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A perturbation-based framework 
for link prediction via non-negative 
matrix factorization
Wenjun Wang1,*, Fei Cai1,2,*, Pengfei Jiao1 & Lin Pan3

Many link prediction methods have been developed to infer unobserved links or predict latent links 
based on the observed network structure. However, due to network noises and irregular links in 
real network, the performances of existed methods are usually limited. Considering random noises 
and irregular links, we propose a perturbation-based framework based on Non-negative Matrix 
Factorization to predict missing links. We first automatically determine the suitable number of latent 
features, which is inner rank in NMF, by Colibri method. Then, we perturb training set of a network by 
perturbation sets many times and get a series of perturbed networks. Finally, the common basis matrix 
and coefficients matrix of these perturbed networks are obtained via NMF and form similarity matrix of 
the network for link prediction. Experimental results on fifteen real networks show that the proposed 
framework has competitive performances compared with state-of-the-art link prediction methods. 
Correlations between the performances of different methods and the statistics of networks show that 
those methods with good precisions have similar consistence.

Complex network has been a popular topic in the past decade and attracted the research interests of multiple 
disciplines, including computer science, social science, physical science and mathematical science1. Lots of real 
world systems can be represented as complex networks, where the entities become nodes and interacting entities 
are connected by edges. For example, in social networks, the nodes denote individuals and the edges represent 
the interaction or common interests; in collaboration networks, the nodes denote authors and the edges represent 
collaborative relationship2.

In general, link prediction estimates the probability of a link between two nodes based on the network structure3.  
Link prediction can not only help to analyze complex networks with missing links4, but also be used to predict 
the links which may appear in the future5. In biological networks, it is a fundamental problem to demonstrate 
whether there is a link between two nodes, which usually cost too much to do laboratorial experiments. Hence, 
it may largely reduce the experimental costs if we can infer the unobserved links based on the observed links 
with a certain prediction precision. In online social networks, link prediction can help to recommend friends 
or interests. Furthermore, link prediction has been applied into analyzing network evolution, detecting network 
anomalies, etc6,7.

There are two main classes of link prediction methods: similarity-based algorithms and probabilistic models8.  
By similarity-based algorithms, the unlinked node pair with higher similarity is supposed to be more likely to 
be linked. The similarity can be defined with a variety of indices, including local indices and global indices. 
For example, Common Neighbours (CN) index is defined as the number of common neighbours of the two 
nodes in the networks9, Jaccard index is defined as the number of common neighbours of two nodes divided 
by interaction set of their degrees10, Katz index is based on the ensemble of all paths between each node pair. 
Cannistraci-resource-allocation (CRA) is a powerful local and parameter-free similarity-based index for link pre-
diction in both monopartite network and bipartite network, and it is based on the local-community-paradigm11,12, 
which is a theory recently proposed to model local-topology-dependent link-growth in complex networks. 
In brief, similarity-based indices can be local or global, parameter-free or parameter-dependent, simple or 
complex. However, the calculations of most similarity indices only use the information of the network topol-
ogy. Probabilistic models or generated models are another series of powerful methods for link prediction. By 
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constructing the generating model of complex networks, link prediction becomes a problem of parameter learn-
ing in the model, thus, the probability of the missing links can be predicted by the learned model13. Probabilistic 
Relationship Model (PRM) defines a joint probability distribution over all the features of the networks14. 
Hierarchical structure model assumes that real networks are hierarchical and can be divided into different groups 
with subgroups15. Stochastic block model (SBM) assumes the relations between nodes are only dependent on the 
groups the nodes belong to. SBM has also been used to study the community detection and role identification 
of complex networks16. Probabilistic models have many advantages in network analysis and real applications. 
However, parameters learning and inference is a tricky problem.

Matrix factorization approach is a method that is to learn latent features from the network data for link predic-
tion17–19. In a network, the nodes can be projected in a latent space and the probability of the edges depends on the 
nodes’ positions in this space. Each feature of the latent space is regarded as a latent attribute20, and two nodes are 
more likely similarity if they have similar latent features21. From another point of view, the similarity matrix of a 
complex network can be approximated to the product of two matrixes with lower features, which are basis matrix 
and coefficients matrix respectively. If we restrict the elements of the two matrixes to be non negative, the solution 
can be obtained by the algorithm of Non-negative Matrix Factorization22. However, it is difficult to automatically 
determine the number of latent features.

Real networks are made up of predictable regularity and unpredictable components. In the view of this sit-
uation, Structural Perturbation Method (SPM) that predicts the missing links by perturbed eigenvectors was 
proposed23. SPM method is based on the hypothesis that eigenvector is invariant and eigenvalues have the tiny 
perturbation when perturbation occurs in network. SPM reconstructs perturbed network by the small change 
of eigenvalues. However, it doesn’t consider the intrinsic nature that unpredictable components are made up of 
random noises and irregular links.

