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Abstract

Human noroviruses are the primary causative agents of acute gastroenteritis and a pressing public 

health burden worldwide. There are currently no vaccines or small molecule therapeutics available 

for the treatment or prophylaxis of norovirus infections. Norovirus 3CL protease plays a vital role 

in viral replication by generating structural and nonstructural proteins via the cleavage of the viral 

polyprotein. Thus, molecules that inhibit the viral protease may have potential therapeutic value. 

We describe herein the structure-based design, synthesis, and in vitro and cell-based evaluation of 

the first class of oxadiazole-based, permeable macrocyclic inhibitors of norovirus 3CL protease.
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INTRODUCTION

Human noroviruses belong to the genus Norovirus in the family Caliciviridae.1 They are the 

primary cause of sporadic and epidemic nonbacterial gastroenteritis outbreaks worldwide.2–5 

Norovirus infection is associated with high morbidity among the elderly and young, as well 

as immunocompromised patients.6 The mortality rate among children in developing 

countries is estimated to exceed 200 000 annually.7 Of the six norovirus genogroups (GI–

VI), GI and GII are associated with human infections, with the GII.4 cluster accounting for 

70–80% of norovirus outbreaks worldwide.8 Devising prophylactic and/or therapeutic 

interventions for norovirus infection presents a challenge due to the high transmissibility, 

genetic diversity, environmental stability, and prolonged virus shedding displayed by 

noroviruses.9,10 Furthermore, human noroviruses do not robustly grow in cell culture and 

only low levels of human norovirus are reported to grow in human B cells.11 Lastly, there is 

currently no optimal animal model of the disease; consequently, many aspects of norovirus 

biology and pathogenesis are poorly understood.12

The norovirus RNA genome (7.4–7.7 kb) is a positive-sense single stranded genome 

comprising three open reading frames (ORF1–3) of which ORF1 encodes a 200 kDa 

polyprotein that is proteolytically cleaved to generate at least six nonstructural proteins: p48, 

RNA helicase/NTPase, p22, VPg, 3C-like protease (3CLpro), and RNA-dependent RNA 

polymerase (RdRp).1,13 ORF2 and ORF3 encode the norovirus capsid (VP2) and a small 

basic protein (VP1), respectively. Processing of the polyprotein is effected by the norovirus 

3CLpro, a cysteine protease having a chymotrypsin-like fold, an extended binding cleft, and 

a Cys-His-Glu catalytic triad.14–16 The preferred substrate recognition sequence for 3CLpro 

is –F/Y-X-L-Q-G/A- corresponding to –P4-P3-P2-P1-P1
′-,17 where the P1 Gln residue 

determines the primary substrate specificity of the enzyme and X is H, Q, or E.18–20 The S3 

subsite displays a degree of plasticity and, therefore, can accommodate a P3 Gln, His, or 

Glu. Because processing of the polyprotein by 3CLpro is essential for viral replication, 

inhibition of 3CLpro is envisaged to be a fruitful avenue of investigation for the discovery of 
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norovirus-specific antivirals, an approach that has been successfully used in the discovery of 

therapeutics for other viral diseases.21,22 We have recently described an array of inhibitors of 

3CLpro,23–27 including the demonstration of in vivo efficacy by a dipeptidyl inhibitor using 

a murine norovirus model.28 We report herein the results of structural, biochemical, and 

antiviral studies of a novel series of oxadiazole-based cell permeable macrocyclic inhibitors 

(I) (Figure 1) of norovirus 3CLpro.

RESULTS AND DISCUSSION

Inhibitor Design Rationale

There are several disadvantages associated with peptide-derived drugs, including high 

conformational flexibility, susceptibility to proteolytic degradation, poor membrane 

permeability, and low oral bioavail-ability.29,30 These shortcomings are frequently mitigated 

through depeptitization. An effective way of depeptitizing a linear peptide is through 

macrocyclization.31–34 The preorganization and structural rigidity that characterize 

macrocyclic inhibitors frequently enhance pharmacological activity by reducing the entropic 

penalty associated with binding and, furthermore, increase proteolytic stability.34 The effect 

of macrocyclization on cellular permeability and oral bioavailability is less predictable; 

however, these parameters are expected to be augmented when a macrocycle can engage in 

intramolecular hydrogen bonding.35,36 On the basis of these considerations, we 

hypothesized that tethering of the P1 Gln residue, the preferred primary substrate specificity 

residue of norovirus 3CLpro, with the P3 residue side chain in an appropriate linear peptide 

using a 1,3,4-oxadiazole linker would yield a macrocyclic scaffold (I) (Figure 1) potentially 

capable of participating in intramolecular hydrogen bonding via the ring oxygen or nitrogen 

atoms, depending on the orientation assumed by the heterocyclic ring. Additional design 

considerations included ensuring that the ring size of the macrocycle would be optimal in 

terms of allowing the macrocycle to assume a β-strand conformation, a structural motif 

recognized by proteases.37,38 This is of paramount importance, since a β-strand 

conformation would allow proper docking/positioning of the inhibitor to the active site 

which, in turn, would orient correctly the side chains of the P1 and P2 residues, thereby 

maximizing hydrogen bonding and hydrophobic binding interactions. Lastly, the length of 

the linker and the position of the heterocyclic ring were also anticipated to influence 

permeability and potency by impacting the conformation of the macrocycle (vide infra).

Chemistry

A convergent approach was used in the synthesis of inhibitors 15–22 (Table 1). Thus, 

fragments 4a–f and 6 were first assembled as illustrated in Scheme 1. Fragments 4a–f were 

synthesized by coupling an appropriate Z-protected carboxylic acid with tert-butyl carbazate 

using EDCI to yield the Boc-protected hydrazides 1a–e. The Boc protective group was 

removed via treatment with dry HCl/dioxane, and the resulting hydrazine was coupled to 

(L)-Boc-glutamic acid α-methyl ester using EDCI/HOBt/DIEA/DMF to yield hydrazides 

2a–f. Reaction with p-toluenesulfonyl chloride/DIEA in dry CH3CN yielded 1,3,4-

oxadiazole derivatives39 3a–f which were hydrolyzed with LiOH in aqueous THF to yield 

the corresponding acids 4a–f. Fragment 6 was readily prepared via the esterification of 

commercially available (L)-Boc-Glu-(OBzl)-OH with CH3I/NaHCO3/DMF, followed by 
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removal of the Boc-group to yield 5, which was then coupled to (L)-Boc-Leu using EDCI/

HOBt/DIEA/DMF to form fragment 6. Coupling of fragments 4a–f and 6 generated leucine-

substituted intermediates 7a–c and 7e (Scheme 2). The corresponding cyclohexylalanine-

substituted compounds 7d and 7f–h were prepared by coupling compounds 4a–f to (L)-

cyclohexylalanine methyl ester to give esters 13a–d which were hydrolyzed to the 

corresponding carboxylic acids 14a–d (Scheme 3). Coupling of the acids with (L)-

Glu(OBzl) methyl ester yielded compounds 7d and 7f–h. Treatment of compounds 7a–h 
with H2/Pd–C furnished acyclic precursors 8a–h. Subsequent macrolactamization40 yielded 

compounds 9a–h which, upon reduction with lithium borohydride, generated the 

corresponding alcohols 10a–h. Oxidation to aldehydes 15–22 was accomplished using 

Dess–Martin periodinane, and the synthesized compounds are listed in Table 1.

Biochemical Studies

The inhibitory activity of compounds 15–22 toward NV 3CLpro, as well as their 

antinorovirus activity in the NV replicon harboring cells established in Huh-7 cells, was 

determined as previously described,26,28,41 and the results are tabulated in Table 1. A 

graphical dose-dependent inhibition of NV RNA replication by compound 21 is shown in 

Figure 2. The screening results shown in Table 1 indicate that (a) in a comparison of 

compounds 15, 16, and 22 versus compounds 17–21, it is clearly evident that ring size has a 

profound impact on inhibitory activity and cellular permeability in this series of compounds; 

(b) with the exception of compound 22, the rest of the inhibitors were relatively well-

permeable to cells and several inhibitors displayed single digit 50% inhibitory concentration 

(EC50) values in cell based assays (both NV and murine norovirus-1 (MNV-1)); and (c) in 

contrast to acyclic dipeptidyl transition state inhibitors where the substitution of a P2 Leu 

residue by a P2 Cha residue results in significant improvement in both IC50 and EC50 

values,28 the presence of Cha at P2 did not markedly change potency (compounds 17 and 

18; compounds 19 and 20), suggesting that a fruitful strategy for further optimization of 

potency may necessitate structural modifications in the “cap”. In addition, the EC50 values 

against NV and MNV-1 in cell culture were well correlated (Table 1), suggesting the 

potency (and permeability) of each compound was consistent against multiple noroviruses.

X-ray Crystallographic Studies

In order to establish the precise mechanism of action of inhibitor (I), illuminate the 

conformation of (I) and the orientation of the linker, as well as obtain structural information 

that can be used to guide the optimization of pharmacological activity, high resolution X-ray 

crystal structures of inhibitors 21 and 22 with NV 3CLpro were determined. Examination of 

the active site revealed the presence of prominent electron density in subunit A consistent 

with inhibitors 21 and 22 covalently bound to Cys 139 and the cyclohexyl alanine side chain 

nestled into the hydrophobic S2 subsite17 (Figure 3). However, for inhibitor 21, the majority 

of the macrocycle was disordered and could not be modeled. This disorder was consistently 

observed from approximately 10 X-ray diffraction data sets obtained for this complex. A 

surface representation of NV 3CLpro, colored by residue type, with inhibitor 22 is shown in 

Figure 4.

Damalanka et al. Page 4

J Med Chem. Author manuscript; available in PMC 2016 December 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The hydrogen-bonding interactions between NV 3CLpro and inhibitors 21 and 22 are shown 

in Figure 5 and include multiple hydrogen bonds between Ala160, Gln 110, and Ala158 and 

the inhibitor backbone which serve to correctly position the inhibitor in the active site cleft. 

Critical hydrogen bonds involving the P1 Gln side chain and the His157 and Thr134 

residues are also clearly evident for inhibitor 22. However, hydrogen bonding to Thr134 was 

not observed for the complex with inhibitor 21 due to disorder of the residues between 

Leu132 and Gly137. These binding interactions, as well as the flexible backbone of the 

T123-G133 loop, are postulated to play a critical role in enzyme recognition.42 The lack of 

cellular permeability of inhibitor 22 is supported by the absence of any intramolecular 

hydrogen bonds with the oxadiazole ring; however, permeability involves the interplay of 

many factors besides intramolecular hydrogen bonding. Notably, interactions between 

inhibitor 21 and Thr134 were not observed, since the loop of NV 3CLpro spanning Gly133-

Pro136 was consistently disordered. Thus, it seems that the macrocycle ring size may play a 

role in forming optimal hydrogen bond interactions with NV 3CLpro. Surprisingly, 

decreasing the macrocycle ring from 21 atoms (inhibitor 22) to 20 atoms (inhibitor 21) 

results in more disorder of the inhibitor and nearby residues of NV 3CLpro. In order to gain 

insight and understanding into the structural determinants that impact potency and cellular 

permeability, herculean efforts were expended in obtaining high resolution X-ray crystal 

structures of permeable inhibitors 18–20, albeit without success. Although crystals were 

obtained for NV 3CLpro cocrystallized with inhibitors 18–20, these samples only yielded 

weak X-ray diffraction properties even after optimization of the crystallization conditions. 

Finally, the crystallographic data indicate that the oxadiazole-based macrocyclic inhibitors 

weaken all H-bonding prospects for this pharmacophore element.

In an effort to correlate the crystal structures with the data provided in Table 1, the structures 

of NV 3CLpro were superimposed using secondary structure matching with GESAMT.43 

Not surprising, the overall structures of the NV 3CLpro were very similar to an rmsd of 0.54 

Å between Cα atoms (158 residues). In order to conduct a more direct analysis of the 

inhibitors, the disordered portion of the macrocycle for inhibitor 21 was modeled in an 

idealized position and compared with inhibitor 22 (Figure 6). Notably, the shorter ring size 

of inhibitor 21 appears to move the inhibitor slightly away from the loop containing Thr134 

which precludes formation of a hydrogen bond and disorder of residues Gly133-Pro136 in 

the nearby loop. However, inhibitor 22 is able to stabilize this loop region by formation of a 

hydrogen bond with Thr134 due to the larger ring size. This perhaps explains the observed 

difference in the IC50 values (Table 1), as inhibitor 22 is able to form an extra hydrogen 

bond relative to the other inhibitors. Further shortening of the macrocycle ring size 

(inhibitors 15–20) would likely move the inhibitor further away from Thr134 and prevent 

formation of hydrogen bonds with the loop and result in disorder of these residues. This may 

also explain why the crystals obtained with inhibitors 18–20 produced poor diffraction, as 

the dynamic conformations of the nearby loop could potentially prevent formation of well-

ordered crystals. Conversely, the shorter macrocycle ring size appears to be more conducive 

to permeability, although binding to the NV 3CLpro target is slightly weakened.
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CONCLUSIONS

There is currently a dire need for the development of norovirus-specific therapeutics and 

prophylactics for the management of norovirus infections. The studies described herein 

disclose the structure-based design of the first series of oxadiazole-based permeable 

macrocyclic inhibitors of norovirus 3CL protease. Insights gained from these studies have 

laid a solid foundation for conducting further preclinical studies focused on the optimization 

of potency and pharmacokinetics.

EXPERIMENTAL SECTION

General

Reagents and dry solvents were purchased from various chemical suppliers (Aldrich, Acros 

Organics, Chem-Impex, TCI America, Oakwood Chemicals, Bachem, and Fisher) and were 

used as obtained. Silica gel (230–450 mesh) used for flash chromatography was purchased 

from Sorbent Technologies (Atlanta, GA). Thin layer chromatography was performed using 

Analtech silica gel plates. The 1H spectra were recorded in CDCl3 or DMSO-d6 on a Varian 

XL-400 NMR spectrometer. High resolution mass spectrometry (HRMS) experiments were 

performed at the University of Kansas Mass Spectrometry lab using an LCT Premier mass 

spectrometer (Waters, Milford, MA) equipped with a time-of-flight mass analyzer and an 

electrospray ion source. Visualization was accomplished using UV light and/or iodine. 

Reverse phase HPLC was utilized to determine the purity of the final compounds (>95% 

purity).

