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Abstract

The Framingham Heart Study (FHS) has conducted seminal research defining cardiovas-

cular disease (CVD) risk factors and fundamentally shaping public health guidelines for

CVD prevention over the past five decades. The success of the Original Cohort, initiated in

1948, paved the way for further epidemiological research in preventive cardiology. Due to

the keen observations suggesting the role of shared familial factors in the development

of CVD, in 1971 the FHS began enroling the second generation cohort, comprising the chil-

dren of the Original Cohort and the spouses of the children. In 2002, the third generation

cohort, comprising the grandchildren of the Original Cohort, was initiated to additionally

explore genetic contributions to CVD in greater depth. Additionally, because of the

predominance of White individuals of European descent in the three generations of FHS

participants noted above, the Heart Study enrolled the OMNI1 and OMNI2 cohorts in 1994

and 2003, respectively, aimed to reflect the current greater racial and ethnic diversity of

the town of Framingham. All FHS cohorts have been examined approximately every 2–4

years since the initiation of the study. At these periodic Heart Study examinations, we

obtain a medical history and perform a cardiovascular-focused physical examination,

12-lead electrocardiography, blood and urine samples testing and other cardiovascular

imaging studies reflecting subclinical disease burden.

The FHS has continually evolved along the cutting edge of cardiovascular science and

epidemiological research since its inception. Participant studies now additionally include

study of cardiovascular imaging, serum and urine biomarkers, genetics/genomics, prote-

omics, metabolomics and social networks. Numerous ancillary studies have been estab-

lished, expanding the phenotypes to encompass multiple organ systems including the

lungs, brain, bone and fat depots, among others. Whereas the FHS was originally

conceived and designed to study the epidemiology of cardiovascular disease, it has

evolved over the years with staggering expanded breadth and depth that have far greater
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implications in the study of the epidemiology of a wide spectrum of human diseases.

The FHS welcomes research collaborations using existing or new collection of data.

Detailed information regarding the procedures for research application submission and

review are available at [http://www.framinghamheartstudy.org/researchers/index.php].

Study rationale

By the middle of the past century, the rise in the prevalence

of CVD in the USA necessitated a systematic investigation

into its aetiological factors and its prevention and treatment.

Given that CVD has a prolonged subclinical phase of devel-

opment lasting years, a prospective observational cohort

study was considered ideal for the investigation of these

conditions. In 1948, the National Heart Institute (later to

become the National Heart, Lung and Blood Institute) chose

the town of Framingham, Massachusetts, to conduct an epi-

demiological study, as it had responded favourably to a

tuberculosis screening project.1 The primary goal was to

identify determinants of CVD to guide public health preven-

tion. Whereas the initial goal was to invite individuals rather

than family members free of prevalent CVD, the latter strat-

egy was employed at the request of the then FHS Executive

Committee to maintain goodwill among the families in the

community.2 Of note, nearly equal numbers of women and

men were enrolled into the FHS at its very outset, thereby

facilitating a scientific enquiry into the epidemiology of

CVD in both sexes and contributing to our understanding

of the sex-related differences in manifestations and progno-

sis of CVD. Studies from the Original Cohort, which identi-

fied risk factors and the natural history of specific

cardiovascular diseases, defined and established the role for

the emerging field of cardiovascular epidemiology.

Following the successful enrolment of the Original

Cohort and the initial major scientific reports emanating

from a careful longitudinal study of its participants, progres-

sion towards examination of another wave of participants

was natural. Emerging evidence suggested aggregation of

CVD traits, including blood pressure, within families. With

enrolment of family members in the Original Cohort, subse-

quent enrolment of their children as part of the FHS

Offspring Cohort was deemed advantageous for studies

investigating the familial clustering of CVD phenotypes and

the role of shared environmental factors versus genetic fac-

tors in contributing to such aggregation. The investigations

of the Offspring Cohort have similarly led to substantial

scientific productivity and have further provided newer

insights into CVD risk factors and related familial and non-

familial associations.

As the FHS evolved over several decades, a Third

Generation cohort was recruited. By the 1980s, the

heritability of many CVD traits was demonstrated, but the

genetic basis for such inheritance was poorly understood.

The completion of the Human Genome project provided

additional impetus for studying the genetic bases of CVD.

Thus, a primary goal for enrolment of a third generation

into the FHS was to increase the number of family mem-

bers in order to study inheritance patterns and genetic de-

terminants of CVD, using novel, state of the art methods

including genome-wide association studies. Additional

goals for recruitment of a young Third Generation cohort

were to study subclinical CVD earlier in adulthood using

novel cardiovascular imaging and to evaluate temporal

trends in CVD and its risk factors. The three-generational

FHS structure is unique among CVD epidemiology studies

and has provided greater statistical power in genome wide

association studies.