The existence of unpredictability components makes the best prediction accuracy unlikely to be 1 in real 
network. For instance, in the formation of real social network, friends usually know each other via their friends. 
The more friends they share, the more possibility that they will become friends. This way is formed through 
mechanistic models, such as CN, Salton and Jaccard index. However, there exist network noises in social network, 
that is to say, a small portion of the network we have observed is illusions made by network noises. Apart from 
noises, there are also unpredictable but real links. For example, two people, sharing no common friends, become 
friends in an accidental emergency, which cannot be explained by some generative models in link prediction. 
Due to the network noises and irregular links in real network, the prediction accuracy is usually limited. In this 
paper, a perturbation framework based on non-negative matrix factorization is proposed. The procedures of our 
framework are as follows. Firstly, the observed network is randomly divided into two separated parts, which are 
known as a training set and a test set respectively. Secondly, the suitable number of latent features K is automati-
cally determined by Colibri method24. If K is overlarge, latent space model will be overfit of training set; if K is too 
small, the model will be underfit of training set. Therefore, it is necessary to automatically determine a suitable K 
value, meanwhile, Colibri method provides us with a very good choice because of its high efficiency and easy to 
extend to large scale networks. Thirdly, the training set is perturbed by small perturbation sets many times, and 
we get a series of perturbed networks. The perturbation mechanism of random deleting links is adopted aiming 
at tackling the problem of random noise in the network; the perturbation mechanism of random adding links is 
employed with the intention to handle the real but irregular links. Fourthly, the common basis matrix and coef-
ficients matrix are learned from the perturbed networks via non-negative matrix factorization (NMF). In NMF, 
two popular distance, namely Euclidean distance (the square of the Frobenius norm) and Kullback-Leibler diver-
gence, are adopted to construct objective function in the framework. Finally, based on the common basis matrix 
and coefficients matrix, we can obtain the similarity matrix, which is used to evaluate the result of link prediction. 
The experiments on eleven real-world network validate the effectiveness of this framework.

Results
In this section, we first introduce the basic principle of perturbation-based framework by NMF (see Methods 
section for details). Next we introduce the evaluation metrics and baseline methods to be compared. Then we give 
experimental results on eleven real networks and in-depth analysis.

Consider undirected and unweighted network G =​ (V, E), where V and E are the set of nodes and the set of 
links, respectively. The number of nodes is denoted as N and the number of links is denoted as M. The given 
network can be represented by A ∈​ {0, 1}N×N, where the element Aij =​ 1 if nodes i and j are connected; otherwise, 
Aij =​ 0.

The basic principle of perturbation-based framework by NMF.  We propose a perturbation-based 
framework by NMF, which is shown in Fig. 1. For a given network, we randomly divide the observed link set E 
into a training set Etrain and a test set Etest. The number of links of Etrain is M −​ L and the number of links of Etest is 
L. Atrain ∈​ {0, 1}N×N and Atest ∈​ {0, 1}N×N represent the adjacency matrix of the training set and the adjacency matrix 
of the test set, respectively. The number of the latent features K is automatically optimized by Colibri method in 
Atrain. Then we construct a perturbation set Δ​E to perturb Etrain by R times and get a series of new perturbed 
matrixes = A r R( 1, 2, , )r( ) . Based on the new perturbed matrices = A r R( 1, 2, , )r( )  and K, we obtain the 
basis matrix W(r) and the coefficients matrix H(r). Finally, we get the similarity matrix of the original network with 
= ∑ =

=⁎A W H
R r

r R r r1
1

( ) ( ).
There are two ways to construct perturbation sets Δ​E and the corresponding adjacent matrix AΔ, one is called 

random deletion perturbation, the other is called random addition perturbation. Random deletion perturbation 
is adopted aiming at tackling the problem of random noises in the network, while random addition perturbation 
is employed with the intention to handle the real but irregular links. Construction process of Δ​E and the corre-
sponding adjacent matrix AΔ by random deletion perturbation is as follows:
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•	 Step 1: Define a parameter η as the perturbation ratio on Etrain;
•	 Step 2: Randomly select η(M −​ L) links, which will be removed from Etrain in the perturbation step, to con-

struct Δ​E;
•	 Step 3: Perturb Etrain by Δ​E, obviously, A(r) =​ Atrain −​ AΔ;
•	 Step 4: Independently repeat step 2 and step 3 for R times and obtain = A r R( 1, 2, , )r( ) .

The construction process of Δ​E and the corresponding adjacent matrix AΔ by random addition perturbation 
is as follows:

•	 Step 1: Define a parameter η as the perturbation ratio on Etrain;
•	 Step 2: Denote the universal set of links as U. Randomly select η(M −​ L) links from U −​ Etrain, which will be 

added to Etrain in the perturbation step, as Δ​E. Obviously, A(r) =​ Atrain −​ AΔ;
•	 Step 3: Perturb Etrain by Δ​E, obviously, A(r) =​ Atrain +​ AΔ;
•	 Step 4: Independently repeat step 2 and step 3 for R times and obtain = A r R( 1, 2, , )r( ) .

Similarly to NMF, we propose two different cost functions. The first cost function with the square of the 
Euclidean distance can be written as

∑= − = − .( )O A W H A W H( )
(1)

r r r
F

ij
ij

r r r
ij1

( ) ( ) ( ) 2 ( ) ( ) ( ) 2

The second cost function with Kullback-Leibler divergence can be written as
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By minimizing the two cost functions O1 and O2, we get the basis matrix W(r) and the coefficients matrix H(r). 
At last, we get the similarity matrix of the original network with = ∑ =

=⁎A W H
R r

r R r r1
1

( ) ( ). Details can be seen in 
Method section.