Peptide Coupling Reactions. Synthesis of Compounds 1a–e. General Procedure

To a stirred solution of N-protected amino acid derivative (112 mmol) in dry CH2Cl2 (400 

mL) was added EDCI (135 mmol), and the reaction mixture was stirred for 30 min at 

ambient temperature. t-Boc hydrazide (196 mmol) was added, and the reaction mixture was 

stirred for 18 h at room temperature. The solution was washed with 5% aqueous HCl (2 × 

100 mL), saturated NaHCO3 (2 × 100 mL), and brine (100 mL). The organic phase was 

dried over anhydrous Na2SO4, filtered, and concentrated to yield the desired compounds.

tert-Butyl 2-(((Benzyloxy)carbonyl)glycyl)hydrazine-1-carboxylate (1a)

Yield (80%), mp 49–52 °C. 1H NMR (400 MHz, CDCl3) δ 1.37–1.49 (s, 9 H), 3.89 (br s, 2 

H), 5.03–5.14 (s, 2 H), 7.25–7.37 (m, 5 H), 7.39–7.48 (m, 2 H). HRMS (ESI) calcd for 

C15H21N3O5Na, [M + Na]+: 346.1379. Found: 346.1381.

tert-Butyl 2-(3-(((Benzyloxy)carbonyl)amino)propanoyl)-hydrazine-1-carboxylate (1b)

Yield (78%), mp 139–141 °C. 1H NMR (400 MHz, CDCl3): δ 1.41–1.53 (s, 9 H), 2.41–2.47 

(m, 2 H), 3.45–3.55 (m, 2 H), 5.05–5.12 (s, 2 H), 6.50–6.58 (s, 1 H), 7.25–7.38 (m, 5 H), 

7.63 (br s, 1 H). HRMS (ESI) calcd for C16H23N3O5Na, [M + Na]+: 360.1535. Found: 

360.1533.
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tert-Butyl 2-(4-(((Benzyloxy)carbonyl)amino)butanoyl)-hydrazine-1-carboxylate (1c)

Oil, yield (80%). 1H NMR (400 MHz, CDCl3): δ 1.45 (s, 9 H), 1.80–1.92 (m, 5 H), 2.26 (t, J 
= 7.02 Hz, 3 H), 3.19–3.31 (m, 4 H), 5.05–5.17 (s, 2 H), 5.28–5.39 (m, 1 H), 6.70 (br s, 1 

H), 7.26–7.39 (m, 5 H), 8.24–8.35 (m, 1 H). HRMS (ESI) calcd for C17H26N3O5 [M + H]+: 

352.1872. Found: 352.1874.

tert-Butyl 2-(5-(((Benzyloxy)carbonyl)amino)pentanoyl)-hydrazine-1-carboxylate (1d)

Oil, yield (83%). 1H NMR (400 MHz, CDCl3) δ 1.42–1.47 (s, 9 H), 1.48–1.56 (m, 2 H), 

1.59–1.71 (m, 2 H), 2.16–2.27 (m, 2 H), 3.17 (q, J = 6.64 Hz, 2 H), 5.07 (s, 2 H), 5.22–5.35 

(m, 1 H), 7.26–7.39 (m, 5 H). HRMS (ESI) calcd for C18H27N3O5Na, [M + Na]+: 388.1848. 

Found: 388.1845.

tert-Butyl 2-(6-(((Benzyloxy)carbonyl)amino)hexanoyl)-hydrazine-1-carboxylate (1e)

Oil, yield (83%). 1H NMR (400 MHz, CDCl3) δ 1.33–1.42 (m, 2 H), 1.45 (s, 9 H), 1.59–

1.72 (m, 2 H), 2.17–2.27 (m, 2 H), 2.41–2.53 (m, 2 H), 3.13–3.24 (m, 2 H), 3.36–3.47 (m, 1 

H), 5.03–5.15 (m, 2 H), 7.26–7.39 (m, 5 H). HRMS (ESI) calcd for C19H30N3O5, [M + H]+: 

380.2185. Found: 380.2182.

Synthesis of Compounds 2a–f. General Procedure

To a solution of (L)-Boc-Glu-OMe (88.5 mmol) in dry DMF (210 mL) were added EDCI 

(22.05 g, 115.05 mmol, 1.3 equiv), HOBt (17.73 g, 115.05 mmol, 1.3 equiv), and the 

mixture was stirred for 30 min at room temperature. In a separate flask, a solution of 

deprotected compounds 1a–e (24.22 g, 88.5 mmol) in dry DMF (250 mL) cooled to 0–5 °C 

was treated with diisopropylethylamine (4.75 g, 354 mmol, 4.0 equiv). After the solution 

was stirred for 30 min, it was added to the solution above and the reaction mixture was 

stirred for 16 h while monitoring the reaction by TLC. The solvent was removed in vacuo, 

and the residue was partitioned between ethyl acetate (500 mL) and 5% aqueous HCl (2 × 

150 mL). The layers were separated, and the organic layer was further washed with saturated 

aqueous NaHCO3 (2 × 150 mL), followed by saturated NaCl (150 mL). The organic layer 

was dried over anhydrous Na2SO4, filtered, and concentrated to yield the desired 

compounds.

Methyl N4-(2-(((Benzyloxy)carbonyl)amino)acetamido)-N2-(tert-butoxycarbonyl)-L-
asparaginate (2a)

Yield (82%), mp 84–87 °C. 1H NMR (400 MHz, CDCl3): δ 1.36–1.48 (s, 9 H), 2.75–2.82 

(m, 1 H), 2.84–2.88 (m, 1 H), 3.65–3.77 (s, 3 H), 3.90–3.98 (s, 2 H), 4.08–4.15 (m, 1 H), 

4.57 (ddd, J = 9.52, 5.05, 4.86 Hz, 2 H), 5.05–5.15 (s, 2 H), 5.83 (d, J = 8.69 Hz, 1 H), 5.97 

(br s, 1 H), 7.26–7.38 (m, 5 H). HRMS (ESI) calcd for C20H29N4O8, [M + H]+: 453.1985. 

Found: 453.1983.

Methyl N5-(2-(((Benzyloxy)carbonyl)amino)acetamido)-N2-(tert-butoxycarbonyl)-L-
glutaminate (2b)

Yield (88%), mp 85–88 °C. 1H NMR (400 MHz, CDCl3) δ 1.36–1.48 (s, 9 H), 1.87–1.98 (t, 

2 H), 2.11–2.23 (m, 2 H), 3.68–3.79 (s, 3 H), 3.96–4.03 (s, 2 H), 4.34–4.46 (m, 1 H), 5.06–
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5.18 (s, 1 H), 5.10 (s, 2 H), 5.44–5.57 (m, 1 H), 5.94 (br s, 1 H), 7.26–7.38 (m, 5 H), 9.21 (br 

s, 1 H). HRMS (ESI) calcd for C21H31N4O8, [M + H]+: 467.2142. Found: 467.2143.

Methyl N5-(3-(((Benzyloxy)carbonyl)amino)propanamido)-N2-(tert-butoxycarbonyl)-L-
glutaminate (2c)

Yield (90%), mp 98–101 °C. 1H NMR (400 MHz, DMSO-d6) δ 1.35–1.43 (s, 9 H), 1.75–

1.87 (m, 2 H), 2.18–2.20 (t, 2H), 2.77–2.90 (m, 2 H), 3.05–3.14 (m, 2 H), 3.59–3.67 (s, 3 H), 

4.03 (d, J = 7.13 Hz, 1 H), 4.98–5.06 (s, 2 H), 7.29–7.42 (m, 5 H). HRMS (ESI) calcd for 

C22H33N4O8, [M + H]+: 481.2298. Found: 481.2306.

Methyl N5-(4-(((Benzyloxy)carbonyl)amino)butanamido)-N2-(tert-butoxycarbonyl)-L-
glutaminate (2d)

Yield (85.2%), mp 105–108 °C. 1H NMR (400 MHz, CDCl3) δ 1.20–1.30 (m, 1 H), 1.38–

1.48 (m, 6 H), 1.38–1.48 (m, 13 H), 1.59–1.71 (m, 3 H), 1.86 (t, J = 6.57 Hz, 2 H), 1.88–

1.95 (m, 1 H), 2.27–2.40 (m, 5 H), 3.26–3.31 (m, 1 H), 3.70–3.79 (m, 4 H), 5.09 (s, 2 H), 

7.29–7.38 (m, 5 H). HRMS (ESI) calcd for C23H35N4O8, [M + H]+: 495.2455. Found: 

495.2451.

Methyl N5-(5-(((Benzyloxy)carbonyl)amino)pentanamido)-N2-(tert-butoxycarbonyl)-L-
glutaminate (2e)

Yield (83%), mp 116–118 °C. 1H NMR (400 MHz, CDCl3) δ 1.39–1.46 (m, 7 H), 1.42 (s, 8 

H), 1.48–1.58 (m, 2 H), 1.61–1.73 (m, 2 H), 1.89–2.01 (m, 1 H), 2.14–2.22 (m, 1 H), 2.23–

2.31 (m, 2 H), 2.33–2.40 (m, 2 H), 3.12–3.25 (m, 2 H), 3.67–3.77 (m, 2 H), 3.70 (s, 3 H), 

4.35 (td, J = 8.71, 4.49 Hz, 1 H), 5.07 (s, 2 H) 5.24–5.37 (m, 1 H), 5.47–5.59 (m, 1 H), 7.26–

7.37 (m, 5 H), 9.03–9.15 (m, 1 H), 9.28–9.39 (m, 1 H). HRMS (ESI) calcd for C24H37N4O8, 

[M + H]+: 509.2611. Found: 509.2615.

Methyl N5-(6-(((Benzyloxy)carbonyl)amino)hexanamido)-N2-(tert-butoxycarbonyl)-L-
glutaminate (2f)

Yield (79%), mp 82–85°C. 1H NMR (400 MHz, CDCl3) δ 1.31–1.39 (m, 2 H), 1.40–1.53 

(m, 15 H), 1.59–1.70 (m, 2 H), 1.88–2.00 (m, 1 H), 2.15–2.27 (m, 2 H), 2.30–2.43 (m, 2 H), 

3.11–3.23 (m, 2 H), 3.67–3.78 (s, 3 H), 4.28–4.39 (m, 1 H), 5.06–5.18 (m, 2 H), 5.07 (s, 2 

H), 5.52 (d, J = 8.89 Hz, 1 H), 7.26–7.38 (m, 5 H), 8.96–9.08 (m, 1 H), 9.26–9.37 (m, 1 H). 

HRMS (ESI) calcd for C25H39N4O8, [M + H]+: 523.2768. Found: 523.2767.

Synthesis of Oxadiazole Compounds 3a–f. General Procedure

To a solution of compound 2 (11.0 g, 22.89 mmol) in dry acetonitrile (275 mL) were added 

p-toluenesulfonyl chloride (13.09 g, 68.67 mmol, 3.0 equiv), DIEA (5.91 g, 45.78 mmol), 

and the reaction mixture was stirred for 16 h at room temperature while monitoring the 

reaction by TLC. The solvent was removed in vacuo, and the residue was partitioned 

between ethyl acetate (300 mL) and 5% aqueous HCl (2 × 100 mL). The ethyl acetate layer 

was further washed with saturated aqueous NaHCO3 (2 × 100 mL), followed by saturated 

NaCl (100 mL). The organic layer was dried over anhydrous Na2SO4, filtered, and 
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concentrated. The crude product was purified using flash chromatography to yield the 

desired oxadiazole derivatives 3a–f.

Methyl (S)-3-(5-((((Benzyloxy)carbonyl)amino)methyl)-1,3,4-oxadiazol-2-yl)-2-((tert-
butoxycarbonyl)amino)propanoate (3a)

Oil, yield (70%). 1H NMR (400 MHz, CDCl3) δ 1.42 (s, 9 H), 3.30–3.42 (m, 1 H), 3.71–

3.83 (m, 1 H), 3.75 (s, 3 H), 4.60 (d, J = 6.05 Hz, 1 H), 4.69–4.81 (m, 1 H), 5.15 (s, 2 H), 

5.46 (t, J = 6.30 Hz, 1 H), 5.51–5.57 (m, 1 H), 7.26–7.28 (m, 1 H), 7.29–7.41 (m, 5 H). 

HRMS (ESI) calcd for C20H27N4O7, [M + H]+: 435.1880. Found: 435.1877.

Methyl (S)-4-(5-((((Benzyloxy)carbonyl)amino)methyl)-1,3,4-oxadiazol-2-yl)-2-((tert-
butoxycarbonyl)amino)butanoate (3b)

Oil, yield (73%). 1H NMR (400 MHz, CDCl3) δ 1.44 (s, 9 H), 2.06–2.17 (m, 2 H), 2.31–

2.43 (m, 2 H), 2.86–2.98 (m, 2 H), 3.75 (s, 3 H), 4.34–4.46 (m, 1 H), 4.59 (d, J = 6.00 Hz, 1 

H), 5.15 (s, 2 H), 5.39–5.52 (m, 1 H), 7.29–7.40 (m, 5 H). HRMS (ESI) calcd for 

C21H29N4O7, [M + H]+: 449.2036. Found: 449.2032.

Methyl (S)-4-(5-(2-(((Benzyloxy)carbonyl)amino)ethyl)-1,3,4-oxadiazol-2-yl)-2-((tert-
butoxycarbonyl)amino)butanoate (3c)

Oil, yield (75%). 1H NMR (400 MHz, CDCl3) δ ppm 1.43 (s, 9 H), 2.04–2.16 (m, 2 H), 

2.86–2.94 (t, 2 H), 2.98–3.10 (t, 2 H), 3.62–3.69 (m, 2 H), 3.73 (s, 3 H), 4.35–4.45 (br s 1H), 

5.17–5.25 (br s, 1 H), 5.67–5.72 (br s, 1 H), 5.07–5.13 (s, 2 H), 7.25–7.38 (m, 5 H). HRMS 

(ESI) calcd for C22H31N4O7, [M + H]+: 463.2193. Found: 463.2190.

Methyl (S)-4-(5-(3-(((Benzyloxy)carbonyl)amino)propyl)-1,3,4-oxadiazol-2-yl)-2-((tert-
butoxycarbonyl)amino)-butanoate (3d)

Oil, yield (75%). 1H NMR (400 MHz, CDCl3) δ 1.38–1.49 (s, 9 H), 1.96–2.07 (m, 2 H), 

2.08–2.11 (m, 2 H), 2.42 (br s, 1 H), 2.84–2.91 (m, 2 H), 2.96–3.06 (m, 2 H), 3.24–3.36 (m, 

2 H), 3.74 (s, 3 H), 4.38–4.45 (m, 1H), 5.09 (s, 2 H), 5.12–5.20 (m, 1 H), 7.29–7.40 (m, 5 

H). HRMS (ESI) calcd for C23H33N4O7, [M + H]+: 477.2349. Found: 477.2346.