During its long course, FHS has nearly continuously

received funding from the National Institutes of Health

(NIH, core contract) and is administered by Boston

University staff and investigators. Additionally, its investi-

gator-led ancillary studies are supported by multiple sour-

ces, including multiple institutes within the NIH, the

American Heart Association, the American College of

Cardiology and various other medical societies and

foundations.

Description of the FHS

The FHS was the first longitudinally-followed large cohort

to study CVD epidemiology in the USA, now including a

multigenerational community-based cohort of free-living

adults. In 1948, FHS investigators sent invitation letters

based on a random sampling of two of every three families

with members aged 30–59 years, living in the town of

Framingham, Massachusetts. Of 6507 contacts, 4494

(69%) men and women agreed to participate and an add-

itional group of volunteers (n ¼ 715) also joined, for a

total of 5209 (n ¼ 2336 men and 2873 women) constitut-

ing the Original Cohort.3 As noted above, to further inves-

tigate the role of heritability of CVD and related risk

factors, interest lay in study of the next generation of par-

ticipants. In 1971, the 2656 children of the 1644 husband-

wife pairs in the Original Cohort, a group of children of

Original Cohort members with coronary disease (n¼ 899)
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and the spouses of these groups of children (n¼ 1212 and

368, respectively), were enrolled in the Offspring Cohort

(total n¼ 5124).4 The Third Generation Cohort was then

begun in 2002, with the objective of expanding the pheno-

typic and genotypic spectrum for the study of CVD.5 For

this cohort, adults who were at least 20 years of age with

at least one parent in the Offspring Cohort were invited to

participate, with preference given to larger families. Of

6553 eligible individuals, 4095 participants were enrolled.

To add to familial data, 103 parents of Third Generation

participants who were not previously enrolled in the

Offspring Cohort were enrolled as the New Offspring

Spouses Cohort.

Finally, the town of Framingham and surrounding com-

munity have increased in ethnic and racial diversity over

the several decades since enrolment of the Original Cohort.

Thus, the OMNI cohort, including individuals of African

American, Hispanic, Asian, Indian, Pacific Islander and

Native American descent, was begun in 1994, enrolling

506 participants. In 2003, a second OMNI cohort was ini-

tiated, enrolling 410 ethnically and racially diverse adults,

some of whom were family members of those in the first

OMNI cohort. Figure 1 displays enrolment and follow-up

of the cohorts. Table 1 shows the demographic characteris-

tics of the cohorts, including the superb follow-up of nearly

the entire sample. Additional details of age and sex distri-

butions of each cohort at study entry are available

at [http://www.framinghamheartstudy.org/participants/

index.php].

Cohort follow-up

Every 2–6 years, in-person examinations (referred to as

exam cycles) are conducted for each FHS cohort (Table 1).

Examination visits include: obtaining written informed

consent; documentation of a detailed medical and family

history, review of all medicines and supplements, and

cardiovascular-targeted physical examination (all adminis-

tered by a physician); measurement of anthropometric

data, 12-lead electrocardiography, neurocognitive battery

(including a ‘mini mental state’ examination questionnaire

administered by staff), collection of blood and urine and

participation in on-site ancillary studies, all within a 4-h

window typically. For locally residing participants who are

unable to return for an on-site examination (e.g. elderly,

home- or nursing home-bound), staff members travel to

the participants to administer the components of the cycle

visit. FHS staff routinely contact all medical offices and

hospitals to obtain primary results on participants regard-

ing their medical diagnoses and testing (all authorized by

the informed consent provided by the participants).

Additionally, in between cycle examinations, interim ques-

tionnaires detailing updates of medical and family history

are mailed, and information is obtained via regular phone

calls, thereby maintaining continuous surveillance of the

participants. Though originally recruited from the com-

munities in and around Framingham, Massachusetts, FHS

participants now reside worldwide. The 99% retention

rate of participants regularly returning for scheduled

Figure 1. Time course of enrolment of the cohorts within the FHS. The

FHS is a multigenerational longitudinally followed cohort spanning the

spectrum of age. Numbers at arrows indicate most recent year of exam-

ination cycle (e.g. 32nd examination cycle for Original cohort). Figure

from Benjamin I et al. Circulation 2015;131:100–12. Reprinted with copy-

right permission.