Based on our framework, we propose four methods which are called NMF −​ D1, NMF −​ A1, NMF −​ D2 and 
NMF −​ A2, respectively. Here, NMF −​ D1 denotes method which optimize cost function O1 with random deletion 
perturbation. NMF −​ A1 denotes method which optimize cost function O1 with random addition perturbation. 
NMF −​ D2 denotes method which optimize cost function O2 with random deletion perturbation. NMF −​ A2 
denotes method which optimize cost function O2 with addition deletion perturbation.

Our proposed methods, including NMF −​ D1, NMF −​ A1, NMF −​ D2 and NMF −​ A2, are not parameter-free. 
In addition to selection of the cost functions to optimize, there are two parameters that are perturbation ratio η 
and perturbation times R that should be tuned. Here, default value of perturbation ratio η is 0.1, and the default 
value of perturbation times R is 20. This is because that the probability value of a unperturbed link, which is 
(1 −​ 0.1)20 ≈​ 0.1215, is very small. So default values of η and R can ensure that every link can randomly be selected 
into perturbation set Δ​E.

Evaluation Metrics.  Precision and relative precision are considered in this paper. AUC (area under the 
receiver operating characteristic curve) and precision are the two widely used evaluation metrics for link predic-
tion8. However, recent works25,26 clearly demonstrate that AUC is a deceptive measure for the evaluation of link 
prediction. The reasons are as follows: firstly, AUC needs the definition of a negative set, which is composed by all 
the missing (unobserved) links in the network except for the removed links (for test) that compose the positive 

Figure 1.  Perturbation-based framework by NMF. Atrain is adjacency matrix of training set, Atest is adjacency 
matrix of test set, K is the number of latent features, Δ​E is perturbation set, A(r) is new perturbed matrix, W(r) is 
basis matrix, H(r) is coefficients matrix and A* is similarity matrix of original network.
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set. However, in reality a negative set in the link prediction problem does not exist, and the link prediction is not 
a classification problem, thus it cannot be evaluated using AUC. Secondly, if AUC is a classification problem, the 
number of negative set would be − −− M LN N( 1)

2
 and the number of positive set would be L, where L would be 

the number of test set. In sparse networks, the number of negative set would be much larger than the number of 
positive set. It is biased towards a negative set that is predominant on the positive set (removed links). 
Furthermore, AUC will give more importance to methods that overfit the network structure rather than offer a 
more general prediction ability. On the contrary, precision represent a better solution for link prediction. Given 
the ranking of the unobserved links, precision is defined as

=Precision L
L (3)

r

where L is the number of the predicted links, i.e. the number of links in Atest, Lr is the number of correctly pre-
dicted links. Thus, higher precision means higher prediction accuracy.

Although precision can well evaluate performances of different methods on a given network, it can’t evaluate 
the overall performances of different methods on different networks. Hence, relative precision is proposed to 
measure performances across different networks27. The random predictor is obtained by providing a ranking list 
that is ordered according to a random permutation of the links. So relative precision can be computed by

=
−

−
precision precision precision

precision1 (4)relative
random

random

Datasets and Baseline Algorithms.  To test the performance of our proposed model, we consider the fol-
lowing 15 real world networks: C. elegans, the neural network of C. elegans28; Email, a communication network 
of human interaction29; Karate, the social networks of individuals of a karate club30; Word, an adjacency network 
of common adjectives and nouns in the novel David Copperfield by Charles Dickens31; Jazz, a network of jazz 
bands32; PB, the politicalblogs network of hyper-links between weblogs on politics33; USAir, the network of the 
USA airline34; Yeast, a network of Protein Protein Interaction on yeast35; NS, a network of coauthorships between 
scientists whose research centers on the properties of networks of one kind or another31; Power, the network rep-
resenting the topology of the power grid of the US36; Router, a network of internet route37. Baydry, a food webs 
in the Florida Bay38; School, a friendship network in a high school39; SmaGri, a network of citation on network 
theory and experiment34; SW, a citation network on Physics34; The detail statistics of these networks are given in 
Table 1.

Next, we introduce some benchmark similarity methods as baselines for comparison, which are defined as 
following and each index is the similarity score of two nodes x and y.

•	 ∩= Γ Γs x y( ) ( )xy
CN , where Γ​(x) is the Neighbour nodes of x;

•	 = ∩Γ Γsxy
Salton x y

k k

( ) ( )

x y

, where kx is the degree of node x;

•	 = ∩
∪

Γ Γ

Γ Γ
sxy

Jaccard x y
x y

( ) ( )
( ) ( )

;

•	 = ∩× Γ Γ

+
sxy

Sorenson x y
k k

2 ( ) ( )

x y
;

