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Neurobiology of Disease

Genetic Deletion of Neuronal PPARy Enhances the
Emotional Response to Acute Stress and Exacerbates
Anxiety: An Effect Reversed by Rescue of Amygdala PPARYy
Function
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PPARyis one of the three isoforms of the Peroxisome Proliferator-Activated Receptors (PPARs). PPARY is activated by thiazolidinedio-
nes such as pioglitazone and is targeted to treat insulin resistance. PPARy is densely expressed in brain areas involved in regulation of
motivational and emotional processes. Here, we investigated the role of PPARy in the brain and explored its role in anxiety and stress
responses in mice. The results show that stimulation of PPARYy by pioglitazone did not affect basal anxiety, but fully prevented the
anxiogenic effect of acute stress. Using mice with genetic ablation of neuronal PPARy (PPARYN*"""“"), we demonstrated that a lack of
receptors, specifically in neurons, exacerbated basal anxiety and enhanced stress sensitivity. The administration of GW9662, a selective
PPARYy antagonist, elicited a marked anxiogenic response in PPARYy wild-type (WT), but not in PPARyN*""“" knock-out (KO) mice.
Using c-Fos immunohistochemistry, we observed that acute stress exposure resulted in a different pattern of neuronal activation in the
amygdala (AMY) and the hippocampus (HIPP) of PPARY """ KO mice compared with WT mice. No differences were found between
WT and KO mice in hypothalamic regions responsible for hormonal response to stress or in blood corticosterone levels. Microinjection
of pioglitazone into the AMY, but not into the HIPP, abolished the anxiogenic response elicited by acute stress. Results also showed that,
in both regions, PPARy colocalizes with GABAergic cells. These findings demonstrate that neuronal PPARy is involved the regulation of
the stress response and that the AMY is a key substrate for the anxiolytic effect of PPARY.
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Peroxisome Proliferator-Activated Receptor Gamma (PPARvy) is a classical target for antidiabetic therapies with thiazolidinedi-
one compounds. PPARy agonists such as rosiglitazone and pioglitazone are in clinical use for the treatment of insulin resistance.
PPARY has recently attracted attention for its involvement in the regulation of CNS immune response and functions. Here, we
demonstrate that neuronal PPARYy activation prevented the negative emotional effects of stress and exerted anxiolytic actions
without influencing hypothalamic-pituitary-adrenal axis function. Conversely, pharmacological blockade or genetic deletion of
PPARY enhanced anxiogenic responses and increased vulnerability to stress. These effects appear to be controlled by PPARy
neuronal-mediated mechanisms in the amygdala. /

ignificance Statement

Three closely related PPAR isoforms have been identified (alpha,
delta, and gamma), which are transcribed from different genes
and differ from each other in tissue distribution, ligand specific-

Introduction

Peroxisome proliferator-activated receptors (PPARs) are a group
of nuclear receptor proteins that regulate gene expression as
ligand-activated transcription factors (Michalik et al., 2006).

This work was supported by the [talian Society of Pharmacology (fellowship to E.D.), the Bundesministeriumfiir Bildung

Received Nov. 16, 2015; revised Oct. 18, 2016; accepted Oct. 29, 2016.

Author contributions: E.D., R.C., and M.U. designed research; E.D., S.U., L.S., A.CH., E.B., and M.U. performed
research; R.S. contributed unpublished reagents/analytic tools; E.D., S.U., LS., R.S., A.CH., E.B., M.H.,R.C, and M.U.
analyzed data; E.D., R.S., M.H., R.C,, and M.U. wrote the paper.

und Forschung (e:Med program Grant FKZ: 01ZX1311A, Spanagel etal., 2013 and Grant ROT AA017447 to M.R.). We thank
Dr Kevin Niswender at Vanderbilt University for providing PPAR-y-engineered mouse lines; Rina Righi and Mariangela
Fiorelli for animal care; and Alfredo Fiorelli, Elisabeth Rabl, and Claudia Schafer for technical support.

The authors declare no competing financial interests.



12612 - J. Neurosci., December 14, 2016 - 36(50):12611-12623

ity, and physiological role (Berger and Moller, 2002; Breidert et
al., 2002; Chang et al., 2007; Tontonoz and Spiegelman, 2008).
Although all PPARs were initially identified in peripheral tissue,
there is now evidence of their abundant distribution in the brain
(Schnegg and Robbins, 2011).