Table 1. Characteristics of FHS cohorts

Cohort Total, n DNA, n Ancestry, % Year recruited Age, years Follow-up

EA AA HA AsA Other Examinations, n Intervals, n Duration, years

Original 5209 971 100 0 0 0 0 1948–53 28–74 32 2 65

Offspring (and spouses) 5124 3930 100 0 0 0 0 1971–75 5–70 9 4–8 43

Third Generation 4095 4077 100 0 0 0 0 2002–05 19–72 2 6 � 10

Offspring Spouses 103 101 100 0 0 0 0 2003–05 47–85 2 6 � 10

Omni 1 Cohort 507 493 0 28 42 24 6 1994–98 27–78 4 4–8 � 15–20

Omni 2 Cohort 410 407 0 28 42 24 6 2003–05 20–80 2 6 � 10

AA, African American; AsA, Asian American; EA, European American; HA, Hispanic American.

Table from Benjamin I et al, Circulation 2015;131:100–112.

Reprinted with copyright permission.
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examinations at FHS is a testament to the dedication of the

participants to the study and contributes to the high qual-

ity of the study.

Phenotypes and outcomes measured

The FHS has collected a broad range of CVD phenotypes

including biomarkers measured in blood (encompassing

traditional CVD risk factors to novel biomarkers, genetics

and ‘omics’) and urine, imaging tests, vascular function tests

and adverse clinical outcomes. Extra-cardiovascular pheno-

types span numerous organ systems, including the brain,

lungs, bone, metabolic/fat and kidneys. Additionally, demo-

graphic and socioeconomic data are collected, and innova-

tive integration of residence with pollution data allows for

study of the impact of inhaled particles and pollutants on

cardiovascular health.6 Tables 2 and 3 list phenotypic meas-

ures and outcomes assessed in each cohort. Specific details

of measured phenotypes and the years of examination may

be downloaded at [http://www.framinghamheartstudy.org/

researchers/description-data/index.php]. The FHS has estab-

lished standardized criteria for its outcomes, including cor-

onary heart disease (myocardial infarction, angina),

congestive heart failure, cardiovascular disease, atrial fibril-

lation, stroke, transient ischaemic attack, claudication, car-

diovascular death and all-cause death. Adjudication of

outcomes occurs weekly with a three-physician endpoints

review committee, which reviews all medical records.

Findings and contributions

Traditional risk factors in CVD

Over the past several decades, findings from the FHS have

been pivotal in advancing our understanding of the epidemi-

ology of CVD. In the initial 1957 study reporting 4-year fol-

low up of Original Cohort participants, Dr Roy Dawber,

one of the founding fathers of FHS, first identified the contri-

butions of three key modifiable risk factors in CVD: blood

pressure, overweight and cholesterol (Table 4).7

Subsequently, use of the term ‘risk factors’ spread following

its use in one of the FHS seminal publications, ‘Factors of

risk in the development of coronary heart disease’.8 This

landmark report remains one of the most enduring studies in

the field of cardiovascular epidemiology. Published in 1961

by Dr William Kannel, subsequent FHS director, this report

first described the coronary heart disease risk associated with

age, male sex, hypertension, elevated cholesterol, diabetes

and electrocardiographic left ventricular hypertrophy.

A major asset of FHS has been its serial examinations of

participants, aiding the longitudinal tracking of many CVD

risk factors prior to overt disease. The FHS characterized

these key CVD risk factors in depth in subsequent publica-

tions. Early reports described changes in blood pressure

with age,9 and established that hypertension was not benign

or compensatory, as previously thought, nor was a rise in

blood pressure with age a ‘normal’ phenomenon. Rather,

hypertension was associated with numerous CVD out-

comes, including coronary artery disease,10 stroke,11 con-

gestive heart failure,12,13 peripheral arterial disease14 and

atrial fibrillation.15 Additionally, the FHS elucidated that

the primary morbidity related to hypertension was more

strongly associated with systolic, rather than diastolic,

blood pressure,16 that even borderline isolated systolic

hypertension and high normal blood pressure were associ-

ated with significant morbidity17 and that blood pressure

treatment was associated with a reduction in CVD mortality

(demonstrated first in randomized clinical trials).18

Furthermore, the risk associated with a given blood pressure

varied widely depending on the presence of other CVD risk

factors,19 thereby introducing the concept of multivariable

risk, a precursor of risk prediction algorithms.

As phenotyping at FHS advanced to include

echocardiography, assessment of left ventricular mass—a

more sensitive measure of left ventricular hypertrophy

(LVH)—became possible. The FHS investigators reported

that echocardiographic LVH was associated with greater

age, blood pressure and obesity, among other CVD risk

factors.20 Moreover, echocardiographic LVH predicted

coronary disease, CVD death and all-cause mortality, be-

yond the risks conferred by standard CVD risk factors.21,22

LV remodelling occurs in response to long-term exposure

to CVD risk factors and haemodynamic changes, and the

FHS has also elucidated the prognostic importance of geo-

metric patterns23 and change in these patterns,24 independ-

ently of CVD risk factors and LV mass.