Methyl (S)-4-(5-(4-(((Benzyloxy)carbonyl)amino)butyl)-1,3,4-oxadiazol-2-yl)-2-((tert-
butoxycarbonyl)amino)butanoate (3e)

Oil, yield (79%), 1H NMR (400 MHz, CDCl3) δ ppm 1.37–1.49 (s, 9 H), 1.54–1.67 (m, 2 

H), 1.77–1.89 (m, 2 H), 2.30–2.42 (m, 2 H), 2.80–2.93 (m, 4 H), 3.16–3.28 (m, 2 H), 3.74 (s, 

3 H), 4.34–4.46 (m, 1 H), 4.96–5.04 (m, 1 H), 5.09 (s, 2 H), 7.27–7.39 (m, 5 H). HRMS 

(ESI) calcd for C24H35N4O7, [M + H]+: 491.2506. Found: 491.2504.

Methyl (S)-4-(5-(5-(((Benzyloxy)carbonyl)amino)pentyl)-1,3,4-oxadiazol-2-yl)-2-((tert-
butoxycarbonyl)amino)-butanoate (3f)

Oil, yield (80%). 1H NMR (400 MHz, CDCl3) δ ppm 1.37–1.49 (s, 9 H), 1.50–1.60 (m, 2 

H), 1.75–1.87 (m, 2 H), 2.81 (t, J = 7.52 Hz, 2 H), 2.87–2.95 (m, 2 H), 3.13–3.25 (m, 2 H), 

3.71–3.80 (m, 2 H), 3.74 (s, 3 H), 4.36–4.46 (m, 1 H), 4.83–4.96 (m, 1 H), 5.09 (s, 2 H), 
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5.18–5.31 (m, 1 H), 7.27–7.39 (m, 5 H). HRMS (ESI) calcd for C25H37N4O7, [M + H]+: 

505.2662. Found: 505.2657.

Synthesis of Acids 4a–f. General Procedure

A solution of ester 3 (20 mmol) in THF (30 mL) was treated with 1 M LiOH in aqueous 

THF (40 mL). The reaction mixture was stirred for 3 h at room temperature, and the 

disappearance of the ester was monitored by TLC. Most of the solvent was evaporated off, 

and the residue was diluted with water (25 mL). The solution was acidified to pH ≈ 3 using 

5% hydrochloric acid (20 mL), and the aqueous layer was extracted with ethyl acetate (3 × 

100 mL). The combined organic layers were dried over anhydrous sodium sulfate, filtered, 

and concentrated to yield the desired compound.

(S)-3-(5-((((Benzyloxy)carbonyl)amino)methyl)-1,3,4-oxadia-zol-2-yl)-2-((tert-
butoxycarbonyl)amino)propanoic Acid (4a)

Yield (95%), mp 78–80 °C. 1H NMR (400 MHz, CDCl3) δ 1.42 (s, 9 H), 3.30–3.42 (m, 1 

H), 3.71–3.83 (m, 1 H), 4.60 (d, J = 6.05 Hz, 1 H), 4.69–4.81 (m, 1 H), 5.15 (s, 2 H), 5.46 (t, 

J = 6.30 Hz, 1 H), 5.51–5.57 (m, 1 H), 7.26–7.28 (m, 1 H), 7.29–7.41 (m, 5 H). HRMS (ESI) 

calcd for C19H25N4O7, [M + H]+: 421.1723. Found: 421.1719.

(S)-4-(5-((((Benzyloxy)carbonyl)amino)methyl)-1,3,4-oxadia-zol-2-yl)-2-((tert-
butoxycarbonyl)amino)butanoic Acid (4b)

Oil, yield (94%). 1H NMR (400 MHz, CDCl3) δ 1.44 (s, 9 H), 2.06–2.17 (m, 2 H), 2.31–

2.43 (m, 2 H), 2.86–2.98 (m, 2 H), 4.34–4.46 (m, 1 H), 4.59 (d, J = 6.00 Hz, 1 H), 5.15 (s, 2 

H), 5.39–5.52 (m, 1 H), 7.29–7.40 (m, 5 H). HRMS (ESI) calcd for C20H27N4O7, [M + H]+: 

435.1880. Found: 435.1885.

(S)-4-(5-(2-(((Benzyloxy)carbonyl)amino)ethyl)-1,3,4-oxadia-zol-2-yl)-2-((tert-
butoxycarbonyl)amino)butanoic Acid (4c)

Yield (94%), mp 96–98 °C. 1H NMR (400 MHz, CDCl3) δ ppm 1.43 (s, 9 H), 2.04–2.16 (m, 

2 H), 2.86–2.94 (t, 2 H), 2.98–3.10 (t, 2 H), 3.62–3.69 (m, 2 H), 4.35–4.45 (br s, 1H), 5.17–

5.25 (br. s, 1 H), 5.67–5.72 (br s, 1 H), 5.07–5.13 (s, 2 H), 7.25–7.38 (m, 5 H). HRMS (ESI) 

calcd for C21H29N4O7, [M + H]+: 449.2036. Found: 449.2047.

(S)-4-(5-(3-(((Benzyloxy)carbonyl)amino)propyl)-1,3,4-oxa-diazol-2-yl)-2-((tert-
butoxycarbonyl)amino)butanoic Acid (4d)

Oil, yield (96%). 1H NMR (400 MHz, CDCl3) δ 1.38–1.49 (s, 9 H), 1.96–2.07 (m, 4 H), 

2.08–2.11 (m, 2 H), 2.35–2.41 (m, 1 H), 2.42 (br s, 1 H), 2.84–2.91 (m, 2 H), 2.96–3.06 (m, 

2 H), 3.24–3.36 (m, 2 H), 4.38–4.45 (m, 1H), 5.09 (s, 2 H), 5.12–5.20 (m, 1 H), 7.29–7.40 

(m, 5 H). HRMS (ESI) calcd for C22H30N4O7Na, [M + Na]+: 485.2012. Found: 485.2017.

(S)-4-(5-(4-(((Benzyloxy)carbonyl)amino)butyl)-1,3,4-oxadia-zol-2-yl)-2-((tert-
butoxycarbonyl)amino)butanoic Acid (4e)

Oil, yield (95%). 1H NMR (400 MHz, CDCl3) δ 1.38–1.50 (s, 9 H), 1.55–1.64 (m, 2 H), 

1.75–1.84 (m, 2 H), 2.22 (dd, J = 7.37, 6.88 Hz, 2 H), 2.42 (d, J = 7.13 Hz, 1 H), 2.79–2.91 
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(m, 2 H), 2.97 (br s, 1 H), 2.99 (t, J = 7.79 Hz, 2 H), 3.18–3.27 (m, 2 H), 5.08 (br s, 2 H), 

5.44–5.51 (m, 1 H), 7.26–7.38 (m, 5 H). HRMS (ESI) calcd for C23H33N4O7, [M + H]+: 

477.2349. Found: 477.2340.

(S)-4-(5-(5-(((Benzyloxy)carbonyl)amino)pentyl)-1,3,4-oxa-diazol-2-yl)-2-((tert-
butoxycarbonyl)amino)butanoic Acid (4f)

Oil, yield (95%). 1H NMR (400 MHz, CDCl3) δ 1.37–1.49 (s, 9 H), 1.50–1.60 (m, 2 H), 

1.75–1.87 (m, 2 H), 2.81 (t, J = 7.52 Hz, 2 H), 2.87–2.95 (m, 2 H), 3.13–3.25 (m, 2 H), 

3.71–3.80 (m, 2 H), 4.36–4.46 (m, 1 H), 4.83–4.96 (m, 1 H), 5.09 (s, 2 H), 5.18–5.31 (m, 1 

H), 7.27–7.39 (m, 5 H). HRMS (ESI) calcd for C24H35N4O7, [M + H]+: 491.2506. Found: 

491.2513.

Synthesis of Amino Acid Methyl Esters 5. General Procedure

To a solution of (L)-Boc-Glu(OBzl)-OH (16.86 g, 50 mmol) in dry DMF (100 mL) was 

added NaHCO3 (25.2 g, 300 mmol) followed by methyl iodide (14.2 g, 100 mmol). The 

reaction mixture was stirred for 72 h at room temperature. The progress of the reaction was 

monitored by TLC. The solids were filtered off, and the solvent was removed in vacuo. The 

residue was partitioned between ethyl acetate (250 mL) and water (2 × 75 mL). The ethyl 

acetate layer was washed with saturated NaCl (75 mL) and the organic layer was dried over 

anhydrous Na2SO4, filtered and concentrated to yield an oily product, which was purified by 

flash chromatography to yield compound 5 as a colorless oil.

5-Benzyl 1-Methyl (tert-Butoxycarbonyl)glutamate (5)

Oil, yield (85%). 1H NMR (400 MHz, CDCl3) δ 1.36–1.49 (s, 9 H), 1.90–2.00 (m, 1 H), 

2.12–2.24 (m, 2 H), 2.37–2.48 (m, 2 H), 3.66–3.75 (s, 3 H), 4.25–4.38 (m, 1 H), 5.04–5.16 

(m, 1 H), 5.10 (s, 2 H), 7.28–7.40 (m, 5 H).

Synthesis of Compound 6. General Procedure

To a solution of (L)-Boc-Leu-OH (54.87 mmol) in dry DMF (100 mL) were added EDCI 

(12.83 g, 66.94 mmol, 1.3 equiv), HOBt (10.27 g, 66.94 mmol, 1.3 equiv), and the reaction 

mixture was stirred for 30 min at room temperature. In a separate flask, a solution of 

deprotected compound 5 (15.8 g, 54.87 mmol) in dry DMF (100 mL) cooled to 0–5 °C was 

treated with diisopropylethylamine (DIEA) (28.36 g, 219.48 mmol, 4.0 equiv), stirred for 30 

min, and then added to the above reaction mixture. The solution was stirred for 16 h while 

monitoring the reaction by TLC. The solvent was removed and the residue was partitioned 

between ethyl acetate (300 mL) and 5% aqueous HCl (2 × 120 mL). The ethyl acetate layer 

was further washed with aqueous NaHCO3 (2 × 120 mL), followed by saturated NaCl (120 

mL). The organic layer was dried over anhydrous Na2SO4, filtered, and concentrated to 

yield a yellow oil which was purified by flash chromatography to yield an oily product 

which was deblocked with 4 M HCl in dioxane to yield compound 6.

Synthesis of Compounds 7a–h. General Procedure

To a solution of compound 4 (10.0 g, 22.29 mmol) in dry DMF (100 mL) was added EDCI 

(5.55 g, 28.98 mmol, 1.3 equiv), and the mixture was stirred for 30 min at room temperature. 
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In a separate flask, a solution of deprotected compound 6 (7.6 g, 22.29 mmol) in dry DMF 

(100 mL) cooled to 0–5 °C was treated with diisopropylethylamine (DIEA) (11.52 g, 89.16 

mmol, 4.0 equiv), stirred for 30 min, and then added to the reaction mixture above. The 

solution was stirred for 16 h while monitoring the reaction by TLC, and the solvent was 

removed in vacuo. The residue was partitioned between (400 mL) and 5% aqueous HCl (2 × 

120 mL). The ethyl acetate layer was further washed with saturated aqueous NaHCO3 (2 × 

120 mL), followed by saturated NaCl (120 mL). The organic layer was dried over anhydrous 

Na2SO4, filtered, and concentrated. The crude product was purified by flash chromatography 

to yield the desired products.

5-Benzyl 1-Methyl ((S)-3-(5-((((Benzyloxy)carbonyl)amino)-methyl)-1,3,4-oxadiazol-2-yl)-2-
((tert-butoxycarbonyl)amino)-propanoyl)-L-leucyl-L-glutamate (7a)

Yield (70%), mp 80–82 °C. 1H NMR (400 MHz, DMSO-d6) δ 0.79–0.91 (m, 6 H), 1.38–

1.42 (s, 9 H), 1.42–1.49 (m, 1 H), 1.57–1.68 (m, 1 H), 1.83–1.94 (m, 1 H), 1.97–2.08 (m, 1 

H), 2.40–2.52 (m, 2 H), 2.98–3.11 (m, 1 H), 3.13–3.25 (m, 1 H), 3.32 (br s, 1 H), 3.55–3.65 

(s, 3 H), 4.26–4.35 (s, 2 H), 4.36–4.42 (m, 1 H), 4.52–4.54 (s, 2 H), 4.99–5.12 (s, 4 H), 

7.14–7.26 (m, 1 H), 7.27–7.40 (m, 10 H), 7.92–8.05 (m, 1 H), 8.26–8.38 (m, 1 H). HRMS 

(ESI) calcd for C38H51N6O11, [M + H]+: 767.3616. Found: 767.3612.

5-Benzyl 1-Methyl ((S)-4-(5-((((Benzyloxy)carbonyl)amino)-methyl)-1,3,4-oxadiazol-2-yl)-2-
((tert-butoxycarbonyl)amino)-butanoyl)-L-leucyl-L-glutamate (7b)

Yield (67%), mp 94–98 °C. 1H NMR (400 MHz, CDCl3) δ 0.86–0.98 (m, 6 H), 1.36–1.49 

(s, 9 H), 1.54–1.61 (m, 1 H), 1.62–1.72 (m, 2 H), 1.95–2.07 (m, 2 H), 2.16–2.28 (m, 2 H), 

2.36–2.48 (m, 2 H), 2.86–2.98 (m, 2 H), 3.65–3.76 (s, 3 H), 4.11–4.22 (m, 1 H), 4.37–4.48 

(m, 1 H), 4.50–4.63 (s, 2 H), 5.07–5.19 (s, 4 H), 5.26–5.38 (m, 1 H), 5.65–5.74 (m, 1 H), 

6.94–7.06 (m, 1 H), 7.28–7.39 (m, 10 H), 8.30–8.32 (d, 1 H). HRMS (ESI) calcd for 

C39H53N6O11, [M + H]+: 781.3772. Found: 781.3765.

5-Benzyl 1-Methyl ((S)-4-(5-(2-(((Benzyloxy)carbonyl)-amino)ethyl)-1,3,4-oxadiazol-2-yl)-2-
((tert-butoxycarbonyl)-amino)butanoyl)-L-leucyl-L-glutamate (7c)

Yield (79%), mp 95–97 °C. 1H NMR (400 MHz, CDCl3) δ 0.85–0.97 (m, 6 H), 1.39 (s, 9 

H), 1.51–1.59 (m, 1 H), 1.61–1.71 (m, 2 H), 1.96–2.07 (m, 2 H), 2.14–2.26 (m, 2 H), 2.38–

2.49 (m, 2 H), 2.87–2.96 (m, 2 H), 2.98–3.03 (m, 1 H), 3.60–3.66 (m, 2 H), 3.68–3.73 (s, 3 

H), 4.09–4.19 (m, 1 H), 4.33–4.45 (m, 1 H), 4.53–4.63 (m, 1 H), 5.05–5.17 (s, 4 H), 5.3–5.4 

(dd, 1H), 5.65 5.75 (dd, 1H), 7.03–7.15 (m, 1 H), 7.26–7.38 (m, 10 H), 8.22–8.30 (dd, 2 H). 