Among the three isoforms, PPARy has the highest expression
in the CNS, where it has been identified in neurons, astrocytes,
and glial cells (Moreno et al., 2004). Putative natural ligands of
PPARYy are polyunsaturated fatty acids and arachidonic acid
metabolites such as 15-deoxy-deltal2,14-prostaglandin J2 and
hydroxyoctaedecadienoic acid (Forman et al., 1995). Potent syn-
thetic agonists of PPARy are molecules that belong to the class of
thiazolidinediones (TDZs) such as pioglitazone and rosiglitazone
(Lehmann etal., 1995). TDZs have glucose-sensitizing properties
and are used clinically to treat type 2 diabetes and insulin resis-
tance (Kersten et al., 2000).

In the brain, relatively high PPARYy expression levels have
been found in areas involved in the regulation of motivation and
emotion, including the caudate putamen, nucleus accumbens,
septum, ventral tegmental area, and hippocampus (HIPP)
(Moreno et al., 2004; Gofflot et al., 2007; de Guglielmo et al.,
2015). Moreover, PPARy appears to be linked to stress modula-
tion because its receptor expression is increased in the rat cortex
after stress and its activation attenuates the stress response in
rodents (Garcia-Bueno et al., 2005). PPARy activation also atten-
uates affective symptoms in depressed and bipolar patients
(Kemp et al., 2014; Zeinoddini et al., 2015).

Itis known that chronic stress induces inflammatory responses in
the CNS (Raison et al., 2006; Garcia-Bueno et al., 2008b) and stim-
ulation of the neuroimmune system may contribute to the exacer-
bation of depression and anxiety disorders (Koo et al., 2010;
Christoffel et al., 2011; Tanaka et al., 2012). Reduction of proinflam-
matory cytokines and the anti-inflammatory response by microglia
inhibition after PPARy stimulation has been proposed as a mecha-
nism for the antidepressant and neuroprotective effects of TDZs
(Carta et al., 2011; Kemp et al., 2014). However, a growing body of
evidence indicates an important role of PPARy in the modulation of
neuronal-mediated mechanisms. For example, recent microarray
studies have shown that treatment with PPARy agonists modulates
preferentially genes linked to synaptic transmission and neuronal
functions in the amygdala (AMY) and HIPP (Searcy et al., 2012;
Ferguson et al., 2014), whereas inhibition of alcohol drinking and
heroin self-administration appear to be mediated by the ability of
PPARY to inhibit dopaminergic activity through the facilitation of
presynaptic inhibitory GABAergic transmission within the ventral
tegmental area (Stopponi et al,, 2011; de Guglielmo et al., 2015).

Here, we explored the role of PPARy in the regulation of stress
responses and anxiety at the neurocircuitry and mechanistic lev-
els. Using outbred mice, we studied the effect of PPARYy activa-
tion on anxiety. To confirm that the effect of pioglitazone was
mediated by PPARY, in a subsequent experiment, we coadmin-
istered the selective receptor antagonist GW-9662 (Leesnitzer et
al., 2002) with pioglitazone. We then tested basal and stress-
induced anxiogenic response in conditional knock-out (KO)
mice carrying a genetic ablation of PPARy in neurons but sparing
the receptor in glial cells. We then mapped neuronal activation
after a mild stress exposure in KO and wild-type (WT) mice. We
identified the AMY as a key area for PPARy modulation of anx-
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iety and acute stress responses. To confirm this hypothesis, we
activated PPARy selectively in the AMY and HIPP of stressed and
nonstressed WT mice and then tested for anxiety. Combining
immunohistochemistry and in situ hybridization through RNA-
scope multiplex fluorescent technology, we found that PPARy
receptors in these regions are heavily expressed in glutamic acid
decarboxylase 2 (GAD2)-positive cells, suggesting their ability to
regulate GABAergic transmission.