The study of lipids in the general population has been

another key contribution of FHS. In 1965, the FHS labora-

tory began separating serum lipoproteins into fractions by

ultracentrifugation. In 1971, the FHS published its earliest

study relating circulating lipid fractions to the risk of de-

veloping coronary disease.25 Subsequent analyses revealed

the prognostic implications of low-density lipoproteins

(LDL), high-density lipoproteins (HDL) and the total chol-

esterol-to-HDL ratio, the latter of which would be a com-

ponent of the Framingham Risk Score.26,27 Additionally,

lipoprotein particles other than cholesterol, including lipo-

protein(a), were found to be associated with CVD inde-

pendently of LDL and HDL.28 Studies from FHS suggest

the importance of serum cholesterol in the prediction

of CHD incidence, and also occurrence of both CVD and

all-cause mortality across the age spectrum.29,30

Leveraging use of repeated measures, FHS investigators

also showed that time-averaged lipid measures were more
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Table 2. Phenotypic data collected in FHS

Phenotype data Examples

Clinical events (validated and

adjudicated)

Coronary heart disease: myocardial infarction, coronary insufficiency, angina, coronary heart disease

death, sudden coronary disease death, coronary artery bypass surgery, percutaneous transluminal cor-

onary angiography

Heart failure

Stroke, transient ischaemic attack

Peripheral arterial disease: intermittent claudication, lower extremity revascularization

Atrial fibrillation, electrophysiology procedures

Dementia (Alzheimer’s disease, vascular)

Mild cognitive impairment

Cancer

Subclinical disease (most measures

repeated)

Ultrasound carotid intima-media thickness and carotid stenosis

Brachial reactivity/endothelial function

Tonometry: arterial stiffness and peripheral arterial tonometry

Echocardiographic structure and function (e.g. left ventricular mass)

CT: coronary artery calcium, abdominal aortic calcium, mitral and aortic valve calcium

Cardiac MRI: cardiac structure, cardiac index, aortic arch plaque

Ankle-brachial index

Walk test: low-level exercise test

Brain MRI: including grey, white, lobar/deep volumes, infarcts, microbleeds, white-matter hyperinten-

sities, fractional anisotropy, regional brain volumes

Pulmonary disease and sleep traits

(pulmonary function test data

available on multiple

examinations)

Spirometry and post-albuterol spirometry, diffusion capacity

CT lung measures

Sleep study and questionnaire

Buccal swabs

Traditional risk factors (directly

measured)

Systolic and diastolic blood pressure

Fasting blood glucose, haemoglobin A1c, fasting insulin

Fasting lipids

Anthropometry (directly

measured)

Height, weight, body mass index

Waist, hip, thigh, neck circumference

CT measures of regional adipose tissue depots: subcutaneous adipose tissue, visceral adipose tissue, peri-

cardial fat, perithoracic fat

Body percent fat (dual-energy X-ray absorptiometry)

Lifestyle Diet: Willet food frequency questionnaire (calories, supplements)

Smoking

Exercise (self-report, objective measurement with accelerometry)

Alcohol intake

Measures of function Physical function and mobility

Performance: hand grip, walking speed

Cognitive function (global and multiple domains)

Depression (Center for Epidemiologic Studies Depression Scale)

Social network

Medications All examinations

Medicare data Centers for Medicareand Medicaid Services data since 1991 including International Classification of

Diseases codes, charges, medications, procedures on individuals aged � 65 years enrolled in fee for

service

Bone health Fractures, osteoporosis

Osteoarthritis

Circulating and urine biomarkers

Renal function Creatinine, cystatin C, microalbumin, uric acid

Inflammatory marker panel Acute phase reactants: C-reactive protein

Cytokines: interleukin-6, tumour necrosis factor-a, tumour necrosis factor receptor 2, osteoprotegerin

Selectins: P-selectin, CD40 ligand

Cell adhesion: intercellular adhesion molecule

(Continued)
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Table 2. Continued