HRMS (ESI) calcd for C40H55N6O11, [M + H]+: 795.3929. Found: 795.3914.

5-Benzyl 1-Methyl ((S)-4-(5-(3-(((Benzyloxy)carbonyl)-amino)propyl)-1,3,4-oxadiazol-2-yl)-2-
((tert-butoxycarbonyl)-amino)butanoyl)-L-leucyl-L-glutamate (7e)

Yield (74%), mp 80–83 °C. 1H NMR (400 MHz, CDCl3) δ 0.86–0.99 (m, 6 H), 1.41 (s, 9 

H), 1.56–1.63 (m, 1 H), 1.66–1.75 (m, 4 H), 1.80–1.91 (m, 2 H), 1.96–2.09 (m, 2 H), 2.18–

2.28 (m, 2 H), 2.37–2.49 (m, 2 H), 2.51–2.62 (m, 2 H), 2.83–2.95 (m, 2 H), 3.29 (dd, J = 

6.52, 0.66 Hz, 1 H), 3.69 (s, 3 H), 4.05–4.17 (m, 1 H), 4.38–4.47 (m, 1H), 4.54–4.63 (m, 1 

H), 5.04–5.17 (s, 4 H), 6.21–6.22 (d, 1 H), 6.42–6.44 (d, 1 H), 7.26–7.27 (m, 1 H), 7.29–
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7.39 (m, 10 H), 9.10–9.12 (d, 1 H). HRMS (ESI) calcd for C41H57N6O11, [M + H]+: 

809.4085. Found: 809.4081.

Hydrogenolysis of Benzyl Esters 8a–h. General Procedure

To a solution of benzyl ester 7 (12.0 g, 15.09 mmol) in methanol 120 mL (10 mL/g of ester) 

was added 10% palladium on carbon (0.80 g, 50 mol %), and the mixture was shaken on a 

Parr hydrogenator for 8 h under 40 atm of H2 while monitoring the reaction by TLC. The 

reaction mixture was filtered through Celite, and the Celite bed was washed with methanol. 

The filtrate was concentrated under reduced pressure to yield compounds 8a–h.

(6S,9S,12S)-6-((5-(Aminomethyl)-1,3,4-oxadiazol-2-yl)-methyl)-9-isobutyl-12-
(methoxycarbonyl)-2,2-dimethyl-4,7,10-trioxo-3-oxa-5,8,11-triazapentadecan-15-oic Acid 
(8a)

Yield (95%), mp 102–104 °C. 1H NMR (400 MHz, DMSO-d6) δ 0.79–0.92 (m, 6 H), 1.36 

(s, 9 H), 1.42–1.49 (m, 2 H), 1.56–1.68 (m, 1 H), 1.76–1.89 (m, 1 H), 1.90–2.02 (m, 1 H), 

2.20–2.30 (m, 2 H), 3.01–3.12 (m, 1 H), 3.16–3.29 (m, 1 H), 3.56–3.68 (s, 3 H), 3.84 (s, 2 

H),4.21–4.28 (m, 1 H), 4.30–4.36 (m, 1 H), 4.37–4.43 (m, 1 H), 7.19–7.28 (m, 1 H), 7.28–

7.40 (m, 1 H), 7.94–8.07 (m, 1 H), 8.32–8.44 (m, 2 H). HRMS (ESI) calcd for C23H39N6O9, 

[M + H]+: 543.2779. Found: 543.2773.

(6S,9S,12S)-6-(2-(5-(Aminomethyl)-1,3,4-oxadiazol-2-yl)-ethyl)-9-isobutyl-12-
(methoxycarbonyl)-2,2-dimethyl-4,7,10-trioxo-3-oxa-5,8,11-triazapentadecan-15-oic Acid 
(8b)

Yield (95%), mp 106–110 °C. 1H NMR (400 MHz, DMSO-d6) δ 0.80–0.93 (d, 6 H), 1.38 (s, 

9 H), 1.45 (t, J = 7.37 Hz, 2 H), 1.58–1.71 (m, 1 H), 1.75–1.84 (m, 1 H), 1.89–2.02 (m, 3 H), 

2.19–2.31 (m, 3 H), 2.50 (dt, J = 3.72, 1.87 Hz, 1 H), 2.77–2.88 (m, 2 H), 3.55–3.66 (s, 3 H), 

3.86 (s, 2 H), 3.94–4.06 (m, 1 H), 4.21–4.29 (m, 1 H), 4.30–4.39 (m, 1 H), 7.04–7.12 (m, 1 

H), 7.90–7.97 (m, 1 H), 8.30–8.41 (m, 1 H). HRMS (ESI) calcd for C24H41N6O9, [M + H]+: 

557.2935. Found: 557.2930.

(6S,9S,12S)-6-(2-(5-(2-Aminoethyl)-1,3,4-oxadiazol-2-yl)-ethyl)-9-(cyclohexylmethyl)-12-
(methoxycarbonyl)-2,2-di-methyl-4,7,10-trioxo-3-oxa-5,8,11-triazapentadecan-15-oic Acid 
(8c)

Yield (94%), mp 90–93 °C. 1H NMR (400 MHz, CDCl3) δ 0.83–0.95 (m, 2 H), 1.12–1.20 

(m, 2 H), 1.24–1.28 (m, 1 H), 1.37–1.48 (s, 9 H), 1.61–1.74 (m, 6 H), 1.96–2.08 (t, 2 H), 

2.15–2.27 (m, 2 H), 2.19 (s, 2 H), 2.36–2.49 (m, 2 H), 2.87–2.96 (m, 2 H), 2.97–3.03 (m, 1 

H), 3.60–3.72 (m, 2 H), 3.60–3.72 (s, 3 H), 4.11–4.20 (m, 1 H), 4.50–4.63 (m, 2 H), 7.09–

7.18 (m, 1 H), 8.2–8.3 (dd, 2 H). HRMS (ESI) calcd for C25H43N6O9, [M + H]+: 571.3092. 

Found: 571.3089.
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(6S,9S,12S)-6-(2-(5-(2-Aminoethyl)-1,3,4-oxadiazol-2-yl)-ethyl)-9-(cyclohexylmethyl)-12-
(methoxycarbonyl)-2,2-di-methyl-4,7,10-trioxo-3-oxa-5,8,11-triazapentadecan-15-oic Acid 
(8d)

Yield (94%), mp 119–121 °C. 1H NMR (400 MHz, DMSO-d6) δ 0.79–0.91 (m, 2 H), 1.08–

1.20 (m, 4 H), 1.32–1.43 (s, 9 H), 1.44–1.48 (m, 1 H), 1.59–1.67 (m, 4 H), 1.69–1.73 (m, 2 

H), 1.87–1.96 (m, 2 H), 1.97–2.02 (m, 1 H), 2.05–2.13 (m, 2 H), 2.48–2.54 (m, 2 H), 2.76–

2.86 (m, 2 H), 2.92–3.05 (m, 4 H), 3.10–3.21 (m, 1 H), 3.57–3.68 (s, 3 H), 3.96–4.08 (m, 1 

H), 4.17–4.29 (m, 1 H), 4.30–4.43 (m, 1 H)m 7.03–7.14 (m, 1 H)m 7.94–8.07 (m, 1 H)m 

8.39–8.46 (m, 1 H). HRMS (ESI) calcd for C28H47N6O9, [M + H]+: 611.3405. Found: 

611.3400.

(6S,9S,12S)-6-(2-(5-(3-Aminopropyl)-1,3,4-oxadiazol-2-yl)-ethyl)-9-isobutyl-12-
(methoxycarbonyl)-2,2-dimethyl-4,7,10-trioxo-3-oxa-5,8,11-triazapentadecan-15-oic Acid 
(8e)

Yield (94%), mp 102–105 °C. 1H NMR (400 MHz, CDCl3) δ 0.86–0.97 (m, 6 H), 1.43 (s, 9 

H), 1.58–1.65 (m, 1 H), 1.66–1.75 (m, 4 H), 1.83–1.93 (m, 2 H), 1.96–2.09 (m, 2 H), 2.18–

2.28 (m, 2 H), 2.37–2.49 (m, 2 H), 2.51–2.62 (m, 2 H), 2.83–2.95 (m, 2 H), 3.29 (dd, J = 

6.52, 0.66 Hz, 1 H), 3.69 (s, 3 H), 4.05–4.17 (m, 1 H), 4.38–4.47 (m, 1H), 4.54–4.63 (m, 1 

H), 6.21–6.22 (d, 1 H), 6.42–6.44 (d, 1 H), 7.26–7.27 (m, 1 H), 9.10–9.12 (d, 1 H). HRMS 

(ESI) calcd for C26H45N6O9, [M + H]+: 585.3248. Found: 585.3244.

(6S,9S,12S)-6-(2-(5-(3-Aminopropyl)-1,3,4-oxadiazol-2-yl)-ethyl)-9-(cyclohexylmethyl)-12-
(methoxycarbonyl)-2,2-di-methyl-4,7,10-trioxo-3-oxa-5,8,11-triazapentadecan-15-oic Acid 
(8f)

Yield (96%), mp 117–120 °C. 1H NMR (400 MHz, DMSO-d6) δ 0.78–0.90 (m, 2 H), 1.08–

1.19 (m, 2 H), 1.32–1.41 (m, 4 H), 1.37 (s, 9 H), 1.42–1.46 (m, 1 H), 1.59–1.71 (m, 6 H), 

1.81–1.86 (m, 2 H), 1.87–1.94 (m, 2 H), 2.03–2.15 (m, 1 H), 2.21–2.29 (m, 2 H), 2.37–2.44 

(m, 1 H), 2.50 (dt, J = 3.73, 1.89 Hz, 2 H), 3.16–3.22 (m, 1 H), 3.58–3.68 (s, 3 H), 3.84–3.96 

(m, 1 H), 4.22–4.28 (m, 1 H), 4.29–4.41 (m, 2 H), 6.88–7,.00 (m, 1 H), 7.88–8.00 (m, 1 H), 

8.37–8.45 (m, 1 H). HRMS (ESI) calcd for C29H49N6O9, [M + H]+: 625.3561. Found: 

625.3558.

(6S,9S,12S)-6-(2-(5-(4-Aminobutyl)-1,3,4-oxadiazol-2-yl)-ethyl)-9-(cyclohexylmethyl)-12-
(methoxycarbonyl)-2,2-di-methyl-4,7,10-trioxo-3-oxa-5,8,11-triazapentadecan-15-oic Acid 
(8g)

Yield (91%), mp 111–113 °C. 1H NMR (400 MHz, DMSO-d6) δ 0.79–0.91 (m, 2 H), 1.07–

1.18 (m, 4 H), 1.33–1.42 (m, 4 H), 1.38 (s, 9 H), 1.44–1.47 (m, 2 H), 1.58–1.68 (m, 4 H), 

1.76–1.82 (m, 3 H), 1.84–1.96 (m, 4 H), 2.18–2.30 (t, 2 H), 2.58–2.70 (t, 2 H), 2.76 (t, J = 

6.41 Hz, 2 H), 3.57–3.69 (s, 3 H), 3.74–3.87 (m, 2 H), 3.91–4.04 (m, 1 H), 4.19–4.30 (m, 1 

H), 4.32–4.44 (m, 1 H), 7.05–7.1 (d, 1H), 7.91–8.03 (m, 1 H), 8.41 (d, J = 7.32 Hz, 1 H). 

HRMS (ESI) calcd for C30H51N6O9, [M + H]+: 639.3718. Found: 639.3715.
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(6S,9S,12S)-6-(2-(5-(4-Aminobutyl)-1,3,4-oxadiazol-2-yl)-ethyl)-9-(cyclohexylmethyl)-12-
(methoxycarbonyl)-2,2-di-methyl-4,7,10-trioxo-3-oxa-5,8,11-triazapentadecan-15-oic Acid 
(8h)

Yield (96%), mp 103–106 °C. 1H NMR (400 MHz, CDCl3) δ 0.85–0.97 (m, 2 H), 1.12–1.22 

(m, 2 H), 1.24–1.28 (m, 2 H), 1.36–1.46 (m, 4 H), 1.42 (s, 9 H), 1.49–1.58 (m, 2 H), 1.63–

1.72 (m, 4 H), 1.74–1.76 (m, 2 H), 1.96–2.08 (m, 2 H), 2.16–2.29 (m, 2 H), 2.37–2.49 (m, 2 

H), 2.76–2.83 (m, 2 H), 2.86–2.98 (m, 2 H), 3.11–3.24 (m, 2 H), 3.66–3.76 (s, 3 H), 4.0–

4.15 (br s, 1H), 4.54–4.64 (m, 2 H), 7.02–7.15 (m, 1 H), 7.92–8.04 (d, 1 H), 8.45 (d, J = 7.9 

Hz, 1 H). HRMS (ESI) calcd for C31H53N6O9, [M + H]+: 653.3874. Found: 653.3871.

Synthesis of Macrocyclic Oxadiazole Esters 9a–h. General Procedure

To a solution of compound 8 (2.0 g, 3.5 mmol) in dry DMF (750 mL) were added EDCI 

(0.87 g, 4.55 mmol, 1.3 equiv), HOBt (0.7 g, 4.55 mmol, 1.3 equiv), DIEA (1.35 g, 10.5 

mmol, 3.0 equiv), and the mixture was stirred for 18 h at room temperature while monitoring 

the reaction by TLC. The solvent was removed, and the residue was partitioned between 

ethyl acetate (200 mL) and 10% citric acid (2 × 50 mL). The ethyl acetate layer was further 

washed with saturated aqueous NaHCO3 (2 × 50 mL), followed by saturated NaCl (50 mL). 

The organic layer was dried over anhydrous Na2SO4, filtered, and concentrated. The crude 

product was purified by flash chromatography to yield compounds 9a–h.