Network NN NE LD AD APL C CC P LCP-corr

C. elegans 297 2148 0.0489 14.4646 2.4553 0.0014 0.2924 −​0.1632 0.9056

Email 1133 5451 0.0085 9.6222 3.6060 0.0002 0.1663 0.0782 0.8538

Karate 34 78 0.1390 4.5882 2.4082 0.0129 0.5706 −​0.4756 0.7562

Word 112 425 0.0684 7.5893 2.5356 0.0036 0.1728 −​0.1293 0.8528

Jazz 198 2742 0.1406 27.6970 2.2350 0.0023 0.6175 0.0202 0.9485

USAir 332 2126 0.0387 12.8072 2.7381 0.0011 0.6252 −​0.2079 0.9799

Yeast 2361 6646 0.0024 5.6298 5.0960 0.0001 0.3057 0.4539 0.9686

PB 1222 16714 0.0224 27.3552 2.7375 0.0003 0.3203 −​0.2213 0.9286

NS 379 914 0.0128 4.8232 6.0419 0.0004 0.7412 −​0.0817 0.9224

Power 4941 6594 0.0005 2.6691 18.9892 0.0000 0.1032 0.0035 0.8456

Router 5022 6258 0.0005 2.4922 6.4488 0.0000 0.0303 −​0.1384 0.8067

Baydry 128 2106 0.2591 32.9063 1.7724 0.0045 0.3346 −​0.1044 0.9112

School 69 220 0.09378 6.3768 2.965 0.005 0.4606 0.0141 0.9005

SmaGri 1024 4916 0.0094 9.6016 2.9814 0.0003 0.3071 −​0.1925 0.9463

SW 233 994 0.03678 8.5322 2.3711 0.0018 0.5564 −​0.3027 0.9436

Table 1.   Statistics of the networks studied in this paper. Where, NN, NE, LD, AD, APL, CC and P are the 
number of nodes, the number of edges, the link density, average degree, average shortest path length, clustering 
coefficient, and pearson assortative coefficient of the network, respectively. C is the average closeness for all the 
pair nodes of the network, LCP-corr is the correlation between LCP and CN indices presented in ref. 11.
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•	 = ∩Γ Γ

{ }sxy
HPI x y

k k

( ) ( )

min ,x y

;

•	 = ∩Γ Γ

{ }sxy
HDI x y

k k

( ) ( )

max ,x y

;

•	 = ∩Γ Γsxy
LHN x y

k k
( ) ( )

x y
;

•	 = ∑ ∩∈Γ Γsxy
AA

z x y k( ) ( )
1

log z
;

•	 = ∑ ∩∈Γ Γsxy
RA

z x y k( ) ( )
1

z
;

•	 =s k kxy
PA

x y;
•	 α= +s A A( )xy

LP
xy

2 3 , where α is a parameter;
•	 α= − ⋅ −−s I A I(( ) )xy

Katz
xy

1 , where I is the diagonal matrix and α is a parameter;
•	 φ ϕδ= ∑ +s A sxy

LHNII
z xz zy xy, where φ and ϕ are parameters;

•	 =
+ −+ + +sxy

ACT
l l l

1
2xx yy xy

, which is denoted with Average Commute Time, where +lxy represents the elements of 

matrix L+ which is the pseudo inverse of the Laplacian matrix;
•	 ε= ∑ +s s s sxy

TSCN
v xv vy

TSCN
xy, where ε is a parameter and sxy has the same definition with sxy

CN .
•	 λ λ= ∑ + ∆=s x x( )SPM

k
N

k k k k
T

1 , where λk, xk and Δ​λk are the eigenvalue of the observed matrix, the corre-
sponding orthogonal normalized eigenvector and the eigenvalue of a perturbation set respectively. Size of  
Δ​λk is dependent on perturbation ratio η.

•	 = ∑ ∈SCRA
s CN

d
k

s

s
, where ks is the degree of node x and ds is the local-community degree of the common 

neighbour.

The detail definitions of the algorithms can be found in ref. 8 except SPM in ref. 23 and CRA in ref. 11. 
Note that five methods, including LP, Katz, LHNII, TSCN and SPM, are parameter-dependent and the others are 
parameter-free.

Experiment results.  We show the precision results of our proposed methods based on the 
perturbation-based framework and other baseline methods on the 15 real data sets in Table 2. The last row of 
Table 2 is the precision of a real random predictor which is obtained by providing a ranking list that is ordered 
according to a random permutation of the links. For every data set, the presented links are partitioned into train-
ing set (90%) and test set (10%). Ordinary NMF with Frobenius norm and ordinary NMF with KL divergence are 
denoted as NMF1 and NMF2, respectively. As shown in Table 2, NMF −​ D1 and NMF −​ A1 are better than NMF1, 
NMF −​ D2 and NMF −​ A2 are better than NMF2. As can be seen from Table 2, NMF −​ A2 has the best precision 
values on several real networks including C. elegans, USAir, Yeast, PB, Router, SmaGri, SW. NMF −​ D1 method 
has the best precision value on Karate network. Precisions of our proposed methods are very close to the highest 
ones, except for NS network and Power network. Overall, the proposed framework has competitive performance 
in real networks.

In addition, we also gave the respective precision-ranking position of each method in each network. 
Precision-ranking results of the proposed methods and other baseline methods are shown in Table 3. The last 
column of Table 3 is the mean ranking value of each method across all the networks and it is an indicator of 
average performance. In Table 3, different methods are presented in increasing order of mean precision-ranking. 
NMF −​ A2 has the best overall performance while NMF −​ A1, NMF −​ D1 and NMF −​ D2 have better average 
performance. Furthermore, in our proposed framework, NMF −​ D2 and NMF −​ A2 have lower precision-ranking 
values than NMF −​ D1 and NMF −​ D2, which suggests that performance of methods with KL divergence are 
better than those with Frobenius norm.