Phenotype data Examples

Chemokines: monocyte chemoattractant protein-1

Oxidative stress: myeloperoxidase, isoprostanes

Lipoprotein-associated phospholipase A2 mass and activity

Markers of haemostasis,

thrombosis

Fibrinogen, factor VIIIc, von Willebrand factor, D-dimer, plasminogen activator inhibitor-1, platelet

reactivity

Markers of myocardial injury Troponin I, growth differentiation factor-15, ST-2, brain natriuretic peptide, N-terminal atrial natriuretic

peptide

Adipokines Leptin, leptin receptor

a-fetuin, resistin, ghrelin

Retinol binding protein-4

Fatty acid binding protein-4

Adiponectin

Growth factors Insulin-like growth factor-1, insulin-like growth factor binding protein-3, vascular endothelial growth

factor angiopoietin-2, brain-derived neurotrophic factor, nerve growth factor

Molecules interacting with vessel

wall and platelets

Matrix remodelling markers: matrix metalloproteinase-9, matrix metalloproteinase-3, tissue inhibitor of

matrix metalloproteinase-1, N-terminal propeptide of type III procollagen

Plasma homocysteine, asymmetric dimethylarginine

Markers of brain injury Beta-amyloid, clusterin

Lipid subfractions Lipoprotein(a), apoliproteins A1, B48, B100, CI, CII, E, H, J

Hormones and vitamins Renin-angiotensin-aldosterone pathway

Thyroid function (e.g. thyroid-stimulating hormone)

Sex steroid hormones

Vitamin D, folate, B12, B6, Vitamin E

Table from Benjamin I et al, Circulation 2015;131:100–12.

Reprinted with copyright permission.

Table 3. Summary of measured phenotypes and outcomes in the FHS by cohort

Phenotype measured Cohort

Original Offspring New Offspring spouse Third Gen. OMNI 1 OMNI 2

History

Medical history x* x* x* x* x* x*

Medicines x* x* x* x* x* x*

Social history x* x* x* x* x* x*

Family history x* x* x* x* x* x*

Symptoms x* x* x* x* x* x*

Questionnaires

Diet x* x* x* x* x* x*

Sleep habits x* x* x* x* x* x*

Physical activity x* x* x* x* x* x*

Menarche, menopause x

Physical examination

Anthropometric x* x* x* x* x* x*

Blood pressure x* x* x* x* x* x*

Eye examination x* x* x* x* x* x*

Hearing test x* x* x* x* x* x*

12-lead ECG x* x* x* x* x* x*

Serum

Chemistries x* x* x* x* x* x*

Haemoglobin A1c x* x* x* x* x* x*

(Continued)
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associated with subclinical atherosclerosis measured by

computed tomography than with single-point measures.31

During the first two decades of the study, evidence of

the association between diabetes and coronary disease had

accumulated. The FHS confirmed this association and ex-

tended these observations in several directions. Study of

Original Cohort members with diabetes revealed greater

risk for coronary heart disease, heart failure, stroke and

peripheral arterial disease compared with individuals with-

out diabetes.32 Notably, risks for CVD and morbidity/mor-

tality following the onset of CVD were greater for women

than men with diabetes.32,33 In participants without dia-

betes, the FHS also demonstrated the role of elevated blood

glucose, measured by haemoglobin A1c, in mediating CVD

risk,34 and an extension of the pattern of greater CVD risk

in women in this group as well.35

Table 3. Continued

Phenotype measured Cohort

Original Offspring New Offspring spouse Third Gen. OMNI 1 OMNI 2

Complete blood count x* x* x* x* x* x*

Lipids x* x* x* x* x* x*

Lipid particles, characteristics x x

Biomarkers: inflammatory, metabolic x* x* x* x*

Genetic x x* x*

Metabolomics x x

Proteomics x

Hormones: thyroid, sex, renal x x x

Urine

Chemistries x* x* x* x* x* x*

Cardiovascular imaging

Chest X-ray x*

Echocardiography x* x* x* x* x x

Cardiac MRI x x x

Cardiac CT x* x* x*

Carotid ultrasound x*

Vascular

Applanation onometry x x* x* x*

Peripheral arterial tonometry x x* x* x

FMD x* x* x

Chest and abdominal CT: fat x* x* x*

Physical activity

Gait speed x* x* x* x* x* x*

Accelerometry x

Neurological

Mini mental status examination x* x*

Neuropsychological battery x* x* x* x* x* x*

Brain MRI x x* x*

Pulmonary

Pulmonary function tests x x* x* x* x* x*

Chest CT: lung measures x* x* x* x*

Musculoskeletal

Knee X-ray x x

Bone mineral density x x*

Whole-body and regional DXA x

Quantitative CT: volumetric bone density x x

Muscle strength x x

Sleep study x*

Autopsy x x

FMD: flow mediated dilation.

*Serial measures available.
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Furthermore, FHS examinations include a comprehensive

assessment of lifestyle factors, which allowed study of their

implications for CVD risk. Indeed, cigarette smoking was

shown to be associated with the risk of developing a myocar-

dial infarction and of sudden death, with a significant reduc-

tion in the risk with smoking cessation.36,37 Additionally, the

FHS has demonstrated the risk of CVD associated with poor

physical activity and dietary factors.38,39 Connected with

these lifestyle factors is the issue of overweight and obesity,

whose associations with CVD were previously debated. FHS

investigators demonstrated that excess body weight was

associated with CVD risk factors and with CVD incidence

independently of other CVD risk factors.40–42 These collect-

ive findings formed a critical and foundational knowledge

base to guide public health efforts in CVD prevention. That

the central tenets of risk factors reported decades ago in

1961 remain the main modifiable CVD risk factors today, is

a testament to the foresight and discoveries of the original

FHS investigators and the contributions of FHS participants.