Methyl (7S,10S,13S)-13-((tert-Butoxycarbonyl)amino)-10-isobutyl-4,9,12-trioxo-3,8,11-
triaza-1(2,5)-oxadiazolacyclote-tradecaphane-7-carboxylate (9a)

Yield (60%), mp 160–163 °C. 1H NMR (400 MHz, DMSO-d6) δ 0.88 (dd, J = 12.52, 6.57 

Hz, 6 H), 1.43 (s, 9 H), 1.59–1.70 (m, 2 H), 2.09–2.18 (m, 1 H), 2.20–2.28 (m, 1 H), 2.35–

2.45 (m, 1 H), 3.12–3.21 (m, 1 H), 3.27 (dd, J = 15.01, 7.01 Hz, 1 H), 3.31–3.40 (m, 1 H), 

3.56–3.69 (m, 1 H), 3.56–3.69 (s, 3 H), 4.07–4.18 (m, 1 H), 4.27–4.39 (m, 1 H), 4.39–4.50 

(m, 1 H), 4.50–4.61 (m, 1 H), 4.78 (dd, J = 16.01, 7.91 Hz, 1 H), 6.17 (dd, J = 7.88, 0.12 Hz, 

1 H), 7.31–7.43 (m, 1 H), 8.16–8.24 (m, 1 H), 8.27 (d, J = 8.45 Hz, 1 H). HRMS (ESI) calcd 

for C23H36N6O8Na, [M + Na]+: 547.2492. Found: 547.2504.

Methyl (7S,10S,13S)-13-((tert-Butoxycarbonyl)amino)-10-isobutyl-4,9,12-trioxo-3,8,11-
triaza-1(2,5)-oxadiazola-cyclopentadecaphane-7-carboxylate (9b)

Yield (67%), mp 177–180 °C. 1H NMR (400 MHz, DMSO-d6) δ 0.80–0.93 (m, 6 H), 1.33–

1.41 (s, 9 H), 1.42–1.47 (m, 2 H), 1.57–1.69 (m, 1 H), 1.81–1.93 (m, 2 H), 1.94–2.04 (m, 2 

H), 2.18–2.27 (m, 1 H), 2.30–2.40 (m, 1 H), 2.44–2.56 (m, 2 H), 2.78–2.90 (t, 2 H), 3.29–

3.40 (m, 1 H), 3.55–3.67 (s, 3 H), 3.98–4.08 (m, 1 H), 4.38–4.46 (s, 2 H), 7.03–7.15 (m, 1 

H), 7.82–7.93 (m, 1 H). HRMS (ESI) calcd for C24H38N6O8Na, [M + Na]+: 561.2649. 

Found: 561.2643.

Methyl 14-((tert-Butoxycarbonyl)amino)-11-isobutyl-5,10,13-trioxo-4,9,12-triaza-1(2,5)-
oxadiazolacyclohexa-decaphane-8-carboxylate (9c)

Yield (57%), mp 155–157 °C. 1H NMR (400 MHz, DMSO-d6) δ 0.80–0.93 (m, 6 H), 1.33–

1.45 (s, 9 H), 1.84–1.97 (m, 2 H), 1.99–2.04 (m, 1 H), 2.78 (br s, 1 H), 2.79 (d, J = 5.08 Hz, 

1 H), 2.85–2.97 (m, 2 H), 3.29–3.41 (m, 8 H), 3.56–3.68 (m, 3 H), 3.56–3.68 (m, 3 H), 
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4.37–4.45 (m, 1 H), 6.98–7.02 (dd, 1H), 7.30–7.35 (dd, 1H), 7.89–8.00 (dd, 1 H), 8.21 (dd, J 
= 11.55, 8.42 Hz, 1 H). HRMS (ESI) calcd for C25H40N6O8Na, [M + Na]+: 575.2805. 

Found: 575.2824.

Methyl (8S,11S,14S)-14-((tert-Butoxycarbonyl)amino)-11-(cyclohexylmethyl)-5,10,13-
trioxo-4,9,12-triaza-1(2,5)-oxadiazolacyclohexadecaphane-8-carboxylate (9d)

Yield (70%), mp 197–200 °C. 1H NMR (400 MHz, DMSO-d6) δ 0.80–0.91 (m, 2 H), 1.07–

1.20 (m, 3 H), 1.33–1.41 (m, 6 H), 1.38 (s, 9 H), 1.42–1.46 (m, 2 H), 1.58–1.67 (m, 4 H), 

1.89–2.01 (m, 1 H), 2.47–2.56 (m, 2 H), 2.78–2.84 (m, 1 H), 2.86–2.93 (t, 2 H), 3.30–3.43 

(t, 2 H), 3.55–3.67 (s, 3 H), 4.03 (d, J = 7.13 Hz, 1 H), 4.43–4.50 (t, 2 H), 7.89–8.00 (m, 1 

H), 7.15 (dd, 1H), 7.3 (dd, 1H), 8.21 (dd, J = 11.55, 8.42 Hz, 1 H). HRMS (ESI) calcd for 

C28H44N6O8Na, [M + Na]+: 615.3118. Found: 615.3112.

Methyl (9S,12S,15S)-15-((tert-Butoxycarbonyl)amino)-12-isobutyl-6, 11, 14-trioxo-5, 10, 13-
triaza-1 (2,5) -oxadiazolacycloheptadecaphane-9-carboxylate(9e)

Yield (72%), mp 218–220 °C. 1H NMR (400 MHz, DMSO-d6) δ 0.81–0.93 (m, 6 H), 1.35 

(s, 9 H), 1.62 (d, J = 6.79 Hz, 1 H), 1.80–1.89 (m, 4 H), 2.49 (br s, 1 H), 2.50 (dt, J = 3.75, 

1.86 Hz, 4 H), 2.66–2.72 (m, 1 H), 2.73–2.79 (m, 2 H), 3.32 (s, 2 H), 3.32–3.35 (m, 4 H), 

3.62 (s, 3 H), 4.37 (br s, 1 H), 4.37–4.44 (m, 1 H), 8.16–8.22 (m, 1 H), 8.39–8.46 (m, 1 H), 

9.95 (s, 1 H). HRMS (ESI) calcd for C26H42N6O8, [M + Na]+: 589.2962. Found: 589.2962.

Methyl (9S,12S,15S)-15-((tert-Butoxycarbonyl)amino)-12-(cyclohexylmethyl)-6,11,14-
trioxo-5,10,13-triaza-1(2,5)-oxadiazolacycloheptadecaphane-9-carboxylate (9f)

Yield (65%), mp 177–180 °C. 1H NMR (400 MHz, DMSO-d6) δ 0.79–0.91 (m, 2 H), 1.08–

1.20 (m, 6 H), 1.40–1.43 (s, 9 H), 1.56–1.69 (m, 3 H), 1.75–1.88 (m, 4 H), 1.97–2.02 (m, 2 

H), 2.09–2.21 (m, 1 H), 2.47–2.53 (m, 2 H), 2.68–2.78 (m, 3 H), 2.85–2.96 (m, 2 H), 3.17 

(d, J = 4.83 Hz, 1 H), 3.33 (t, 2 H), 3.63–3.68 (s, 3 H), 3.97–4.06 (m, 2 H), 4.33–4.42 (m, 1 

H), 6.88–7.00 (m, 1 H), 7.88–8.00 (m, 1 H), 8.37–8.45 (m, 1 H). HRMS (ESI) calcd for 

C29H46N6O8Na, [M + Na]+: 629.3275. Found: 629.3267.

Methyl (4S,7S,10S)-4-((tert-Butoxycarbonyl)amino)-7-(cyclohexylmethyl)-5, 8, 13-trioxo-6, 9, 
14-triaza-1 (2, 5)-oxadiazolacyclooctadecaphane-10-carboxylate (9g)

Yield (51%), mp 98–101 °C. 1H NMR (400 MHz, DMSO-d6) δ 0.83–0.95 (m, 2 H), 1.09–

1.21 (m, 3 H), 1.32–1.43 (m, 5 H), 1.36 (s, 9 H) 1.56–1.69 (m, 4 H), 1.75–1.88 (m, 4 H), 

1.96–2.07 (m, 2 H), 2.09–2.23 (m, 2 H), 2.40–2.47 (m, 1 H), 2.49–2.53 (m, 1 H), 2.66–2.79 

(m, 3 H), 2.84–2.93 (m, 1 H), 3.56–3.68 (s, 3 H), 3.95–4.06 (m, 2 H), 4.36–4.44 (m, 2 H), 

6.66–6.75 (dd, J = 8.4 Hz, 1 H), 8.14–8.24 (dd, J = 8.2 Hz, 1 H), 8.38–8.45 (dd, J = 8.2 Hz, 

1 H), 9.93–9.98 (m, 1 H). HRMS (ESI) calcd for C30H48N6O8Na, [M + Na]+: 643.3431. 

Found: 643.3412.

Methyl (4S,7S,10S)-4-((tert-Butoxycarbonyl)amino)-7-(cyclohexylmethyl)-5, 8, 13-trioxo-6, 9, 
14-triaza-1 (2, 5)-oxadiazolacyclooctadecaphane-10-carboxylate (9h)

Yield (51%), mp 181–183 °C. 1H NMR (400 MHz, CDCl3) δ 0.77–0.90 (m, 2 H), 0.90–1.01 

(m, 2 H), 1.12–1.20 (m, 4 H), 1.24–1.35 (m, 4 H), 1.37–1.46 (m, 6 H), 1.43 (s, 9 H), 1.50–
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1.58 (m, 2 H), 1.60–1.71 (m, 4 H), 1.72–1.80 (m, 3 H), 2.23–2.32 (m, 2 H), 2.88 (ddd, J = 

10.79, 7.62, 4.64 Hz, 2 H), 2.98–3.10 (m, 2 H), 3.64–3.76 (s, 3 H), 4.51–4.61 (m, 1 H), 

6.83–6.95 (m, 1 H), 7.39–7.50 (d, 1 H), 7.6–7.7 (d, 1 H), 7.8–7.9(d, 1 H). HRMS (ESI) calcd 

for C31H50N6O8Na, [M + Na]+: 657.3588. Found: 657.3590.

Synthesis of Alcohols 10a–h. General Procedure

To a solution of ester 9 (3.25 mmol) in anhydrous THF (25 mL) was added dropwise lithium 

borohydride (2 M in THF, 4.9 mL, 9.75 mmol) followed by absolute ethyl alcohol (15 mL), 

and the reaction mixture was stirred at room temperature overnight. The reaction mixture 

was then acidified by adding 1.5 M potassium bisulfate until the pH of the solution was ~3. 

Removal of the solvent left a residue which was taken up in ethyl acetate (150 mL). The 

organic layer was washed with brine (25 mL), dried over anhydrous sodium sulfate, filtered, 

and concentrated to yield compounds 10a–h.

tert-Butyl ((7S,10S,13S)-7-(Hydroxymethyl)-10-isobutyl-4,9,12-trioxo-3,8,11-triaza-1(2,5)-
oxadiazolacyclotetra-decaphane-13-yl)carbamate (10a)

170d °C, yield (82%). 1H NMR (400 MHz, DMSO-d6) δ 0.79–0.91 (m, 6 H), 1.15–1.20 (m, 

1 H), 1.33–1.45 (s, 9 H), 1.53–1.65 (m, 2 H), 1.73–1.85 (m, 1 H), 1.86–1.96 (m, 1 H), 1.96–

2.03 (m, 1 H), 2.15–2.27 (m, 1 H), 2.38 (br s, 1 H), 2.51 (dquin, J = 3.48, 1.74, 1.74, 1.74, 

1.74 Hz, 1 H), 2.85–2.97 (m, 1 H), 3.19–3.26 (m, 1 H), 3.28–3.40 (m, 1 H), 3.62–3.73 (m, 1 

H), 3.99–4.08 (m, 1 H), 4.27 (br s, 2 H), 7.31–7.38 (m, 1 H), 7.39–7.45 (m, 1 H), 7.51–7.62 

(m, 1 H), 7.66–7.76 (m, 1 H), 7.90–8.02 (m, 1 H). HRMS (ESI) calcd for C22H37N6O7, [M 

+ H]+: 497.2724. Found: 497.2710

tert-Butyl ((7S,10S,13S)-7-(Hydroxymethyl)-10-isobutyl-4,9,12-trioxo-3,8,11-triaza-1(2,5)-
oxadiazolacyclopenta-decaphane-13-yl)carbamate (10b)

Yield (80%), mp 183–186 °C. 1H NMR (400 MHz, DMSO-d6) δ 0.78–0.90 (m, 6 H), 1.15–

1.23 (m, 1 H), 1.38 (s, 9 H), 1.57–1.63 (m, 1 H), 1.70–1.81 (m, 1 H), 1.87–1.95 (m, 1 H), 

2.48–2.56 (m, 3 H), 2.77–2.86 (m, 1 H), 2.88–2.98 (m, 1 H), 3.20–3.26 (m, 1 H), 3.29–3.42 

(m, 2 H), 3.59–3.66 (m, 1 H), 3.66–3.75 (m, 1 H), 4.27 (br s, 2 H), 4.40–4.50 (m, 3 H), 

6.99–7.03 (d, 1 H), 7.22–7.29 (d, 1 H), 7.62–7.70 (d, 1 H), 7.90–8.00 (d, 1 H). HRMS (ESI) 

calcd for C23H38N6O7Na, [M + Na]+: 533.2700. Found: 533.2721.

tert-Butyl ((8S,11S,14S)-8-(Hydroxymethyl)-11-isobutyl-5,10,13-trioxo-4,9,12-triaza-1(2,5)-
oxadiazolacyclohexa-decaphane-14-yl)carbamate (10c)

Yield (85%), mp 181–184 °C. 1H NMR (400 MHz, DMSO-d6) δ 0.78–0.90 (m, 6 H), 1.15–

1.23 (m, 1 H), 1.38 (br s, 9 H), 1.57–1.63 (m, 1 H), 1.70–1.81 (m, 1 H), 1.87–1.95 (m, 1 H), 

1.97–2.09 (m, 1 H), 1.97–2.09 (m, 1 H), 2.48–2.56 (m, 3 H), 2.77–2.86 (m, 1 H), 2.88–2.98 

(m, 2 H), 3.20–3.26 (m, 1 H), 3.29–3.42 (m, 4 H), 3.59–3.66 (m, 1 H), 3.66–3.75 (m, 1 H), 

4.27 (br s, 2 H), 6.94–6.96 (d, 1 H), 7.09–7.13 (d, 1 H), 7.63–7.72 (d, 1 H), 7.90–8.02 (d, 1 

H). HRMS (ESI) calcd for C24H40N6O7Na, [M + Na]+: 547.2856. Found: 547.2870.
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tert-Butyl ((8S,11S,14S)-11-(Cyclohexylmethyl)-8-(hydroxymethyl)-5, 10, 13-trioxo-4, 9, 12-
triaza-1 (2, 5)-oxadiazolacyclohexadecaphane-14-yl)carbamate (10d)

Yield (88%), mp 188–191 °C. 1H NMR (400 MHz, DMSO-d6) δ 0.78–0.91 (m, 4 H), 1.07–

1.18 (m, 6 H), 1.43–1.46 (s, 9 H), 1.56–1.67 (m, 1 H), 1.72–1.84 (m, 3 H), 1.97–2.09 (m, 2 

H), 2.22–2.30 (m, 2 H), 2.44–2.50 (m, 2 H), 2.85–2.97 (m, 2 H), 3.55–3.67 (m, 5 H), 3.92–

4.02 (m, 2 H), 4.25–4.37 (m, 2 H), 6.53 (br s, 1 H), 7.04–7.16 (m, 1 H), 7.67–7.80 (m, 1 H), 

7.86–7.97 (m, 1 H). HRMS (ESI) calcd for C27H45N6O7, [M + H]+: 565.3350. Found: 

565.3361.

tert-Butyl ((9S,12S,15S)-9-(Hydroxymethyl)-12-isobutyl-6,11,14-trioxo-5,10,13-triaza-1(2,5)-
oxadiazolacyclohepta-decaphane-15-yl)carbamate (10e)

Yield (85%), mp 168–172 °C. 1H NMR (400 MHz, DMSO-d6) δ 0.85–0.97 (m, 6 H), 1.09–

1.15 (m, 2 H), 1.16–1.23 (m, 2 H), 1.29 (br s, 1 H), 1.38–1.47 (s, 9 H), 1.58 (br s, 1 H), 

1.58–1.68 (m, 2 H), 2.48–2.60 (m, 4 H), 2.67–2.76 (m, 1 H), 2.81–2.93 (m, 4 H), 3.48–3.61 

(m, 3 H), 4.30–4.50 (m, 3 H), 7.36 (br s, 1 H), 7.37–7.45 (m, 2 H), 7.60–7.64 (d, 1 H). 

