activity.
While the time course of bursting depends somewhat on

the magnitude of the activation rate of the delayed rectifier,
Tr, bursting consists, essentially, of two "silent" states, one
near -60 mV and another near -35 mV. The transition
between the hyperpolarized and depolarized states is accom-
panied by vestigial spikes of decreasing amplitude when r, =
20 ms. When Tn is increased to 30 ms the spikes become
somewhat more pronounced, as shown for a GATP value of
180 pS in Fig. 2A. This general picture is not modified if the
maximal conductance of the delayed rectifier, GK, is de-
creased from its "standard" value of 2500 pS to as small a
value as 500 pS or increased to 5000 pS. Thus, we conclude
that this generic behavior, including the anomalous bursting,
is dominated by the electrical properties of the two calcium
currents.

This type of bursting is abnormal and has not been reported
for ,/ cells under physiological conditions (31). Nonetheless,
it can be understood easily by using the same type of
mathematical analysis that was used for previous models of
pB-cell electrical activity (38). Analysis of the "fast" dynamics
of the voltage, V, using the "slow" inactivation, 1 - J, as a
parameter reveals a z-shaped curve of steady states with the
following features: (i) a depolarized (upper) branch of stable
steady states that are approached in an oscillatory fashion;
(ii) a hyperpolarized (lower) branch of steady states that are
exponentially stable; and (iii) an intermediate branch of
steady states that are unstable. For the standard parameters
(see Fig. 1), there is a Hopf bifurcation leading to stable
oscillations on the upper branch at positive values of 1 - J
below 0.18. Viewed in this fashion, the abnormal bursts
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FIG. 2. Simulated time courses for membrane potential, frac-
tional activation of slow calcium channels (J), and cytoplasmic free
calcium concentration. (A) Standard parameter set for the Ca2l
channels used in Fig. 1A, GATP = 180 PS, and Tn = 30 ms. (B-D)
Modified parameter set (see Fig. 1B) with GATP = 380 PS, Tn = 20 ms,
kCA = 0.24 ms-1, andf= 0.015.

consist of three distinct portions. First, a short hyperpolar-
ized phase on the lower branch. As 1 - J decreases, this
evolves into several large spikes that depolarize the mem-
brane sufficiently to cause the slow inactivation 1 - J to begin
increasing near the upper branch. Since the upper branch
supports only damped oscillations, the cycle is completed
when 1 - J exceeds the value at the right "knee" of the z
curve and then rapidly repolarizes to the lower branch. The
major distinctions between this type of bursting behavior and
that seen in other models are the large spikes emanating from
the lower branch and the damped oscillations on the upper
branch. These differences can be shown to arise from the fast
Ca2+ inactivation in this model, which relaxes on a time scale
intermediate between that of the voltage and the slow voltage
inactivation. The details of this analysis will be given else-
where.

IV. Modification of Ca2+ Currents and Normal Bursting

Because the HIT cell Ca2+ currents do not explain the
electrical activity observed in the 8 cells (2, 15, 39), we have
sought modifications in both the K+ and Ca2+ currents that
might lead to normal bursting. Changes in the magnitude of
the conductances of either the delayed rectifier or the ATP-
sensitive channel do not help in this regard, nor does increas-
ing (or decreasing) the relaxation time, rn, of the delayed
rectifier or changing its activation parameters. Experiments
by Smith et al. (15), however, suggest that 20 mM glucose
increases the activity of individual Ca2+ channels and length-
ens their mean open time. This is reversed by inhibitors of
glucose metabolism, suggesting involvement of a metabolic
intermediate. It is also possible that increasing the temper-
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ature causes changes in Ca2l channel parameters. Indeed,
several groups have noted that both electrical activity (32)
and intracellular Ca2+ oscillations (34) are abolished at room
temperature, where Satin and Cook's experiments were
performed.
Thus, we checked whether increasing open times or de-

creasing the time spent in the inactivated state would modify
whole-cell electrical activity. To this end, we modified the
standard activation parameters for the Ca2` currents by
shifting the half-maximal voltage to lower potentials and
increasing the slope at half-maximum. Changes in the oppo-
site direction were investigated for inactivation parameters.
The rate constant, kV, for the fast Ca2" inactivation step (see
Appendix) was also decreased. The vast majority of these
changes had no significant effect on bursting in the sense that
values of GATP and Tn in the physiologically reasonable range
led only to abnormal bursts like those in Fig. 2A.
We found that shifting the half-maximal activation of both