Materials and Methods

Subjects

Experiments were performed using male CD1 (Charles River Laborato-
ries) and mice with neuron-specific PPARy deletion (PPARyNestinCre
KO) kindly provided by Dr K. Niswender (Vanderbilt University, Nash-
ville, TN). To obtain the conditional inactivation of PPARy in neuronal
cells, transgenic mice expressing the Cre recombinase under the control
of the rat Nestin (Nes) promoter were bred to homozygous
PPARY'1® mice. The resulting heterozygous F1 offspring
(PPARy *1°*P) were either positive or negative for Nes—Cre. From mat-
ings of PPARy "/ with PPARy "/ Nes—Cre mice, F2 mice of the
desired genotypes (PPARy!*P1XP" Nes_Cre (PPARyN®t<re) and
PPARy]""P/ l‘”‘P) were obtained, which were then intercrossed to obtain
F3 animals. PPARy'®1*P mjce were used as control littermates for
conditional PPARy mice. The mice used for this study were on a
C57BL/6] background (Jones et al., 2002).

Mice were ~8 weeks of age at the beginning of the experiments and
were housed in groups of 5 and kept in a normal light/dark (LD) cycle
(08:00/20:00) at constant temperature (20-22°C) and humidity (45—
55°), with food and water provided ad libitum.

Each experiment was conducted with independent groups of mice
during the dark phase of the cycle. Animals were treated in accordance
with the guidelines of the European Community Council Directive for
Care and Use of Laboratory Animals.

Drugs

Piogﬁtazone was prepared from Actos (30 mg) and suspended in distilled
water for oral administration via intragastric gavage. The drug (30 mg/kg
concentration) was administered orally at a volume of 10 ml/kg body
weight. For intra-AMY and intra-HIPPocampal microinjections, piogli-
tazone was purchased from Molcan and dissolved in 15% DMSO and
10% Cremophor. The final volume was adjusted adding physiological
saline solution. Pioglitazone (5 ug/0.6 ul) was administered in a volume
of 0.3 ul per each site with a stainless steel injector protruding beyond the
cannula tip 1.00 mm and 0.5 mm for the AMY and the HIPP, respectively
(de Guglielmo etal., 2015). GW9662 was from Tocris Bioscience and was
dissolved in 5% DMSO, 5% Tween 20, and 90% distilled water. The
compound was administered at a dose of 5 mg/kg and injected at the
volume of 10 ml/kg intraperitoneally. Pioglitazone at doses <20 mg/kg
given peripherally was not effective in the mouse forced swimming test
(Sadaghiani et al., 2011), whereas, it showed efficacy in various behav-
ioral models at doses as high as 30 mg/kg (Stopponi et al., 2011; de
Guglielmo et al., 2014; de Guglielmo et al., 2015). Similarly, previous
studies indicated that 5 mg/kg GW9662 is sufficient to reverse the effect
of 30 mg/kg pioglitazone selectively (Stopponi et al., 2011; de Guglielmo
et al., 2014; de Guglielmo et al., 2015). Drugs were freshly prepared
before administration.

Elevated plus maze (EPM) test

Basal anxiety behavior of PPARy™Ne"C* KO and WT mice was tested in
the EPM, which was elevated 50 cm from the floor in the center of a
darkened room with three light bulbs placed in each corner of the room.
Each open arm of the EPM measured 27 X 7 cm and the closed arms
measured 27 X 7 X 13.5 cm. At the beginning of each trial, mice were
placed in the center of the EPM facing one of the closed arms and left
undisturbed in the room for the remaining time of the trial. Each trial
lasted 5 min. Mice were recorded using an Ethovision videotracking
system (Noldus Information Technology). The percentage of time spent
in open arms [%OAT = 100 X time in open arm/(time in “open arm” +
time in “closed” arm)] was considered an index of anxiety behavior and
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the total number of entries was considered a measure of locomotion.
After each trial, the maze was cleaned with water and dried using paper
towels.

Open-field test

Mice were tested in an open field (Med Associates) placed in the center of a
darkened room to assess locomotor activity and anxiety behavior. At the
beginning of each trial, mice were placed in the center of the field and left
undisturbed in the room for the remaining period of the trial. The trial lasted
5 min and was recorded using the Ethovision videotracking system. Param-
eters were set as follows: the open field was divided into a rim zone consti-
tuting the outer 6 cm of the field and a center zone including the rest of the
field. The parameters measured were total distance traveled, time spent in
the central zone, and number of rearings. After each trial, the field was
cleaned with water and dried using paper towels.