HRMS (ESI) calcd for C25H43N6O7, [M + H]+: 539.3193. Found: 539.0371.

tert-Butyl ((9S,12S,15S)-12-(Cyclohexylmethyl)-9-(hydroxymethyl)-6, 11, 14-trioxo-5, 10, 13-
triaza-1 (2, 5) -oxadiazolacycloheptadecaphane-15-yl)carbamate (10f)

Yield (90%), mp 191–194 °C. 1H NMR (400 MHz, DMSO-d6) δ 0.80–0.92 (m, 3 H), 1.08–

1.20 (m, 4 H), 1.23–1.30 (m, 2 H), 1.35–1.47 (s, 9 H), 1.57–1.69 (m, 4 H), 1.81–1.85 (m, 1 

H), 1.87–1.96 (m, 2 H), 1.96–2.07 (m, 2 H), 2.15 (br s, 2 H), 2.48–2.60 (m, 4 H), 2.67–2.76 

(m, 1 H), 2.89–2.96 (m, 1 H), 3.54–3.62 (m, 3 H), 3.64–3.67 (m, 1 H), 4.18–4.30 (br s, 2 H), 

7.31–7.33 (d, 1 H), 7.66–7.68 (d, 1 H), 7.81–7.84 (d, 1 H), 7.94–7.97 (d, 1 H). HRMS (ESI) 

calcd for C28H46N6O7Na, [M + Na]+: 601.3326. Found: 601.0944.

tert-Butyl ((4S,7S,10S)-7-(Cyclohexylmethyl)-10-(hydroxy-methyl)-5,8,13-trioxo-6,9,14-
triaza-1(2,5)-oxadiazolacycloocta-decaphane-4-yl)carbamate (10g)

Yield (92%), mp 139–141 °C. 1H NMR (400 MHz, DMSO-d6) δ 0.79–0.92 (m, 2 H), 1.05–

1.14 (m, 5 H), 1.23–1.30 (m, 2 H), 1.43–1.46 (s, 9 H), 1.56–1.67 (m, 4 H), 1.82–1.87 (m, 2 

H), 1.89–1.97 (m, 3 H), 2.15–2.26 (m, 1 H), 2.48–2.59 (m, 2 H), 2.67–2.73 (m, 1 H), 2.74–

2.86 (m, 2 H), 2.88–2.95 (m, 1 H), 3.22–3.27 (m, 1 H), 3.30–3.39 (m, 2 H), 3.41–3.47 (m, 1 

H), 3.60–3.71 (m, 1 H), 3.92–4.02 (m, 2 H), 4.25–4.37 (m, 2 H), 6.53 (br s, 1 H), 7.04–7.16 

(m, 1 H), 7.67–7.80 (m, 1 H), 7.86–7.97 (m, 1 H). HRMS (ESI) calcd for C29H49N6O7, [M 

+ H]+: 593.3663. Found: 593.3660.

tert-Butyl ((4S,7S,10S)-7-(Cyclohexylmethyl)-10-(hydroxymethyl)-5, 8, 13-trioxo-6, 9, 14-
triaza-1 (2, 5)-oxadiazolacyclononadecaphane-4-yl)carbamate (10h)

Yield (90%), mp 142–145 °C. 1H NMR (400 MHz, CDCl3) δ 0.84–0.96 (m, 2 H), 1.12–1.21 

(m, 5 H), 1.24–1.28 (m, 2 H), 1.37–1.48 (s, 9 H), 1.60–1.71 (m, 7 H), 1.84 (d, J = 2.64 Hz, 1 

H), 1.84–1.96 (m, 2 H), 1.96–2.07 (m, 2 H), 2.09 (s, 1 H), 2.16–2.28 (m, 2 H), 2.28–2.40 (m, 

2 H), 2.80–2.92 (m, 2 H), 2.96 (br s, 2 H), 3.55–3.67 (m, 1 H), 3.75 (br s, 1 H), 4.12 (q, J = 

7.11 Hz, 1 H), 4.40–4.50 (m, 2 H), 7.26–7.35 (m, 2 H), 7.40–7.53 (m, 2 H), 7.73–7.81 (m, 1 
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H), 7.81–7.93 (m, 1 H). HRMS (ESI) calcd for C30H50N6O7Na, [M + Na]+: 629.3639. 

Found: 629.3638.

Synthesis of Compounds 13a–d. General Procedure

To a solution of compound 4 (12.0 g, 26.75 mmol) in dry DMF (120 mL) were added EDCI 

(6.7 g, 34.78 mmol, 1.3 equiv), HOBt (5.29 g, 34.78 mmol, 1.3 equiv), and the mixture was 

stirred for 30 min at room temperature. In a separate flask, a solution of (L)-cyclohexyl 

alanine methyl ester hydrochloride 12 (5.93 g, 26.75 mmol) in dry DMF (100 mL) cooled to 

0–5 °C was treated with diisopropylethylamine (13.83 g, 107 mmol, 4.0 equiv), stirred for 

30 min, and then added to the reaction mixture above. The solution was stirred for 16 h 

while monitoring the reaction by TLC. The solvent was removed, and the residue was 

partitioned between ethyl acetate (300 mL) and 5% aqueous HCl (2 × 120 mL). The ethyl 

acetate layer was further washed with saturated NaHCO3 (2 × 120 mL), followed by 

saturated NaCl (120 mL). The organic layer was dried over anhydrous Na2SO4, filtered, and 

concentrated. The crude product was purified by flash chromatography to yield compounds 

13a–d.

Methyl (S)-2-((S)-4-(5-(2-(((Benzyloxy)carbonyl)amino)ethyl)-1,3,4-oxadiazol-2-yl)-2-((tert-
butoxycarbonyl)amino)-butanamido)-3-cyclohexylpropanoate (13a)

Oil, yield (80%). 1H NMR (400 MHz, CDCl3) δ 0.85–0.98 (m, 2 H), 1.13–1.22 (m, 3 H), 

1.23–1.26 (m, 1 H), 1.34–1.46 (m, 1H), 1.40 (s, 9 H), 1.60–1.72 (m, 6 H), 2.01–2.13 (m, 2 

H), 2.18–2.31 (m, 1 H), 2.96–3.08 (m, 4 H), 3.62–3.74 (m, 2 H), 3.70 (s, 3 H), 4.15–4.26 (m, 

1 H), 4.54–4.66 (m, 1 H), 5.05–5.17 (s, 2 H), 5.40–5.49 (m, 1 H), 5.71–5.84 (m, 1 H), 7.27–

7.40 (m, 5 H). HRMS (ESI) calcd for C31H46N5O8, [M + H]+: 616.3346. Found: 616.3404.

Methyl (S)-2-((S)-4-(5-(3-(((Benzyloxy)carbonyl)amino)-propyl)-1,3,4-oxadiazol-2-yl)-2-((tert-
butoxycarbonyl)amino)-butanamido)-3-cyclohexylpropanoate (13b)

Oil, yield (81%). 1H NMR (400 MHz, CDCl3) δ 0.84–0.96 (m, 3 H), 1.14–1.26 (m, 4 H), 

1.34–1.46 (m, 3 H), 1.42 (s, 9 H), 1.59–1.72 (m, 3 H), 1.95–2.07 (m, 4 H), 2.23–2.35 (m, 1 

H), 2.88 (t, J = 7.40 Hz, 2 H), 2.93–3.05 (m, 2 H), 3.23–3.36 (m, 2 H), 3.72–3.77 (s, 3 H), 

4.17–4.29 (m, 1 H), 4.55–4.67 (m, 1 H), 5.09 (s, 2 H), 5.42 (d, J = 7.32 Hz, 1 H), 7.27–7.39 

(m, 5 H). HRMS (ESI) calcd for C32H48N5O8, [M + H]+: 630.3503. Found: 630.3500.

Methyl (S)-2-((S)-4-(5-(4-(((Benzyloxy)carbonyl)amino)-butyl)-1,3,4-oxadiazol-2-yl)-2-((tert-
butoxycarbonyl)amino)-butanamido)-3-cyclohexylpropanoate (13c)

Oil, yield (81%). 1H NMR (400 MHz, CDCl3) δ 0.87–0.97 (m, 2 H), 1.14–1.26 (m, 2 H), 

1.33–1.44 (s, 9 H), 1.58–1.63 (m, 2 H), 1.65–1.72 (m, 4 H), 1.77–1.85 (m, 2 H), 2.01–2.12 

(m, 2 H), 2.22–2.34 (m, 2 H), 2.78–2.90 (m, 2 H), 2.98–3.08 (m, 1 H), 3.18–3.27 (m, 2 H), 

3.68–3.75 (m, 2 H), 3.71 (s, 3 H), 4.19–4.27 (m, 1 H), 4.55–4.62 (m, 1 H), 5.01 (br s, 1 H), 

5.09 (s, 2 H), 5.41 (d, J = 7.66 Hz, 1 H), 7.13–7.24 (m, 1 H), 7.26–7.39 (m, 5 H). HRMS 

(ESI) calcd for C33H50N5O8, [M + H]+: 644.3659. Found: 644.3652.
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Methyl (S)-2-((R)-4-(5-(5-(((Benzyloxy)carbonyl)amino)-pentyl)-1,3,4-oxadiazol-2-yl)-2-((tert-
butoxycarbonyl)amino)-butanamido)-3-cyclohexylpropanoate (13d)

Oil, yield (79%). 1H NMR (400 MHz, CDCl3) δ 0.86–0.99 (m, 2 H), 1.14–1.20 (m, 2 H), 

1.21–1.28 (m, 2 H), 1.35–1.47 (s, 9 H), 1.52–1.59 (m, 2 H), 1.61–1.72 (m, 6 H), 1.74–1.82 

(m, 2 H), 1.96–2.07 (m, 2 H), 2.22–2.35 (m, 1 H), 2.77–2.89 (m, 2 H), 2.93–3.05 (m, 2 H), 

3.12–3.25 (m, 2 H), 3.67–3.78 (s, 3 H), 4.24–4.30 (br s, 1 H), 4.55–4.67 (m, 1 H), 5.04–5.16 

(s, 2 H), 5.35–5.55 (br s, 1H), 6.98–7.0 (br s, 1 H), 7.27–7.39 (m, 5 H). HRMS (ESI) calcd 

for C34H52N5O8, [M + H]+: 658.3816. Found: 658.3879.

Synthesis of Compounds 14a–d. General Procedure

A solution of ester 13 (25 mmol) in THF (40 mL) was treated with 1 M LiOH in aqueous 

ethanol (50 mL). The reaction mixture was stirred for 3 h at room temperature, and the 

disappearance of the ester was monitored by TLC. Most of the solvent was evaporated off, 

and the residue was diluted with water (25 mL). The solution was acidified to pH ≈ 3 using 

5% hydrochloride acid (25 mL), and the aqueous layer was extracted with ethyl acetate (3 × 

100 mL). The combined organic layers were dried over anhydrous sodium sulfate, filtered, 

and concentrated to yield compounds 14a–d.

(S)-2-((S)-4-(5-(2-(((Benzyloxy)carbonyl)amino)ethyl)-1,3,4-oxadiazol-2-yl)-2-((tert-
butoxycarbonyl)amino)butanamido)-3-cyclohexylpropanoic Acid (14a)

Yield (95%), mp 59–62 °C. 1H NMR (400 MHz, CDCl3) δ 0.85–0.98 (m, 2 H), 1.13–1.22 

(m, 3 H), 1.23–1.26 (m, 1 H), 1.34–1.46 (m, 1H), 1.40 (s, 9 H), 1.60–1.72 (m, 6 H), 2.01–

2.13 (m, 2 H), 2.18–2.31 (m, 1 H), 2.96–3.08 (m, 4 H), 3.62–3.74 (m, 2 H), 4.15–4.26 (m, 1 

H), 4.54–4.66 (m, 1 H), 5.05–5.17 (s, 2 H), 5.40–5.49 (m, 1 H), 5.71–5.84 (m, 1 H), 7.27–

7.40 (m, 5 H). HRMS (ESI) calcd for C30H44N5O8, [M + H]+: 602.3190. Found: 602.3214.

(S)-2-((S)-4-(5-(3-(((Benzyloxy)carbonyl)amino)propyl)-1,3,4-oxadiazol-2-yl)-2-((tert-
butoxycarbonyl)amino)butanamido)-3-cyclohexylpropanoic Acid (14b)

Oil, yield (95%). 1H NMR (400 MHz, CDCl3) δ 0.84–0.96 (m, 3 H), 1.14–1.26 (m, 4 H), 

1.34–1.46 (m, 3 H), 1.42 (s, 9 H), 1.59–1.72 (m, 3 H), 1.95–2.07 (m, 4 H), 2.23–2.35 (m, 1 

H), 2.88 (t, J = 7.40 Hz, 2 H), 2.93–3.05 (m, 2 H), 3.23–3.36 (m, 2 H), 4.17–4.29 (m, 1 H), 

4.55–4.67 (m, 1 H), 5.09 (s, 2 H), 5.42 (d, J = 7.32 Hz, 1 H), 7.27–7.39 (m, 5 H). HRMS 

(ESI) calcd for C31H46N5O8, [M + H]+: 616.3346. Found: 616.3362.