Epidemiology of specific CVD entities

In addition to the contributions towards understanding

CVD risk factors, the FHS has also been instrumental in

establishing the epidemiology of specific CVD subtypes.

The FHS demonstrated much of the characteristics and

prognosis surrounding myocardial infarction (MI), includ-

ing its frequent presentation as sudden cardiac death,43

and the high mortality associated with first MI, particu-

larly in women.44 FHS investigators also introduced the

important concept that MI frequently is clinically unrecog-

nized, and that mortality rates in recognized (by 12-lead

electrocardiography) and unrecognized MI are similar.43,45

Heart failure has been and is remains a growing epi-

demic, perhaps even more so in our modern era of im-

provements in treatment of coronary disease and survival

after MI. The FHS was one of the first groups to describe

the incidence, prevalence and grim natural history of heart

failure in the community12,46,47 and also identified hyper-

tension, valvular heart disease and coronary disease as key

aetiologies for heart failure.13 The advent of echocardiog-

raphy made it evident that individuals with heart failure

may have normal left ventricular systolic function meas-

ured by ejection fraction. The FHS was one of the first

population studies to shed light on the entity of heart fail-

ure with preserved ejection fraction, which represents up

to half of all clinical heart failure. Importantly, this dis-

order is more common in women, and confers morbidity

Table 4. Incidence of atherosclerotic heart disease in follow up of FHS males aged 45-62, by blood pressure, relative weight, and

cholesterol levels

Attributes Population at Risk

Blood pressure Relative weight Total cholesterol No. Percent New disease Rate/1000

All persons* 877 100 51 58

High on two or more 105 12 15 143

High High High 17 5

High High Med. or low 47 3

High Med. or low High 20 1

Border. or normo. High High 21 6

High on one only 290 33 23 79

High Med. or low Med. or low 91 9

Border. or normo. High Med. or low 87 5

Border. or normo. Med. or low High 112 9

Border or medium on two or more 186 21 7 38

Borderline Medium Medium 48 4

Borderline Medium Low 63 –

Borderline Low Medium 42 3

Normotension Medium Medium 33 –

Border or medium on one only 198 23 5 25

Borderline Low Low 89 2

Normotension Medium Low 54 1

Normotension Low Medium 55 2

Normotension or low 98 11 1 10

Normotension Low Low

* Excludes 21 persons (one developing new disease) for whom measurements of one or more attributes were not available.

Table reproduced with copyright permission from Dawber TR et al, Am J Pub Health Nations Health 1957 Apr; 47(4 Pt 2): 4–24.
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and mortality similar to that of heart failure with reduced

ejection fraction, or classical systolic heart failure.48

Additionally, that asymptomatic individuals with greater

left ventricular dimensions49 and even a mildly reduced

ejection fraction50 are at greater CVD risk compared with

those with a normal LV ejection fraction, was also

described by FHS investigators.