LD exploration test

The LD exploration test for anxiety-related behavior consisted of an open-
topped rectangular Plexiglas box (45 cm X 30 cm X 30 cm) that was parti-
tioned into a small (18 cm X 30 cm) area and a large (27 cm X 30 cm) area
with adoor (7.5 cm X 7.5 cm) in the center of the partition at floor level. The
small compartment was painted black and kept dark, whereas the large com-
partment was painted white and was brightly illuminated with a 60 W (400
lux) light source. Each mouse was placed into the dark compartment facing
away from the aperture and allowed to explore the apparatus freely for 5 min.
The number of light compartment entries (defined as all 4 paws out of the
shelter) and time spent inside the light compartment over a 5 min session
were recorded with the Ethovision videotracking system. The test lasted 5
min because this is the time at which behavior is most strongly influenced by
novelty (Mozhui et al., 2010).

Restraint stress procedure

Restraint stress was applied by placing the animal in a conic 50 ml plastic
tube. The tube diameter was adjusted with plaster tape that was also used
to close the posterior opening to avoid free movements to the mice.
There was a 0.5-1.0 cm hole at the far end of the plastic tube to allow
normal breathing. After 1 h of restraint stress, mice were tested immedi-
ately for anxiety-related behavior. For behavioral studies, mice received
pioglitazone or the vehicle 12 h and 10 min before they were immobilized
in tube for the 1 h restraint. Anxiety behavior was assessed immediately
after stress.

Intracranial surgery and histological analysis

For intracranial surgery, mice were anesthetized by intramuscular injec-
tion of 100-150 ul of a solution containing tiletamine chlorohydrate
(58.17 mg/10 ml) and zolazepam chlorohydrate (57.5 mg/10 ml) and
placed into a stereotaxic frame. The skull was exposed and stainless steel
guide cannulae (diameter, 0.35 mm; length, 7 mm) were bilaterally im-
planted to reach the AMY or the HIPP using the following coordinates:
(1) AMY: 1.4 mm caudal from the bregma, 3.0 mm mediolateral and
—3.9 mm ventral from the dura; (2) dorsal HIPP, 1.7 posterior to
bregma, = 1.5 mm mediolateral and 1.3 mm ventral to the skull surface
(Paxinos and Franklin, 2003). The guide cannulae were fixed to the skull
with dental cement and two anchoring screws. Behavioral tests were
initiated after full recovery (5-6 d after surgery).

For the intracranial injections, pioglitazone was administered using a
Hamilton microsyringe in a volume of 0.3 ul/site by mean of a stainless
steel injector 0.5 or 1.0 mm longer than the guide cannula for HIPP and
AMY, respectively, so that its tip protruded into the area. After the ex-
periments, to verify the cannula placement, mice were lightly anesthe-
tized with isoflurane and 0.3 ul/site malachite green solution was injected
into the area. After the mice were killed, the ink diffusion into the region
was evaluated histologically.

The injection sites (see Fig. 6C,F) were confirmed for both AMY and
HIPP by comparison with plates taken from a mouse brain atlas (Paxinos
and Franklin, 2003). Histological analysis confirmed bilateral injections
into the AMY in 41 animals and HIPP in 44 animals. These mice were
used for the analysis of the effects of intra-AMYr and hippocampal pi-
oglitazone injections on the anxiety behavior. Mice with incorrectly
placed cannulas were excluded from analysis.
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In situ hybridization

Radioactive labeling of riboprobes and the in situ hybridization proce-
dure has been described previously (Hansson et al., 2006; Bernardi et al.,
2014; Sommer et al., 2014).

Riboprobe synthesis

Mouse-specific riboprobes were generated from mouse cDNA templates
(PPARY, position 138 bp and 341 bp on mouse cDNA, gene reference
sequence in PubMed database; BC_021798, http://www.ncbi.nlm.nih.
gov/Entrez). A total of 200 ng of DNA (PCR template) was used for the
synthesis of RNA probes (antisense and sense). The DNA was incubated
with transcription buffer (Ambion) in the presence of 12.5 nmol ATP,
CTP, and GTP; 50 pmol UTP; 125 pmol [a-**S]UTP (1250 Ci/mmol;
PerkinElmer); and 1 unit of RNase inhibitor and 1 unit of RNA polymer-
ase (Roche Molecular Biochemicals) at 37°C for 90 min. This step was
followed by digestion of the DNA with RNase-free DNase at 37°C for 20
min. The transcripts were purified using spin columns (illustraTM Mi-
crospinTM S-200 HR Columns; GE Healthcare).