(S)-2-((R)-4-(5-(4-(((Benzyloxy)carbonyl)amino)butyl)-1,3,4-oxadiazol-2-yl)-2-((tert-
butoxycarbonyl)amino)butanamido)-3-cyclohexylpropanoic Acid (14c)

Oil, yield (98%). 1H NMR (400 MHz, CDCl3) δ 0.87–0.98 (m, 2 H), 1.14–1.26 (m, 2 H), 

1.39–1.50 (s, 9 H), 1.56–1.62 (m, 2 H), 1.64–1.71 (m, 4 H), 1.74–1.82 (m, 4 H), 2.02–2.15 

(m, 2 H), 2.23–2.34 (m, 1 H), 2.81–2.91 (m, 2 H), 2.92–3.00 (m, 1 H), 3.14–3.26 (m, 2 H), 

4.30–4.42 (m, 1 H), 4.57–4.69 (m, 1 H), 5.06–5.18 (s, 2 H), 5.18–5.30 (m, 1 H), 5.43–5.53 

(m, 1 H), 5.53–5.65 (m, 1 H), 6.66–6.78 (m, 1 H), 7.26–7.39 (m, 5 H). HRMS (ESI) calcd 

for C32H48N5O8, [M + H]+: 630.3503. Found: 630.3570.
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(S)-2-((R)-4-(5-(5-(((Benzyloxy)carbonyl)amino)pentyl)-1,3,4-oxadiazol-2-yl)-2-((tert-
butoxycarbonyl)amino)butanamido)-3-cyclohexylpropanoic Acid (14d)

Oil, yield (98%). 1H NMR (400 MHz, CDCl3) δ 0.86–0.99 (m, 2 H), 1.14–1.20 (m, 2 H), 

1.21–1.28 (m, 2 H), 1.35–1.47 (s, 9 H), 1.52–1.59 (m, 2 H), 1.61–1.72 (m, 6 H), 1.74–1.82 

(m, 2 H), 1.96–2.07 (m, 2 H), 2.22–2.35 (m, 1 H), 2.77–2.89 (m, 2 H), 2.93–3.05 (m, 2 H), 

3.12–3.25 (m, 2 H), 4.24–4.30 (br s 1 H), 4.55–4.67 (m, 1 H), 5.04–5.16 (s, 2 H), 5.35–5.55 

(br s, 1H), 6.98–7.0 (br s, 1 H), 7.27–7.39 (m, 5 H). HRMS (ESI) calcd for C33H50N5O8, [M 

+ H]+: 644.3659. Found: 644.3742.

Synthesis of Compounds 7d and 7f–h. General Procedure

To a solution of compound 14 (15.0 g, 24.92 mmol) in dry DMF (150 mL) were added 

EDCI (6.2 g, 32.39 mmol, 1.3 equiv), HOBt (4.96 g, 32.39 mmol, 1.3 equiv), and the 

reaction mixture was stirred for 30 min at room temperature. In a separate flask, a solution 

of (L)-Glu(OBzl) methyl ester hydrochloride 5 (7.17 g, 24.92 mmol) in dry DMF (80 mL) 

cooled to 0–5 °C was treated with diisopropylethyl-amine (DIEA) (12.88 g, 99.68 mmol, 4.0 

equiv), stirred for 30 min, and then added to the reaction mixture above. The reaction 

mixture was stirred for 16 h while monitoring the reaction by TLC. The solvent was 

removed, and the residue was partitioned between ethyl acetate (400 mL) and 5% aqueous 

HCl (2 × 120 mL). The ethyl acetate layer was further washed with saturated aqueous 

NaHCO3 (2 × 120 mL), followed by saturated NaCl (120 mL). The organic layer was dried 

over anhydrous Na2SO4, filtered, and concentrated. The crude was purified by flash 

chromatography to yield compounds 7d and 7f–h.

5-Benzyl 1-Methyl ((S)-2-((S)-4-(5-(2-(((Benzyloxy)carbonyl)-amino)ethyl)-1,3,4-oxadiazol-2-
yl)-2-((tert-butoxycarbonyl)-amino)butanamido)-3-cyclohexylpropanoyl)-L-glutamate (7d)

Yield (75%), mp 54–57 °C 1H NMR (400 MHz, CDCl3) δ 0.83–0.95 (m, 2 H), 1.12–1.20 

(m, 2 H), 1.24–1.28 (m, 1 H), 1.37–1.48 (s, 9 H), 1.61–1.74 (m, 6 H), 1.96–2.08 (t, 2 H), 

2.15–2.27 (m, 2 H), 2.19 (s, 2 H), 2.36–2.49 (m, 2 H), 2.87–2.96 (m, 2 H), 2.97–3.03 (m, 1 

H), 3.60–3.72 (m, 2 H), 3.60–3.72 (s, 3 H), 4.11–4.20 (m, 1 H), 4.50–4.63 (m, 2 H), 5.06–

5.18 (s,s, 4 H), 7.09–7.18 (m, 1 H), 7.29–7.39 (m, 10 H), 8.2–8.3 (dd, 2 H). HRMS (ESI) 

calcd for C43H59N6O11, [M + H]+: 835.4242. Found: 835.4238.

(S)-5-Benzyl 1-Methyl (2-(4-(5-(3-(((Benzyloxy)carbonyl)-amino)propyl)-1,3,4-oxadiazol-2-
yl)-2-((tert-butoxycarbonyl)-amino)butanamido)-3-yclohexylpropanoyl)glutamate (7f)

Oil, yield (70%). 1H NMR (400 MHz, CDCl3) δ 0.82–0.94 (m, 2 H), 1.08–1.20 (m, 3 H), 

1.22–1.26 (m, 1 H), 1.28–1.33 (m, 1 H), 1.35–1.44 (m, 1 H), 1.39 (s, 9 H), 1.58–1.70 (m, 5 

H), 1.94–2.06 (m, 4 H), 2.14–2.26 (m, 2 H), 2.36–2.48 (m, 2 H), 2.81–2.93 (m, 3 H), 3.19–

3.31 (m, 1 H), 3.61–3.72 (m, 3 H), 4.07–4.18 (m, 1 H), 4.40–4.49 (m, 2 H), 4.50–4.60 (m, 2 

H), 5.02–5.14 (m, 4 H), 7.02–7.14 (m, 1 H), 7.25–7.37 (m, 10 H). HRMS (ESI) calcd for 

C44H61N6O11, [M + H]+: 849.4398. Found: 849.4393.
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5-Benzyl 1-Methyl ((S)-2-((S)-4-(5-(4-(((Benzyloxy)carbonyl)-amino)butyl)-1,3,4-oxadiazol-2-
yl)-2-((tert-butoxycarbonyl)-amino)butanamido)-3-cyclohexylpropanoyl)-L-glutamate (7g)

Yield (75%), mp 75–77 °C. 1H NMR (400 MHz, CDCl3) δ 0.85–0.97 (m, 2 H), 1.10–1.22 

(m, 2 H), 1.38–1.48 (s, 9 H), 1.58–1.71 (m, 5 H), 1.78–1.83 (m, 4 H), 1.96–2.09 (m, 2 H), 

2.16–2.28 (m, 2 H), 2.37–2.48 (m, 2 H), 2.79–2.86 (m, 2 H), 2.87–2.97 (m, 2 H), 3.15–3.27 

(m, 2 H), 3.66–3.77 (s, 3 H), 4.41–4.51 (m, 1 H), 4.53–4.62 (m, 1 H), 5.05–5.16 (m, 4 H), 

7.03–7.16 (m, 1 H), 7.26–7.39 (m, 10 H). HRMS (ESI) calcd for C45H63N6O11, [M + H]+: 

863.4555. Found: 863.4549.

5-Benzyl 1-Methyl ((S)-2-((S)-4-(5-(5-(((Benzyloxy)carbonyl)-amino)pentyl)-1,3,4-oxadiazol-2-
yl)-2-((tert-butoxycarbonyl)-amino)butanamido)-3-cyclohexylpropanoyl)-L-glutamate (7h)

Yield (80%), mp 59–62 °C. 1H NMR (400 MHz, CDCl3) δ 0.85–0.97 (m, 2 H), 1.12–1.22 

(m, 2 H), 1.24–1.28 (m, 2 H), 1.36–1.46 (m, 4 H), 1.42 (s, 9 H), 1.49–1.58 (m, 2 H), 1.63–

1.72 (m, 4 H), 1.74–1.76 (m, 2 H), 1.96–2.08 (m, 2 H), 2.16–2.29 (m, 2 H), 2.37–2.49 (m, 2 

H), 2.76–2.83 (m, 2 H), 2.86–2.98 (m, 2 H), 3.11–3.24 (m, 2 H), 3.66–3.76 (s, 3 H), 4.0–

4.15 (br s, 1H), 4.54–4.64 (m, 2 H), 5.04–5.16 (m, 4 H), 7.02–7.15 (m, 1 H), 7.27–7.39 (m, 

10 H). HRMS (ESI) calcd for C46H65N6O11, [M + H]+: 877.4711. Found: 877.4706.

Synthesis of Aldehydes 15–22. General Procedure

Compound 10 (0.95 mmol) was dissolved in anhydrous dichloromethane (30 mL) under a 

nitrogen atmosphere and cooled to 0 °C. Dess–Martin periodinane reagent (1.21 g, 2.85 

mmol, 3.0 equiv) was added to the reaction mixture with stirring. The ice bath was removed, 

and the reaction mixture was stirred at room temperature for 3 h (monitoring by TLC 

indicated complete disappearance of the starting material). A solution of 40 mM sodium 

thiosulfate in saturated aqueous NaHCO3 (50 mL) was added, and the solution was stirred 

for another 15 min. The aqueous layer was removed, and the organic layer was washed with 

sodium bicarbonate (25 mL), water (2 × 25 mL), and brine (25 mL). The organic layer was 

dried over anhydrous sodium sulfate, filtered, and concentrated. The yellow residue was 

purified by flash chromatography (silica gel/methylene chloride/ethyl acetate/methanol) to 

yield aldehydes 15–22.

tert-Butyl ((7S,10S,13S)-7-Formyl-10-isobutyl-4,9,12-trioxo-3,8,11-triaza-1(2,5)-
oxadiazolacyclotetradecaphane-13-yl)-carbamate (15)

Yield (43%), mp 91–94 °C. 1H NMR (400 MHz, CDCl3) δ 0.84–0.97 (m, 6 H), 1.17–1.30 

(m, 1 H), 1.38–1.50 (s, 9 H), 1.63–1.71 (m, 2 H), 2.37–2.48 (m, 2 H), 2.54–2.63 (m, 2 H), 

2.90–2.97 (m, 1 H), 3.12–3.19 (m, 1 H), 4.35–4.43 (m, 2 H), 4.50–4.61 (s, 2 H), 4.65–4.70 

(m, 1 H), 6.94–7.01 (d, 1 H), 7.18–7.23 (d, 1 H), 7.79–7.91 (d, 1 H), 8.14–8.19 (d, 1 H), 

9.55–9.60 (s, 1 H). HRMS (ESI) calcd for C22H35N6O7, [M + H]+: 495.2567. Found: 

495.2887.

tert-Butyl ((7S,10S,13S)-7-Formyl-10-isobutyl-4,9,12-trioxo-3,8,11-triaza-1(2,5)-
oxadiazolacyclopentadecaphane-13-yl)-carbamate (16)

Yield (40%), mp 99–102 °C. 1H NMR (400 MHz, CDCl3) δ 0.84–0.97 (m, 6 H), 1.17–1.30 

(m, 1 H), 1.38–1.50 (s, 9 H), 1.63–1.71 (m, 3 H), 2.37–2.48 (m, 3 H), 2.54–2.63 (m, 2 H), 
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2.88–2.97 (m, 2 H), 4.35–4.43 (m, 3 H), 4.45–4.56 (s, 2 H), 6.94–7.01 (d, 1 H), 7.18–7.23 

(d, 1 H), 7.79–7.91 (d, 1 H), 8.14–8.19 (d, 1 H), 9.55–9.60 (s, 1 H). HRMS (ESI) calcd for 

C23H36N6O7Na, [M + Na]+: 531.2543. Found: 531.2520.

tert-Butyl ((8S,11S,14S)-8-Formyl-11-isobutyl-5,10,13-trioxo-4,9,12-triaza-1(2,5)-
oxadiazolacyclohexadecaphane-14-yl)-carbamate (17)

Yield (45%), mp 76–78 °C. 1H NMR (400 MHz, CDCl3) δ 0.83–0.95 (d, 6 H), 1.11–1.23 

(m, 1 H), 1.26 (br s, 2 H), 1.43–1.46 (s, 9 H), 1.56–1.69 (m, 3 H), 2.37–2.50 (m, 2 H), 2.89–

3.00 (m, 3 H), 3.01–3.05 (m, 1 H), 3.42–3.54 (m, 1 H), 3.57–3.69 (m, 2 H), 4.47–4.52 (m, 3 

H), 7.26–7.30 (m, 1 H), 7.09–7.13 (d, 1 H), 7.63–7.72 (d, 1 H), 7.90–8.02 (d, 1 H), 9.50–

9.52 (s, 1 H). HRMS (ESI) calcd for C24H38N6O6, [M + H]+: 523.28. Found: 523.3.

tert-Butyl ((8S,11S,14S)-11-(Cyclohexylmethyl)-8-formyl-5,10,13-trioxo-4,9,12-triaza-1(2,5)-
oxadiazolacyclohexa-decaphane-14-yl)carbamate (18)

Yield (50%), mp 106–108 °C. 1H NMR (400 MHz, CDCl3) δ 0.84–0.96 (m, 4 H), 1.11–1.21 

(m, 4 H), 1.44–1.48 (s, 9 H), 1.59–1.71 (m, 2 H), 2.00–2.13 (m, 2 H), 2.15–2.27 (m, 2 H), 

2.38–2.49 (m, 2 H), 2.85–2.97 (m, 2 H), 3.55–3.67 (m, 5 H), 3.92–4.02 (m, 2 H), 4.37–4.46 

(m, 3 H), 7.26–7.38 (m, 1 H), 7.67–7.80 (d, 1 H), 7.86–7.97 (d, 1 H), 8.20–8.23 (d, 1 H), 

9.49–9.51 (s, 1 H). HRMS (ESI) calcd for C27H42N6O6Na, [M + Na]+: 585.3013. Found: 

585.3002.

tert-Butyl ((9S,12S,15S)-9-Formyl-12-isobutyl-6,11,14-trioxo-5,10,13-triaza-1(2,5)-
oxadiazolacycloheptadecaphane-15-yl)-carbamate (19)