To accurately test the performance of our methods, the relative precision results of our proposed methods 
based on the perturbation-based framework and other baseline methods under different fractions of training sets 
in the different networks are shown in Fig. 2. As seen from Fig. 2, the methods with perturbation are better than 
those without perturbation as a whole. When the training set is very small (f =​ 0.3), the relative precision of CRA 
is lower than the other seven methods on Jazz network. The phenomenon that CRA lose performance for high 
level of network sparsification is a result of the fact that CRA is a local method based on the local communities 
that are cancelled by a heavy sparsification11. When we also plotted the LCP-corr values for different fractions of 
training set on the four networks(see Supplement Information, Fig. S1), we can see clearly that LCP-corr tends to 
increase with the higher fraction of training set. Bigger the LCP-corr is, better CRA method performs.

We also give results under different ratios of perturbation set on Email, USAir, C. elegant, Jazz and Karate data 
sets. The result on Email data sets is shown in Fig. 3 and the results on USAir, C. elegant, Jazz and Karate data sets 
in Supplementary Information. As seen from Fig. 3, the precisions of NMF −​ D2 and NMF −​ A2 are significantly 
higher than the precisions of NMF −​ D1 and NMF −​ A1, which also shows that non-negative matrix factorization 
method with KL divergence is better than the non-negative matrix with Frobenius norm on the whole.

As we know, the structure of a network has a strong influence on the result of link prediction. In order to find 
what kind of networks the different methods have well performances on, we calculate the correlation between 
precision and the statistics on different real data sets. The correlations between precisions of different methods 
and the statistic of networks are shown in Table 4 and the correlations between the precisions of four different 
methods and the statics of networks are shown in Fig. 4. The five methods are NMF −​ A2, SPM, AA, CRA and 
TSCN. For global methods, NMF −​ A2 method has the best overall performance and SPM method has the second 
best overall performance. For local methods, CRA method has the best overall performance and AA method has 
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the second best overall performance. TSCN method is very unusual in aspect of correlation on statistics of net-
works. It can be seen from Fig. 4 that global methods with good precisions are very similar in aspect of correlation 
on statistics of networks, such as SPM, NMF −​ A2. They have positive correlations on average degree and clus-
tering coefficient, which illustrates that their performances will be good when clustering coefficient and average 
degree of a network are large. They have negative correlations on number of nodes, which illustrates that their 
performances will be good when number of nodes of a network is small. Figure 4 also shows that local methods 
with good precisions are very similar, such as CRA and AA. But unlike global methods with good precisions, local 
methods with good precisions have little relation to average degree of a network.

Discussion
In summary, real network is composed of predictable parts and unpredictable parts. Unpredictable parts includes 
noises and irregular links. In order to overcome prediction difficulties brought from these two kinds of unpredict-
able parts, we propose a perturbation framework based on non-negative matrix factorization, which can model 
the link behaviors from the latent feature information of networks. Based on this framework, we also proposed 
four methods which are called NMF −​ D1, NMF −​ A1, NMF −​ D2, NMF −​ A2, respectively.

We compared the proposed methods with other 19 baseline methods on 15 real data sets. These methods can 
be classified in different ways, such as glocal vs. local, parameter-dependent vs. parameter-free, and model-based 
vs. model-learning. Global methods require global topological information, however, local methods only make 
use of local topological information. NMF1, NMF −​ D1, NMF −​ A1, NMF2, NMF −​ D2, NMF −​ A2, SPM, Katz, 
LHNII, ACT and TSCN are all global methods. Salton, Jaccard, Sorenson, HPI, HDI, LHN, CN, AA, RA, PA, LP, 
CRA are all local methods. The global methods perform better, but the complexity is higher. The local methods 
are suitable for large-scale networks due to the trade off between complexity and performance. Among the global 
methods, NMF −​ A2 has the best precision values on several data sets including C. elegant, Email, USAir, Yeast, 

Precision C. elegant Email Karate Word Jazz USAir Yeast PB NS Router Power Baydry School SmaGri SW

NMF1* 0.142 0.111 0.201 0.042 0.548 0.320 0.139 0.143 0.265 0.025 0.022 0.477 0.195 0.053 0.123

NMF-D1*(2) 0.171 0.143 0.234 0.042 0.615 0.362 0.165 0.170 0.298 0.016 0.023 0.539 0.216 0.068 0.153

NMF-A1*(2) 0.175 0.143 0.214 0.042 0.605 0.386 0.168 0.170 0.311 0.021 0.026 0.541 0.218 0.068 0.153

NMF2* 0.122 0.075 0.183 0.055 0.512 0.350 0.079 0.158 0.202 0.103 0.018 0.430 0.168 0.049 0.165

NMF-D2*(2) 0.185 0.144 0.201 0.079 0.593 0.445 0.169 0.234 0.303 0.067 0.029 0.520 0.182 0.118 0.246

NMF-A2*(2) 0.191 0.149 0.201 0.080 0.600 0.470 0.186 0.248 0.310 0.235 0.036 0.544 0.218 0.130 0.276

SPM*(2) 0.171 0.144 0.210 0.101 0.650 0.449 0.160 0.238 0.420 0.224 0.057 0.552 0.227 0.118 0.211

Katz(1) 0.102 0.131 0.169 0.072 0.449 0.365 0.108 0.175 0.299 0.060 0.058 0.085 0.142 0.099 0.151