Tissue preparation and brain sections

Fresh brains were collected from PPARy KO and WT mice in RNase-free
conditions and were immediately frozen in dry ice and stored at —80°C
until the brains were cryosectioned at 10 wm thickness. Mouse brain
sections were brought to room temperature (RT) for fixation in 4%
paraformaldehyde in PBS, pH 7.0, for 15 min, followed by washing in
PBS, pH 7.4, for 10 min and rinsing twice in sterilized water (5 min).
Deproteination of the tissue was accomplished by incubation in 0.1 m
triethanolamine, pH 8.0, for 10 min. After 2 further washing steps in PBS,
pH 7.4, for 5 min, the tissue was acetylated in 0.1 M triethanolamine, pH
8.0, with 0.25% acetic anhydride for 20 min and then washed again twice
in PBS, pH 7.4, for 5 min. The sections were then dehydrated in graded
ethanol and air dried. Prehybridization in prehybridization buffer (50%
deionized formamide, 50 mm Tris-HCI, pH 7.6, 25 mm EDTA, pH 8.0, 20
mMm NaCl, 0.25 mg/ml yeast tRNA, 2.5 X Denhardt’s solution; Invitro-
gen) was performed in humidified chambers at 37°C for 2—4 h. After-
ward, the prehybridization solution was drained off the slides and the
sections were hybridized with 100 ul of hybridization buffer (50% de-
ionized formamide, 20 mm Tris-HCI, pH 7.6, 10X Denhardt’s solution, 5
mg/ml yeast tRNA, 1 mg/ml polyadenylic acid, 10 mm EDTA, pH 8.0, 150
mwm DTT, 330 mm NaCl, and 10% dextran sulfate) containing 1 X 10°
cpm of either the labeled antisense RNA or sense RNA. Siliconized cov-
erslips were used to cover the sections for the incubation at 55°C over-
night in a humidified chamber. After removal of the coverslips by
washing with 1X standard saline citrate (SSC, 42°C, 40 min), the slides
were washed again twice with 1X SSC and then in 0.5X SSC/50% for-
mamide for 1 hat 42°C, followed by 2 washing steps in 1X SSC for 30 min
at 42°C. The sections were then treated with 1 ug/ml RNase in RNase
buffer (0.5 M NaCl, 10 mm Tris, pH 8.0, 1 mm EDTA, pH 7.5) for 1 h at
37°C, washed twice in 1X SSC for 30 min at 55°C, and briefly washed in
1XSSC at RT. Finally, the sections were dehydrated in graded ethanol
and air-dried. BAS-SR 2025 imaging plates were exposed to the dry slides
for 7 d and then scanned with a PhosphorImager (Fuji Typhoon FLA
700). MCID Image Analysis Software (Imaging Research) was used for
densitometric analysis: bregma 0.14 mm [lateral septum and bed nucleus
of the stria terminalis (BNST) and bregma —1.22 mm (sensory cortex
(S1), habenula, laterodorsal thalamic nucleus, central AMY (CeA), and
basolateral AMY (BLA) according to the mouse brain atlas; Paxinos and
Franklin, 2003]. The mean density values were measured as minimal
detectable change (MDC) units per square millimeter and were con-
verted into nano-Curies per gram using [ '*C] microscales (GE Health-
care Life Sciences).

Histochemistry

Tissue preparation. Mice were deeply anesthetized by CO, inhalation and
transcardially perfused with 4% paraformaldehyde in PBS. The brains
were postfixed for 1 h and cryoprotected in 30% sucrose solution in PBS
at 4°C until sectioning (30 wm thickness). All reactions were performed
on free-floating sections for c-Fos immunostaining. Sections were rinsed
in PBS, treated for 30 min in 1% H,0O, in PBS to reduce background, and
incubated in blocking solution [3% normal sheep serum (NSS) in PBS]
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for 2 h. The sections were then placed in a solution (3% NSS in PBS)
containing an antibody directed against c-Fos (1:10.000; Ab-5; Calbio-
chem) overnight at RT. After several washings in PBS, the sections were
incubated in blocking solution (3% NSS in PBS) containing biotinylated
goat antirabbit antibody (1:500; Vector Laboratories) for 90 min, fol-
lowed by a 1 h incubation in an avidin-biotin peroxidase complex solu-
tion (Vector Laboratories). Immunoreactivity was visualized as a black
reaction product after 5 min in a 0.04% 3,3’ diaminobenzidinetetrahy-
drochloride solution containing 0.01% H,0O, (Sigma-Aldrich) and 0.1%
nickel ammonium sulfate. The sections were mounted on Superfrostl
slides (Fisher Scientific), air dried, dehydrated by serial alcohol rinsing,
cleared in xylene, and coverslipped.