The FHS has advanced our understanding of numerous

related cardiovascular conditions as well, including periph-

eral arterial disease, stroke and disturbances in heart

rhythm. Early FHS studies described the natural history of

peripheral arterial disease manifesting as lower extremity

claudication,51 and its predominant risk factor associations

including diabetes52 and smoking.53 More recently, re-

peated 6-min walk testing has allowed examination of

functional and haemodynamic response to exercise in rela-

tion to vascular disease.54,55 Additionally, the FHS was

pivotal in clarifying the relation of blood pressure11 and

smoking56 with risk of stroke. Similarly to the FHS CVD

risk estimations, the FHS risk scores for peripheral arterial

disease14 and stroke57 have pervasive, widespread, clinical

impact. FHS investigations have also shed light on the epi-

demiology and prognosis of heart rhythm abnormalities,

including the identification of atrial fibrillation as a power-

ful risk factor for stroke and all-cause mortality.58–60 This

finding has significant public health implications, as atrial

fibrillation is the most common chronic arrhythmia and

likely to grow in prevalence with the ageing of the world

population. FHS investigators established the epidemi-

ology of the disorder, including its risk factors15,61 and

associated morbidity and mortality.62 Furthermore, it is

well-known that isolated electrocardiographic testing dur-

ing routine examinations does not capture heart rhythm

during regular activity. Ambulatory electrocardiographic

monitoring has proved to be fruitful, linking the observa-

tions of reduced heart rate variability with incident

CVD,63 and incidental asymptomatic ventricular arrhyth-

mias with coronary disease and mortality.64

Expansion of phenotypes: imaging, novel

biomarkers, and the ‘omics’ era

Despite the significant advances however, many aspects of

CVD pathophysiology remain incompletely understood,

and clearly risk remains despite evaluation and treatment

of the traditional CVD risk factors. Thus, a holy grail is

the use of non-invasive methods through which biomarkers

of CVD risk may be identified and related biological mech-

anisms uncovered. Advanced non-invasive cardiovascular

imaging has been one such promising area to fill these

needs. Echocardiography, computed tomography and

magnetic resonance imaging have enhanced our

understanding of age- and CVD-related ventricular re-

modelling and prevalence and consequences of subclinical

atherosclerosis in different vascular territories.24,65–67

Application of advanced techniques of imaging myocardial

tissue mechanics in FHS68 may further add to understand-

ing of the development and implications of subclinical ven-

tricular dysfunction. Additionally, non-invasive assessment

of central and peripheral vascular disease in FHS have

demonstrated that carotid intimal medial thickness,69

ankle-brachial index,70,71 endothelial function (brachial

artery flow-mediated dilation), conduit arterial stiffness

(via applanation tonometry)72 and peripheral arterial ton-

ometry are key correlates of CVD risk, and some of these

measures are predictive of CVD risk and mortality and

may improve CVD risk reclassification. Non-invasive

imaging has also allowed investigation of cardiometabolic

disease through evaluation of the quantity and characteris-

tics (quality) of fat depots.73,74 Finally, recognizing the

strong links between cardiovascular and cerebrovascular

disease, the current team of FHS investigations have also

included detailed assessment of subclinical neurological

disease using state of the art brain magnetic resonance

imaging and meticulous cognitive assessments to identify

subclinical injury.75 Many of these imaging measures have

been repeated in the same participants, allowing longitu-

dinal tracking of these characteristics.

The FHS also has a large biorepository of participant

data, including blood, urine and other biological samples,

from which cutting-edge biomarker, genetic and ‘omics’

tools (transcriptomics, metabolomics, proteomics) have

been harnessed. Numerous biomarkers have been eval-

uated in FHS participants (Table 2), and multiple bio-

markers are related to CVD, including but not limited to

metabolic disease,76 cardiac structure and function,77 heart

failure 78 and mortality.79 FHS ‘omics’ measures include

DNA methylation, transcriptomics (describing whole-

blood mRNA and microRNA expression), metabolites and

protein biomarkers. Such efforts have identified potential

targets in the pathophysiology of CVD,80 including meta-

bolic risk and diabetes81,82 and coronary disease.83

The three-generation family structure and the selection of

large pedigrees in FHS families are its major strengths, allow-

ing substantial investigations of cardiovascular genetics.

Smaller observational studies had suggested that CVD clus-

tered in families, and FHS was one of the earlier studies to

demonstrate the heritability of blood pressure,84 lipids,85 dia-

betes86 and coronary disease.87 In the 1990s and 2000s, FHS

investigators collected DNA samples in the Original, the

Offspring (including Offspring Spouses) and the Third

Generation cohort members from whole blood.

Immortalized lymphoblastoid cell lines obtained in 8458 par-

ticipants serve as a valuable replenishable source of DNA.
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The FHS has been a vital contributor to international