LHNII(2) 0.000 0.000 0.000 0.001 0.047 0.003 0.000 0.000 0.008 0.000 0.010 0.005 0.062 0.000 0.001

ACT 0.053 0.024 0.128 0.087 0.169 0.332 0.000 0.077 0.193 0.160 0.034 0.118 0.142 0.035 0.101

TSCN(1) 0.018 0.014 0.145 0.002 0.024 0.133 0.032 0.027 0.087 0.096 0.056 0.036 0.197 0.028 0.039

Salton 0.024 0.050 0.001 0.001 0.535 0.046 0.000 0.013 0.253 0.000 0.015 0.011 0.175 0.000 0.001

Jaccard 0.028 0.071 0.001 0.002 0.521 0.064 0.000 0.017 0.252 0.000 0.007 0.010 0.180 0.000 0.001

Sorenson 0.028 0.065 0.001 0.002 0.521 0.064 0.000 0.017 0.252 0.000 0.009 0.010 0.180 0.000 0.001

HPI 0.015 0.007 0.091 0.005 0.255 0.016 0.012 0.003 0.146 0.000 0.005 0.055 0.105 0.002 0.000

HDI 0.029 0.069 0.004 0.004 0.465 0.083 0.000 0.025 0.264 0.000 0.007 0.009 0.173 0.000 0.001

LHN 0.000 0.003 0.004 0.000 0.093 0.004 0.000 0.000 0.084 0.000 0.010 0.014 0.082 0.000 0.001

CN 0.095 0.139 0.164 0.064 0.509 0.372 0.104 0.174 0.379 0.057 0.051 0.065 0.162 0.090 0.112

AA 0.112 0.151 0.163 0.067 0.524 0.396 0.104 0.172 0.563 0.038 0.030 0.063 0.148 0.103 0.131

RA 0.112 0.138 0.165 0.056 0.545 0.473 0.083 0.151 0.586 0.020 0.030 0.065 0.187 0.102 0.139

PA 0.060 0.014 0.096 0.089 0.130 0.318 0.012 0.069 0.012 0.025 0.001 0.167 0.025 0.051 0.099

LP(1) 0.100 0.131 0.169 0.072 0.495 0.370 0.107 0.175 0.299 0.059 0.054 0.071 0.113 0.095 0.128

CRA 0.116 0.157 0.199 0.038 0.557 0.391 0.123 0.177 0.481 0.062 0.033 0.085 0.210 0.118 0.147

Random 0.005 8.5e-4 0.016 0.007 0.016 0.004 2.3e-4 0.002 0.001 5e-5 5.4e-5 0.034 0.010 0.001 0.004

Table 2.   Precision values of different methods on 15 networks. We compared our methods with other 
methods on the 15 network data sets and the precisions are returned with the average over 100 runs. The 
last row is the precision value of a real random predictor which is obtained by providing a ranking list that is 
ordered according to a random permutation of the links. For every data set, the presented links are partitioned 
into training set (90%) and test set (10%). The local methods are in standard character while the global methods 
are in italic. Number in bracket closed to a method denotes the number of tuning parameters. The best result 
achieved by global methods and the best result achieved by local methods on each network are boldface. 
Methods with an asterisk like * denote methods based on inference and methods without an asterisk denote 
methods based on a paradigm (in the sense that are model-based). We tune the parameters to optimize the 
performance of baseline methods for comparison. In our experiments, we set α =​ 0.0001 for LP, parameter 
α =​ 0.01 for Katz, φ =​ 0.99 and ϕ =​ 1 for LHNII, η =​ 0.1 for SPM, NMF −​ D1, NMF −​ A1, NMF −​ D2 and 
NMF −​ D2.
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PB, Router, SmaGri and SW. NMF −​ A2 also has the second best precision values on Baydry network and School 
network. NMF −​ D1 has the best precision on Karate network and its precision is very close to the highest one on 
Jazz network. As can be seen from Table 3, NMF −​ A2 is the best global method and SPM is the second best global 
method. Among the local methods, CRA has the best precision values on several networks including C. elegant, 
Email, Karate, Jazz, Yeast, PB, Router, School, SmaGri and SW (Table 2) and it also has the best mean ranking 
value (Table 3). Hence, CRA is the best local method.

Parameter-free methods are those methods without parameter to tune and parameter-dependent methods are 
those methods with several parameters to tune. In the 23 method, NMF −​ D1, NMF −​ A1, NMF −​ D2, NMF −​ A2, 
SPM, Katz, LHNII, LP, TSCN are parameter-dependent methods and the other methods are parameter-free meth-
ods. NMF −​ A2 is the best parameter-dependent method and CRA is the best parameter-free method because 
they have the lowest mean precision-ranking values for each of these classes. As a whole, parameter-dependent 
methods have better average performances than parameter-free methods. However, the inevitable problem of 
parameter-dependent methods is that tuning of parameters is still an obstacle for practical applications because 
in many cases it is not clear how to tune the parameters.

In addition, methods also can be divided into two categories: model-based and model-learning. Model-based 
methods are based on an explicit deterministic model that simulates physical mechanism behind the net-
work organization. Model-learning methods are based on implicit model-learning: providing at every step 
a different solution that can converge to hidden the network evolution by many times of iterations12. NMF1, 
NMF2, NMF −​ D1, NMF −​ A1, NMF −​ D2, NMF −​ A2, SPM are model-learning methods and the other 
methods are model-based methods. Among model-learning methods, NMF −​ A2 is the best model-learning 
method and SPM is the second best model-learning method. Among model-based methods, CRA is the best 
model-based method and AA is the second best model-based method. Most of model-learning methods usu-
ally are parameter-dependent. Although model-learning methods perform better than model-based methods, 
model-learning methods have higher computational time. In general, experimental results show that the pro-
posed methods have better and stable performance compared with baseline methods on 15 data sets.