Ca2+ currents by -5 mV and decreasing the rate constant for
inactivation, kV, by a factor of 16 led to the apparently normal
bursts in Fig. 2B. The bursting period (=6 s) is somewhat
shorter than seen experimentally (2), while spiking frequency
(-6 s-1 decreasing to 3 s-1) is similar to that normally
observed. The two parameter changes have the effect of
increasing the open time for both Ca2" currents, although
they affect most strongly the fast Ca2'-inactivated current.
This is illustrated in Fig. 1B, in which the current and
fractions not inactivated should be compared to Fig. 1A for
the standard parameters. These parameter changes reduce
the maximal inactivation in the 40-ms experiment from 45%
to 1o and substantially reduce the inactivation in the 10-s
experiments. The maximal current is seen to be increased by
-40%o by these changes. We have found that smaller changes
than this do not lead to bursting, but only to an exaggerated
form of the abnormal bursting with more spikes during the
transition to the depolarized state. Although the two changes
that give rise to the modified standard parameter set are
relatively minor, it is clear from comparing Fig. 1B with the
results of Satin and Cook (17) that the resulting modified
inactivation curves lie well outside experimental error. We
conclude, therefore, that experimentally significant reduc-
tions in the Ca2+ inactivation observed for HIT cells would
be required to allow slow voltage inactivation to produce
bursting.
Chay (28, 29) has suggested that the half-maximal inacti-

vation potential of a slow current, Vj, could be effective in
modulating the duration of the active (spiking) phase of a
burst. We have verified this to be the case for the modified
parameter set. Indeed, when Vj is reduced from -40 mV to
-28.6 mV, the percentage active phase increases continu-
ously from about 37% to 90%, while the period increases from
5.9 s to a maximum of =10.4 s before continuous spiking
abruptly occurs.
The period, x, of both the abnormal bursts and the normal

bursts in Fig. 2 are determined predominantly by the size of
rj(V). The period appears to be roughly the size of Tj at -20
mV-e.g., -7 s for the modified parameter set. Indeed, we
noted above that as Vj is increased, the period increases-
approximately in accord with the relationship T = Tj (-20
mV). Thus, significant increases in the bursting period be-
yond 10 s would require significant slowing of the slow
voltage inactivation process. Experimentally there is great
variation in the period of bursting and periods of >120 s have
been observed in both islets (2) and whole-cell records (15).
To explain this fact by slow voltage inactivation alone would
require an order of magnitude increase in the measured time
constants for slow voltage inactivation.

It is interesting that the modified value of GATP that leads
to normal bursting is 380 pS, close to the value estimated by
Ashcroft and Smith (23) for the conductance of mouse j3 cells

in 8 mM glucose. In our calculations, increases in GATP
displace the z curves to the left, leading to a stable hyper-
polarized state, as described in the previous section. Small
decreases in GATP from its modified standard value of 380
p5-e.g., to 340 pS-however, lead to abnormal bursting not
unlike that shown in Fig. 2A. This change, however, is more
"normal" (32) in that normal bursting can be recovered by a
small increase in rin (e.g., from 20 ms to 20.7 ms). This is
caused by a shift in the Hopf bifurcation point on the upper
branch, whose location is sensitive to both GATP and T,
Larger values of Tn.-e.g., 22 ms-shift the Hopf bifurcation
curve so far to the left that only the "beating" type spiking
is observed.

V. Discussion

The main objective of this work was to determine whether the
slow voltage inactivation of HIT cell Ca2' currents could
suffice to produce bursting. The answer is a qualified "yes,"
since without specific reduction in Ca2+ inactivation and
increased Ca2' activation only abnormal bursts are observed.
These modifications are in line with the observations of
Ashcroft and Smith (15) that glucose increases Ca2"-channel
activity. Despite the fact that 11 mM glucose is present in the
bathing solutions of Satin and Cook (17), it is possible that in
their whole-cell configuration a glycolytic intermediate (or a
protein that might, for example, phosphorylate Ca2+ chan-
nels) washed out of the cell. Another possibility is that the
modifications necessary to achieve normal bursting might be
caused by increasing the temperature from 200C to 220C into
the physiological range where bursting occurs (22). It is also
interesting to note that mouse P cells exhibit somewhat less
inactivation than HIT cells (26). This appears to be due
primarily to a slower inactivation time course for the fast
Ca2'-inactivated channels, which in mouse carry only 36% of
the maximal current (26). These modifications are in the same
direction that we have had to modify the HIT cell data to
achieve normal bursting. In this regard, it is also interesting
to note that Rojas et al. (35) have presented evidence for a
Ca2+ channel activated by glucose in human ,3 cells. If
present in mouse and HIT cells, this channel might also
suffice to provide the additional Ca2+ current needed to
achieve bursting.