RNAscope multiplex fluorescent. In situ hybridization was performed
using the RNAscope Multiplex Fluorescent kit (Advanced Cell Diagnos-
tics) according to the manufacturer’s instructions and as described pre-
viously (Li et al., 2015).

Briefly, fresh frozen tissues were sectioned, mounted on slides, and
fixed in 10% formalin (Thermo Fisher Scientific) for 20 min at 4°C. After
3 washes in 1X PBS, sections were dehydrated in 50%, 70%, and 100%
ethanol and then treated with protease solution (pretreatment 4) for 20
min at room temperature. After pretreatment 4, target probes for PPARy
(GenBank accession number: NM_ 001127330.2) and GAD 65 (GAD?2)
(NM_008078.2) were applied on the slides and incubated at 40°C for 2 h
in the HybEZ oven. Next, slides were incubated with preamplifier and
amplifier probes (AMP1 at 40°C for 30 min, AMP2 at 40°C for 15 min,
and AMP3 at 40°C for 30 min). The slides were then incubated with
fluorescently labeled probes by selecting a specific combination of colors:
green (Alexa Fluor 448) for PPARyand red (Atto 550) for GAD2. Finally,
brain sections were incubated for 20 s with DAPI (Thermo Fisher Scien-
tific). Fluorescent images of the HIPP and AMY were captured using an
LSM700 Zeiss upright confocal microscope.

Plasma corticosterone levels

Blood samples were taken from 1 h restrained and nonrestrained PPARy
KO and WT mice. Plasma was obtained by centrifuging the samples at
1000 X g for 15 min. All plasma samples were stored at —20°C
before assaying with a commercially available radioimmunoassay with
'26]_labeled rat/mice corticosterone (MP Biomedicals). A gamma coun-
ter was used to measure radioactivity of the samples. The values obtained
are expressed in nanograms per milliliter.

Statistical analysis

Behavioral analysis and corticosterone levels were analyzed by two-way
ANOVA or, when necessary, by Student’s  tests. Newman—Keuls post hoc
analysis was performed when necessary. For quantification of c-Fos, the
number of positively stained nuclei per region of interest was determined
bilaterally in two sections for each mouse by using the cell counter anal-
ysis macro of Image]. All cell counts were performed in regions of interest
covering identical areas in square micrometers. For immunohistochem-
istry and gene expression, the regions of interest were defined by anatom-
ical landmarks as described in the atlas (Paxinos and Franklin, 2003).
Because the data had homogenous variances within, but not between,
regions, statistical analysis was performed by two-way ANOVA and ¢ test
analysis within each brain region for c-Fos and in situ hybridization,
respectively. Statistical analysis of the raw data was performed in Statis-
tica 7 (StatSoft).

Results
Pioglitazone reduces acute stress-induced anxiety without
affecting basal anxiety levels
The anxiolytic effect of pioglitazone was assessed under basal
conditions or after 1 h of restraint stress in the LD test. Fifty
CD1 mice were divided into 4 groups (n = 12-13/group) and
were treated with pioglitazone (30 mg/kg) or vehicle given
twice at 12 h and 10 min before restraint stress (70 min before
the LD test).

Two-way ANOVA revealed a significant overall difference be-
tween groups with a main effect of restraint stress (F; 45 = 17.6;
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Figure 1. A, Restraint stress significantly decreased the time spent in the light side of the
compartment. Pretreatment with pioglitazone (30 mg/kg) reversed the anxiogenic-like effect
of stress. B, No differences were detected in the number of entries into the light side of the
arena. The data represent the mean == SEM values (n = 12-13 per group). Difference between
vehicle nonstressed and vehicle stressed: ***p << 0.001. Difference between vehicle stressed
and pioglitazone stressed: ## p << 0.01.

p = 0.0001), accompanied by a main pioglitazone effect (F(, 45, =
6.4; p = 0.014) and a significant stress X treatment interaction
(F(1,46) = 5-4; p = 0.024). Newman-Keuls post hoc tests showed
an increase in stress-induced anxiety (p = 0.0002) and an effect
of pioglitazone in reducing it (p = 0.001; Fig. 1A). No effect of
pioglitazone was observed in the group tested under basal condi-
tions (p = 0.884). No significant effect of restraint and treatment
on number of entries into the light side was observed (F(, 4, =
3.0,p = 0.089 and F,, 4, = 0.6, p = 0.433; Fig. 1B).