We also find that those methods with perturbation perform better than ordinary methods on almost of all 
networks. Furthermore, NMF with KL divergence is more suitable for link prediction than NMF with Frobenius 
norm. In short, experiment results demonstrate that our framework is effective.

C. elegant Email Karate Word Jazz USAir Yeast PB NS Router Power Baydry School SmaGri SW mean

NMF-A2*(2) 1 3 4 4 4 2 1 1 7 1 6 2 2 1 1 2.67

SPM*(2) 5 5 3 1 1 3 5 2 4 2 2 1 1 3 3 2.73

NMF-D2*(2) 2 4 5 5 5 4 2 3 8 6 11 5 9 2 2 4.87

CRA 8 1 7 15 6 6 7 4 3 7 8 11 5 4 8 6.67

NMF-A1*(2) 3 7 2 14 3 7 3 10 6 14 12 3 3 11 6 6.93

NMF-D1*(2) 4 6 1 13 2 11 4 9 11 16 13 4 4 10 5 7.53

AA 9 2 13 8 10 5 11 8 2 11 9 15 16 5 10 8.93

RA 10 9 11 10 8 1 12 12 1 15 10 14 8 6 9 9.07

Katz(1) 11 11 10 7 17 10 8 6 10 8 1 10 17 7 7 9.33

LP(1) 12 10 9 6 15 9 9 5 9 9 4 12 19 8 11 9.80

NMF1* 6 12 6 12 7 14 6 13 12 12 14 6 7 12 12 10.07

CN 13 8 12 9 14 8 10 7 5 10 5 13 15 9 13 10.07

NMF2* 7 13 8 11 13 12 13 11 17 4 15 7 14 14 4 10.87

ACT 15 18 15 3 19 13 23 14 18 3 7 9 18 15 14 13.60

TSCN(1) 20 20 14 20 23 16 14 16 20 5 3 17 6 16 16 15.07

PA 14 19 16 2 20 15 16 15 22 13 23 8 23 13 15 15.60

Jaccard 17 14 21 18 11 18 18 18 15 18 20 20 10 19 18 17.00

Salton 19 17 20 21 9 20 17 20 14 17 16 19 12 18 17 17.07

HDI 16 15 18 17 16 17 20 17 13 21 21 22 13 21 20 17.80

Sorenson 18 16 22 19 12 19 19 19 16 19 19 21 11 20 19 17.93

HPI 21 21 17 16 18 21 15 21 19 20 22 16 20 17 23 19.13

LHN 22 22 19 23 21 22 21 22 21 22 17 18 21 22 21 20.93

LHNII(2) 23 23 23 22 22 23 22 23 23 23 18 23 22 23 22 22.33

Table 3.   Precision-ranking of the different network. The last column is the mean precision-ranking across 
all the networks. Different methods are presented in increasing order of mean precision-ranking. The local 
methods are in standard character while the global methods are in italic. The name of the best local method 
and the name of the best global method in the first column are boldface. Corresponding, the mean precision-
ranking value of the best local method and the mean precision-ranking value of the best global method in 
the last column also are boldface. Number in bracket closed to an method denotes the number of tuning 
parameters. The best result achieved by global methods and the best result achieved by local methods on each 
network are boldface. Methods with an asterisk like * denote methods based on inference and methods without 
an asterisk denote methods based on a paradigm (in the sense that are model-based).
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In the future, the proposed framework could be further improved. For example, NMF needs iterative calcula-
tion, which result in high complexity. Parallelization and sampling methods can be adopted to reduce the compu-
tational complexity. NMF may obtain the local optimal solution, so how to get the global optimal solution is also 
a challenging issue. Although to some extent, the perturbation framework can alleviate the problem from noises 
and irregular links, it remains an open problem to find out the unpredictable parts objectively.

Figure 2.  Comparison of relative precisions of methods under different fractions of training sets on four 
real networks. We compared relative precisions of eight methods under different fractions of training sets on 
the four networks and the precisions are returned with the average over 100 runs. The fraction of training sets f 
is varied from 0.3 to 0.9. The four networks are C. elegans, Jazz, USAir and Email. The link prediction methods 
are NMF1, SPM, NMF −​ D1, NMF −​ A1, CRA, NMF2, NMF −​ D2 and NMF −​ A2.

Figure 3.  Comparison of precisions of five methods on different perturbation ratios on Email network. 
We compared precisions of all indices with perturbation on Email, which are SPM, NMF −​ D1, NMF −​ A1, 
NMF −​ D2 and NMF −​ A2. Different fractions of training set f are 0.6, 0.7, 0.8 and 0.9. The x-axis is perturbation 
ratio η varied from 0.02 to 0.1. The y-axis is the precision averaged over 100 independent runs.
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Methods
Method and algorithm of perturbation-based framework.  Determination of the number of latent 
features by Colibri.  There are many methods to determine the number of latent features, such as Bayesian infor-
mation Criterion (BIC) and cross validation, which need to calculate each possible value of the number of latent 
features and are not suitable in real networks. Another method called Bayesian non-negative matrix factoriza-
tion40 which is based on the automatic relevance determination. However, all these methods are computational 
complexity, so we determine the number of latent features by Colibri24 used for low-rank approximations of the 
adjacency matrix of a graph. The main idea is to eliminate linearly dependent columns while iterating over sam-
pled columns for low rank approximation.