collaborative efforts to identify the non-genetic and genetic

underpinnings of CVD traits. FHS participants have con-

tributed data on lipids and inflammatory markers for in-

vestigation as part of the Emerging Risk Factors

Collaboration.88 Additionally, the FHS has led efforts to

identify variants in single-nucleotide polymorphisms

(SNPs) associated with CVD. The FHS is part of the SNP

Health Association Resource (SHARe)89 and Candidate

Gene Association Resource (CARe)90 projects, through

which �9300participants underwent genotyping of

550 000 SNPs using the Affymetrix platform (SHARe) and

> 7500 participants had genotyping of 50 000 SNPs using

the Illumina Cardiochip (CARe). Imputation to 40 million

SNPs was achieved using the 1000 Genomes project. FHS

efforts have enabled the identification of SNPs for traits

including blood pressure,91–93 lipids,94,95 obesity,96 arterial

stiffness97,98 and imaging measures of cardiovascular func-

tion including ventricular mass and dimensions,99,100

endothelial function,99 valvular calcification101 and ca-

rotid atherosclerosis.102 In addition, FHS has pursued in-

vestigation of the exome through genotyping of � 200 000

exome variants using the Illumina V1.0 Exome Chip, and

whole-exome sequencing in nearly 3000 participants from

collaborations including the NHLVI’s Grand Opportunity

Exome Sequence Project103 and CHARGE targeted

Sequencing project.104 Among others, these investigations

have identified rare variants associated with diabetes105

and lipids and coronary disease106–108. Furthermore,

whole-genome sequencing is underway via the NHLBI

TOPMed project,109,110 highlighting the importance of

regulatory and non-protein coding regions, in addition to

the protein coding regions that have been common targets

for investigation. Whereas many biomarker and genetic as-

sociations have been found, the mechanisms behind these

associations are often elusive. Using network analysis, FHS

investigators have begun to integrate these separate pieces

of the puzzles together for analysing the epidemiology of

CVD.111–113

In the modern era, FHS has continued to move forward

with cutting-edge research, taking advantage of the tech-

nology evolution. In addition to advanced network ana-

lysis to understand genetic and mechanistic associations,

complex social network analyses have enabled study of im-

portant social determinants of cardiovascular epidemi-

ology, including trends in obesity and smoking.114,115 The

FHS is also applying mobile health technologies with

evaluation of functional status with mobile, remote accel-

erometry monitoring,116 and has integrated participant-

level public electronic health records (e.g. Centers for

Medicare and Medicaid Services), thus providing a rich

source of comprehensive data. A chronological list of FHS

publications can be found at [http://www.framingham

heartstudy.org/fhs-bibliography/index.php].

Strengths and weaknesses

The strength of the FHS lies in the dedicated participants,

its highly trained staff and its diverse body of scientific in-

vestigators over the years. The commitment of the partici-

pants to the study is reflected in the high retention rate,

despite the fact that many participants live remotely. The

FHS is also the only longitudinally followed cohort evalu-

ating CVD risk across three generations of participants in

whom extensive serial measurements have been obtained.

The FHS has used standardized definitions to adjudicate

CVD outcomes, including coronary heart disease and con-

gestive heart failure, and these definitions have been

applied consistently to the studies over the several-decade

course of the study. The study has conducted meticulous

phenotyping of participants (with a great emphasis on

quality control issues including reproducibility), with nu-

merous ancillary studies and measured phenotypes now

spanning not only the cardiovascular system, but also

including the brain, the lungs, the endocrine system, and

the metabolic, gastrointestinal, renal and the musculoskel-

etal systems, to name a few. FHS participants are notably

predominantly White individuals of Western European

descent (with the exception of the OMNI cohorts). Thus, a

more ethnically diverse group of individuals are reflected

in the contemporary OMNI cohorts, and efforts to com-

pare findings across ethnicities are being evaluated moving

forward.

Conclusions

Whereas the FHS began as a study to identify aetiological

factors for CHD and CVD and to improve the prevention

of CVD, it has clearly evolved and expanded to encompass

a ‘near whole-body’ study over several decades, the equiva-

lent of a human phenome project. Application of novel

technologies, integrative methods and multidisciplinary

collaborations have fostered the expansion of FHS science

over the years. Decades after its humble inception, the FHS

remains at the forefront of not just cardiovascular, but also

multisystem epidemiological research through the adult

life course. With continued efforts, the FHS will continue

to advance understanding of the human phenome for the

next several decades to come.

Information and Data Access

The FHS website [www.framinghamheartstudy.org] con-

tains further information for prospective investigators.
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Detailed information regarding the research application

and review are available at [http://www.framingham

heartstudy.org/researchers/index.php]. The FHS welcomes

research proposals using existing or new collection of data.

In addition, phenotypes and genotypes generated in FHS

are available publicly on dbGaP through the FHS link

[http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.

cgi?study_id¼phs000007.v26.p10]. Individuals wishing to

pursue research using FHS genetic data should apply for

authorization through dbGaP [https://dbgap.ncbi.nlm.nih.

gov/aa/wga.cgi?page¼login]. The FHS is a non-profit

research entity that has relied upon core contract and ancil-

lary study funding from individual investigators for sus-

tainment. The FHS Service Center handles the modest

additional fees for provision of data and materials, and

administrative support; further information of the fee

structure is available at [http://www.framingham

heartstudy.org/researchers/service-center.php].
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Key Messages

Main scientific findings in cardiovascular epidemiology:

• identification of key risk factors, including lifestyle, biochemical

and genetic risk factors for atherosclerotic CVD and its subtypes

including stroke;

• combination of multivariable risk factors to generate a composite

risk score that can be used in prediction algorithms;

• description of the epidemiology of specific CVD entities and car-

diovascular remodelling across the age spectrum;

• identification of novel mechanisms of CVD, including but not lim-

ited to novel biomarkers and genetic factors and a systems biology

approach towards the pathogenesis of CVD.
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