Increasing the half-maximal inactivation potential, Vj, of
the slow voltage-inactivated current provides another possi-
ble link between Ca2+ currents and glucose. As we have
mentioned, increasing Vj increases the percentage active
phase, ultimately leading to continuous spiking. This mimics
the effects of increased glucose concentrations in perifused
islets, as does the fact that the bursting period, x, increases
only slightly (36). The short bursting period (6-10 s) is a
problematic feature of the slow voltage inactivation model.
Data from mouse cells (26), which have a comparable voltage
inactivation time, are of no help here, nor is an increase in
temperature, which should only decrease relaxation times.
Thus for slow voltage inactivation alone to serve as the
trigger for bursting would require an increase of at least a
factor of 2 or more in relaxation time.
A new feature of our slow voltage inactivation mechanism

is that it is independent of intracellular Ca2+. As a conse-
quence, intracellular Ca2" concentrations do not necessarily
have to change slowly in this model. This is important since
Valdeomillos et al. (3) have observed that intracellular Ca2+
increases quite rapidly on the upswing of Ca2+ oscillations in
islets. We can account for this in the present model by using
the simple Ca2+ balance equation

f-'dc/dt = -YCa - kcac, [5]
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where c is the concentration (/LM) of free intracellular Ca2",
f is the fraction of free Ca2", y = 4.50 x 10-6 convertsfA to
tLM ms-', and kCa is a first-order rate constant for extrusion
of Ca2" from the cytosol. Eq. 5 is coupled to the voltage via
ICa and, when solved numerically by the modified parameter
set and kCa = 0.24 ms-1, f = 0.015, yields the intracellular
Ca2+ oscillations shown in Fig. 2D. The rapid increase in c at
the onset of the active phase is like that seen experimentally
(2) and unlike that obtained in previous models (12, 13, 27).
Another interesting feature of the present bursting mech-

anism is that it invokes two types of glucose sensors. First,
the ATP-sensitive K+ channel is used to depolarize the cell
into the region of the z curve where bursting is possible. And
second, reduction of the Ca2+ inactivation and increase in the
activation of both Ca2+ channels is used to initiate normal
bursting and modulate the percentage active phase. Whether
these features, or something similar, turn out to be compat-
ible with future experimental work remains to be seen.

Appendix: Functional Forms and Definition of Parameters

Boltzmann-type equations are assumed for all steady-state
activation (m', m', n') and inactivation (J) functions. For
example, for the fast Ca2+ activation

m (V) = 1/[1 + exp(Vmf - V)/Smf], [Al]

and for the slow voltage inactivation

JN(V) = 1/[1 + exp(V - Vj)/Sj], [A2J

with comparable notation for m' and n'.
The delayed rectifier current is taken from Sherman et al.

(24) as IKV = gKn(V - VK), with n solving

dn/dt = -[n - n'(V)]/rn(V). [A31

The relaxation time for the delayed rectifier is

,r(V) = 'r/{exp[V - Vn)/65] + exp[(- V + Vn)/20]}. [A4]

The ATP-sensitive K+ current is written as GKATP (V - VK)-
Kinetic parameters for the domain model of fast Ca2+

inactivation follow the notation of Sherman et al. (24). Thus,
in the mechanism

a k+Cad(V)
C ;i± U , ' I, [A5J

f k-

a(V) = 0.78 m (V), a + /3 = 0.78 (both in ms), and

k+Cad(V) = k*CaOV/[1 - exp(2FV/RT)], [A6]

with RT/2F = 13.35 mV. The units of k* are ms'1mM-1
mV-1 and k- units are ms-1. The theoretical expression for
the fraction not inactivated, hf(V), for the fast Ca2+ inacti-
vation in the domain model is (24)

hf(V) = 1/[1 + k+Cad(V)m (V)/k-]. [A7]

The slow voltage inactivation J satisfies Eq. 3, with rj(V)
defined by the symmetrical Boltzmann formula

TJ(V) = rj/{exp[(V - Vj)/2Sj] + exp[-(V - Vj)/2Sj]}. [A8]

Other parameters that were generally fixed in this work
(22) were VK = -75 mV, gK = 2500 pS, C = 5310 fF, Vceii
= 2301 ,um3, Sn, = 5.6 nV, Vn = -13 mV.
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