NN NE LD AD APL C CC P LCP-corr

NMF1 −​0.51 −​0.26 0.73 0.70 −​0.38 0.24 0.63 0.03 0.37

NMF-D1 −​0.53 −​0.26 0.73 0.71 −​0.41 0.24 0.64 0.02 0.38

NMF-A1 −​0.52 −​0.26 0.71 0.71 −​0.40 0.20 0.64 0.03 0.41

NMF2 −​0.46 −​0.23 0.71 0.71 −​0.28 0.22 0.61 −​0.08 0.38

NMF-D2 −​0.53 −​0.20 0.65 0.74 −​0.40 0.13 0.66 −​0.04 0.50

NMF-A2 −​0.40 −​0.16 0.61 0.70 −​0.18 0.08 0.60 0.00 0.49

SPM −​0.39 −​0.20 0.61 0.66 −​0.16 0.09 0.63 0.01 0.42

Salton −​0.27 −​0.21 0.24 0.30 −​0.13 −​0.02 0.53 0.20 0.27

Jaccard −​0.29 −​0.22 0.23 0.30 −​0.14 −​0.03 0.54 0.20 0.28

Sorenson −​0.29 −​0.22 0.23 0.30 −​0.14 −​0.03 0.54 0.20 0.28

HPI −​0.37 −​0.35 0.46 0.29 −​0.19 0.30 0.63 0.06 0.09

HDI −​0.30 −​0.22 0.20 0.28 −​0.14 −​0.04 0.58 0.19 0.29

LHN −​0.28 −​0.33 0.25 0.13 −​0.10 0.07 0.56 0.19 0.19

CN −​0.39 −​0.16 0.11 0.28 −​0.21 −​0.01 0.77 0.00 0.40

AA −​0.41 −​0.20 0.05 0.20 −​0.19 −​0.06 0.81 −​0.01 0.41

RA −​0.42 −​0.25 0.06 0.18 −​0.21 −​0.04 0.82 −​0.04 0.42

PA −​0.44 −​0.23 0.43 0.45 −​0.35 0.19 0.44 −​0.35 0.36

LP −​0.38 −​0.13 0.14 0.34 −​0.24 0.00 0.74 −​0.03 0.42

Katz −​0.42 −​0.15 0.14 0.32 −​0.27 0.01 0.79 −​0.06 0.44

LHNII −​0.21 −​0.27 0.31 0.14 −​0.15 0.16 0.29 0.21 0.13

ACT −​0.26 −​0.33 0.21 0.10 0.09 0.15 0.61 −​0.28 0.23

TSCN −​0.05 −​0.33 0.11 −​0.36 0.17 0.47 0.37 −​0.19 −​0.20

CRA −​0.42 −​0.21 0.12 0.24 −​0.21 0.01 0.83 0.01 0.41

Table 4.   Correlation between precisions of different methods and the statistic of networks. NN, NE, LD, 
AD, APL, CC and P are the number of nodes, the number of edges, the link density, average degree, average 
shortest path length, clustering coefficient, and pearson assortative coefficient of the network, respectively,  
C is the average closeness for all the pair nodes of the network. LCP-corr is the correlation between LCP and CN 
presented in ref. 11.

Figure 4.  Correlation between precisions of four indices and statistics of networks where, NN, NE, LD, 
AD, APL, CC and P are the number of nodes, the number of edges, the link density, average degree, average 
shortest path length, clustering coefficient, and pearson assortative coefficient of the network, respectively. 
C is the average closeness for all the pair nodes of the network. LCP-corr is the correlation between LCP and CN 
indices presented in ref. 11.
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Calculation of common basis matrix W and coefficients matrix H.  To optimize the cost functions O1 in (1) and O2 
in (2), we utilize the simple multiplicative update method41 for NMF. The update rule for O1 is as follows
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The algorithm minimizing the cost function O2 is as follows
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It is easy to prove that the above two update rules will find local minima of the cost functions O1 and O2
41.

The algorithm of the proposed framework.

Algorithm 1 The algorithm of the proposed framework
Input: the adjacency matrix A of the given network, the size of the perturbation sets R, parameters f and η.
Output: the similarity matrix of the network A*.

 1:  procedure CALCULATION W(r), H(r)

 2:      divide A into Atrain, Atest with parameter f
 3:      get the number of latent features K by Colibri
 4:      get A(r), r =​ 1, , R by perturbing Atrain with parameter η
 5:      update W(r) and H(r) with equations (5) for object function O1

 6:      update W(r) and H(r) with equations (6) for object function O2

 7:      get W(r) and H(r) after convergence
 8:  end procedure
 9: � procedure CALCULATION THE SIMILARITY MATRIX A* OF THE GIVEN NETWORK FOR 

EITHER O1 OR O2

10:      get A(r) with A(r) =​ W(r)*H(r)

11:      = ∑ =
⁎ ⁎get A with A AR r

R r1
1

( )

12:  end procedure

We can obtain the similarity matrix A* by the above optimal procedures and the pseudocode is presented in 
algorithm 1.
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