Yield (45%), mp 86–88 °C. 1H NMR (400 MHz, CDCl3) δ 0.84–0.97 (m, 6 H), 1.17–1.30 

(m, 1 H), 1.38–1.50 (s, 9 H), 1.63–1.71 (m, 3 H), 1.97–2.09 (m, 4 H), 2.37–2.48 (m, 2 H), 

2.54–2.63 (m, 2 H), 2.88–2.97 (m, 1 H), 3.63–3.71 (m, 1 H), 3.73–3.85 (m, 2 H), 4.19–4.30 

(m, 1 H), 4.35–4.43 (m, 1 H), 4.45–4.56 (m, 2 H), 6.97–7.06 (d, 1 H), 7.10–7.18 (d, 1 H), 

7.99–8.05 (d, 1 H), 8.24–8.33 (d, 1 H), 9.52–9.60 (s, 1 H). HRMS (ESI) calcd for 

C27H38N6O7Na, [M + Na]+: 545.2700. Found: 545.2613.

tert-Butyl ((9S,12S,15S)-12-(Cyclohexylmethyl)-9-formyl-6,11,14-trioxo-5,10,13-triaza-1(2,5)-
oxadiazolacyclohepta-decaphane-15-yl)carbamate (20)

Yield (45%), mp 96–99 °C. 1H NMR (400 MHz, CDCl3) δ 0.85–0.98 (m, 4 H), 1.10–1.22 

(m, 6 H), 1.43–1.46 (s, 9 H), 1.60–1.72 (m, 3 H), 1.90–1.96 (m, 2 H), 1.98–2.08 (m, 4 H), 

2.31–2.43 (m, 2 H), 2.86–2.98 (m, 4 H), 3.44–3.51 (m, 1 H), 3.85 (td, J = 5.97, 3.59 Hz, 2 

H), 3.90–4.02 (m, 1 H), 4.27–4.39 (m, 2 H), 4.49 (br s, 1 H), 5.94–6.07 (d, 1 H), 6.87–6.98 

(br s, 1 H), 7.87–7.92 (d, 1 H), 8.00–8.05 (d, 1 H), 9.48–9.59 (d, 1 H). HRMS (ESI) calcd 

for C28H45N6O7, [M + H]+: 577.3350. Found: 577.3145.

tert-Butyl ((4S,7S,10S)-7-(Cyclohexylmethyl)-10-formyl-5,8,13-trioxo-6,9,14-triaza-1(2,5)-
oxadiazolacycloocta-decaphane-4-yl)carbamate (21)

Yield (52%), mp 80–83 °C. 1H NMR (400 MHz, CDCl3) δ 0.85–0.98 (m, 4 H), 1.10–1.22 

(m, 6 H), 1.43–1.46 (s, 9 H), 1.60–1.72 (m, 3 H), 1.90–1.96 (m, 2 H), 1.98–2.08 (m, 4 H), 

2.31–2.43 (m, 2 H), 2.86–2.98 (m, 4 H), 3.44–3.51 (m, 1 H), 3.85 (td, J = 5.97, 3.59 Hz, 2 
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H), 3.90–4.02 (m, 1 H), 4.27–4.39 (m, 2 H), 4.49 (br s, 1 H), 7.02–7.10 (d, 1 H), 7.31–7.40 

(br s, 1 H), 7.77–7.81 (d, 1 H), 8.01–8.05 (d, 1 H), 9.48–9.59 (d, 1 H). HRMS (ESI) calcd 

for C29H46N6O7Na, [M + Na]+: 613.3326. Found: 613.3299.

tert-Butyl ((4S,7S,10S)-7-(Cyclohexylmethyl)-10-formyl-5,8,13-trioxo-6,9,14-triaza-1(2,5)-
oxadiazolacyclonona-decaphane-4-yl)carbamate (22)

Yield (50%), mp 106–109 °C. 1H NMR (400 MHz, CDCl3) δ 0.87–0.99 (m, 4 H), 1.14–1.23 

(m, 4 H), 1.34–1.37 (m, 1 H), 1.44–1.54 (s, 9 H), 1.63–1.75 (m, 8 H), 2.01–2.12 (m, 2 H), 

2.12–2.24 (m, 4 H), 2.30 (br s, 2 H), 2.87–2.97 (m, 2 H), 3.43–3.55 (m, 4 H), 4.37–4.49 (m, 

3 H), 6.74–6.84 (m, 1 H), 7.11–7.23 (m, 1 H), 7.46–7.54 (d, 1 H), 7.98–8.06 (m, 1 H), 9.50–

9.55 (s, 1 H). HRMS (ESI) calcd for C30H48N6O7Na, [M + Na]+: 627.3482. Found: 

627.3465.

Enzyme Assays and Inhibition Studies

These studies were carried out as described previously.26,28,41 The NV 3CLpro fluorescence 

resonance energy transfer (FRET) assay was performed using a fluorogenic substrate 

(Edans-DFHLQGP-Dabcyl) which is derived from the cleavage sites on NV polyproteins. 

Methods for FRET assay and determination of the IC50 values of protease inhibitors against 

3CLpro were described previously by our lab.26,28,41

Antiviral Assays

Each compound was evaluated for anti-3CLpro effects up to 100 μM. For the cell based 

assay, 1 day old HG23 cells (NV replicon harboring cells) were treated with various 

concentrations (1.0–100 μM) of each compound and incubated for 48 h. Then total RNA 

was extracted from cells for qRT-PCR for norovirus and β-actin. The EC50 and EC90 (the 

50% and 90% inhibitory concentration in cell based assay, respectively) of each compound 

were calculated by the % reduction of RNA levels to Mock-treated cells after normalization 

with β-actin levels. Each compound was also tested against MNV-1. Confluent RAW267.4 

was inoculated with MNV-1 at a MOI of 0.05, and at the same time, various concentrations 

(1.0–100 μM) of each compound were added to the medium. Virus infected cells were 

further incubated for 72 h until extensive cytopathic effects (CPE) progress. The EC50 of 

each compound was determined by 50% inhibition of CPE progress (cell death) by each 

compound at 48 h using a CytoTox96 nonradioactive cytotoxicity assay kit (Promega, 

Madison, WI) following the manufacturer’s instructions. Cell cytotoxicity for each 

compound in HG23 cells was also measured by the cytotoxicity assay kit with serial dilution 

up to 100 μM. The CC50 (the 50% cytotoxic concentration) was determined for each 

compound. The IC50, EC50, or CC50 values were determined by at least two independent 

experiments.

X-ray Crystallographic Studies. Crystallization and Data Collection

Purified norovirus 3CL protease (3CLpro) in 100 mM NaCl, 50 mM PBS, pH 7.2, 1 mM 

DTT at a concentration of 10 mg/mL was used for the preparation of the enzyme:22 
complex. Stock solutions of 100 mM 21 and 22 were prepared in DMSO and the 

3CLpro:inhibitor complex was prepared by mixing 7 μL of the inhibitors (3 mM) with 243 
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μL (0.49 mM) of 3CLpro and incubating on ice for 1 h. The buffer was exchanged to 100 

mM NaCl, 20 mM Tris, pH 8.0, using a Zeba spin desalting column (MWCO = 7 kDa, Life 

Technologies), and the sample was concentrated to 10.0 mg/mL for crystallization screening. 

All crystallization experiments were conducted using a Compact Jr. (Rigaku Reagents) 

sitting drop vapor diffusion plates at 20 °C and equal volumes of protein and crystallization 

solution equilibrated against 75 μL of the latter. Crystals were obtained from the from the 

Index HT screen (Hampton Research). Prismatic crystals of NV 3CLpro:21 were obtained in 

2 days from condition E9 (30% v/v pentaerythritol ethoxylate (15/4 EO/OH), 50 mM Bis-

Tris, pH 6.5, 50 mM ammonium sulfate). Crystals of NV 3CLpro:22 displaying a needle 

morphology were obtained in 2–3 days condition H12 (30% (w/v) PEG 2000 MME, 150 

mM potassium bromide). Samples were cryoprotected in a fresh drop crystallant for NV 

3CLpro:21 and 80% crystallization solution/20% glycerol for NV 3CLpro:22, before storing 

in liquid nitrogen. X-ray diffraction data were collected at the Advanced Photon Source 

beamline 17-ID using a Dectris Pilatus 6M pixel array detector.

Structure Solution and Refinement

Intensities were integrated using XDS,44,45 and the Laue class analysis and data scaling 

were performed with Aimless46 which suggested that the highest probability Laue class was 

2/m (C2) for NV 3CLpro:21 and mmm (P212121) for NV 3CLpro:22. Structure solution was 

conducted by molecular replacement with Phaser47 using a previously determined 

isomorphous structure of inhibitor bound norovirus 3CLpro (PDB code 3UR9) as the search 

model. Structure refinement and manual model building were conducted with Phenix48 and 

Coot,49 respectively. Disordered side chains were truncated to the point for which electron 

density could be observed. All atoms were refined with anisotropic atomic displacement 

parameters for NV 3CLpro:21. Structure validation was conducted with Molprobity,50 and 

figures were prepared using the CCP4MG package.51 Coordinates and structure factors were 

deposited to the wwPDB with the accession codes 5DGJ (NV 3CLpro:21) and 5DG6 (NV 

3CLpro:22).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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ABBREVIATIONS USED

ORF open reading frame

EDCI 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide
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HOBt N-hydroxybenzo-triazole

DIEA diisopropylethylamine

DTT dithiothreitol

DMSO dimethyl sulfoxide

MNV murine norovirus

MOI multiplicity of infection

CPE cytopathic effect

TCID50 the 50% tissue culture infectious dose

IC50 the 50% inhibitory concentration in the enzyme assay

EC50 the 50% effective concentration in cell culture

CC50 50% cytotoxic concentration in cell-based assays

GESAMT general efficient structural alignment of macromolecular targets

rmsd root-mean-square deviation

XDS X-ray detector software

MME monomethyl ether
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Figure 1. 
General structure of macrocyclic inhibitor (I).
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Figure 2. 
Dose-dependent inhibition of NV RNA levels by compound 21. Various concentrations of 

compound 21 (0.1–40 μM) were incubated in NV replicon cells for 48 h, and NV RNA 

levels were measured by quantitative real-time RT-PCR.
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Figure 3. 
Fo – Fc map (green mesh) contoured at 3σ and 2Fo – Fc map (blue mesh) contoured at 1σ for 

of macrocyclic inhibitors (A) 22 and (B) 21 covalently bound to the catalytic cysteine 

residue (Cys139) of NV 3CLpro.
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Figure 4. 
Surface representation of inhibitor 22 bound to NV 3CLpro with neighboring residues 

colored yellow (nonpolar), cyan (polar), and white (weakly polar). The P2 cyclohexylalanine 

side chain is snugly nestled into the hydrophobic S2 subsite.

Damalanka et al. Page 33

J Med Chem. Author manuscript; available in PMC 2016 December 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Hydrogen bonding interactions represented as dashed lines between NV 3CLpro and 

inhibitors (A) 22 and (B) 21.
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Figure 6. 
Superposition of NV 3CLpro complexes with inhibitors 21 (green) and 22 (magenta). The 

disordered portion in inhibitor 21 was modeled in an idealized geometry for comparison 

with inhibitor 22.

Damalanka et al. Page 35

J Med Chem. Author manuscript; available in PMC 2016 December 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Scheme 1a. 
a(a) tert-Butyl carbazate, EDCI; (b) HCl, dioxane, DCM; (c) (L)Boc-L-Glu-OMe, EDCI, 

HOBt, DIEA, DMF; (d) TsCI, DIEA: (e) LiOH, H2O, THF; (f) NaHCO3, CH3I, DMF; (g) 

HCI, dioxanc; (h) Boc-L-Leu-OH, EDCI, HOBt, DIEA, DMF.
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Scheme 2a. 
a(a) EDCI, HOBT, DIEA, DMF; (b) H2, Pd–C; (c) LiBH4, THF; (d) Dess–Martin 

pcriodinane, DCM.
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Scheme 3a. 
a(a) EDCI, HOBT, DIEA, DMF; (b) 1 M LiOH, H2O, THF.
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Table 2

Crystallographic Data for NV 3CLpro:21 and NV 3CLpro:22 Complexes

NV 3CLpro:21 NV 3CLpro:22

Data Collection

unit-cell parameter a = 65.17 Å, b = 41.18 Å, c = 61.68 Å, β = 109.4° a = 37.69 Å, b = 67.11 Å, c = 127.47 Å

space group C2 P212121

resolution (Å)a 34.21–1.00 (1.02–1.00) 42.49–2.35 (2.43–2.35)

wavelength (Å) 1.0000 1.0000

temp (K) 100 100

observed reflections 261 523 91 527

unique reflections 82 788 14 146

〈I/σ(I)〉a 12.1 (1.9) 9.9 (2.1)

completeness (%)a 99.5 (90.7) 100 (100)

multiplicitya 3.2 (2.2) 6.5 (6.4)

Rmerge (%)a,a 4.7 (47.4) 15.1 (86.8)

Rmeas (%)a,d 5.6 (60.3) 16.4 (94.5)

Rpim (%)a,e 3.0 (36.7) 6.4 (36.9)

CC1/2
a,e 0.994 (0.764) 0.995 (0.798)

Refinement

resolution (Å)a 32.20–1.00 35.90–2.35

reflections (working/test)a 78 788/3 986 13 379/712

Rfactor/Rfree (%)a,c 14.3/15.4 20.9/27.8

no. of atoms (protein/ligand/water) 1319/34/132 2336/43/55

Model Quality

rms deviation

 bond length (Å) 0.007 0.007

 bond angle (deg) 1.033 0.918

average B-factor (Å2)

 all atoms 16.9 34.5

 protein 15.4 34.6

 ligand 21.0 35.8

 water 31.0 30.8

 coordinate error (max likelihood) (Å) 0.07 0.31

Ramachandran plot

 most favored (%) 98.9 93.9

 additionally allowed (%) 1.1 5.2

a
Values in parentheses are for the highest resolution shell.

b
Rmerge = ΣhklΣi|Ii(hkl) − 〈I(hkl)〉|/ΣhklΣiIi(hkl), where Ii(hkl) is the intensity measured for the ith reflection and 〈I(hkl)〉 is the average intensity 

of all reflections with indices hkl.
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c
Rfactor = Σhkl||Fobs(hkl)| − |Fcalc(hkl)||/Σhkl|Fobs(hkl)|; Rfree is calculated in an identical manner using 5% of randomly selected reflections 

that were not included in the refinement.

d
Rmeas = redundancy-independent (multiplicity-weighted) Rmerge.52 Rpim = precision-indicating (multiplicity-weighted) Rmerge.53,54

e
CC1/2 is the correlation coefficient of the mean intensities between two random half-sets of data.55,56
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