To evaluate whether a single pioglitazone administration is
sufficient to exert an anxiolytic action, we performed an addi-
tional experiment in which we injected the PPARYy agonist only
once 10 min before restraint stress (70 min before the LD test).

One-way ANOVA revealed a significant overall difference be-
tween groups (F, 34 = 8.12; p = 0.0013). The Newman—Keuls
test revealed that restraint stress significantly reduced the time
spentin the light compartment compared with unrestrained con-
trol mice (p = 0.0012). Pretreatment with pioglitazone did not
significantly reverse the anxiogenic effect of restraint stress (data
not shown). No significant effect of stress and treatment on
number of entries into the light side was observed (F, 5,y = 3.21;
p = 0.053).

GW9662 blocks the anxiolytic effect of pioglitazone on
stress-induced anxiety

The effect of pioglitazone, GW9662, and their combination was
tested on anxiety induced by restraint stress. CD1 mice were di-
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Figure 2. A, Restraint stress significantly decreased the time spent in the light side of the

apparatus. Pretreatment with pioglitazone (PI0, 30 mg/kg) reversed the anxiogenic-like effect
of stress and GW9662 (GW) blocked the anxiolytic-like effect of pioglitazone. B, No differences
were detected in number of entries into the light side of the arena. The data represent the
mean = SEMvalues (n = 12—13 per group). ***p << 0.001; *p << 0.05. S, Stress; NS, no stress.

vided into five groups (n = 12-13/group). Animals were sub-
jected to restraint stress for 1 h. Treatments with pioglitazone (0
and 30 mg/kg), GW9665 (0 and 5 mg/kg), or their combination
were given twice 12 h and 10 min before restraint stress (70 min
before the LD test). GW9662 preceded the administration of pi-
oglitazone. An additional group was not subjected to restraint
and served as a control. To control for the effect of stress, we
compared restrained and nonrestrained animals using a t test.
Results showed a significant difference between groups, with
stressed mice spending less time in the light side of LD compared
with nonstressed mice (t,5, = 4.72, p = 0.000076). At this point,
to evaluate the effect of treatments, we used a two-way fact-
orial ANOVA. Results showed no main effect for pioglitazone
(F48) = 3.61; p = 0.063) or GW9662 (F(, 45) = 0.68; p = 0.41),
but a significant drug X drug interaction (F(, 44 = 7.2; p =
0.009). Newman—Keuls post hoc tests showed that pioglitazone
reversed stress-induced anxiety (p = 0.011) and GW9662 signif-
icantly blocked it (p = 0.042; Fig. 2A). No significant effect of
restraint (f.,5 = 1.90, p = 0.068) or administration of pioglita-
zome (F(, 45 = 1.38; p = 0.24), GW9662 (F, 45, = 0.215 p = 0.64),
or both (F(, 44 = 2.8; p = 0.10) was observed on the number of
entries into the light side (Fig. 2B).
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Analysis of PPARYy expression in conditional PPARyNestCre
KO mice

For studying the contribution of neuronal PPARYy in anxiety-
related behavior, we used PPARy™Ne1"C KO mice. We verified
the neuronal deletion of PPARYy using in situ hybridization (ISH)
and demonstrated a significant effect of genotype on PPARYy ex-
pression in all of the following brain areas analyzed in
PPARyNC KO and WT animals (1 = 7 per group): septum
(t=15.53,df = 12, p = 0.0000); BNST (t = 68.95,df = 12;p =
0.0000); S1 (¢t = 16.82, df = 12; p = 0.001); BLA (t = 51.05, df =
11; p = 0.0000); CeA (t = 12.99, df = 12; p = 0.003); habenula
(r=135.9,df = 12; p = 0.0000); and laterodorsal thalamic nucleus
(r = 33.58, df = 12; p < 0.0000) (Fig. 3A). The distribution
pattern of PPARy mRNA expression of the septum and BNST
was analyzed in a brain section taken 0.14 mm anterior to the
bregma, whereas the pattern of PPAR"y gene expression of BLA,
CeA, S1, habenula, and thalamus was analyzed in a brain section
taken 1.22 mm from the bregma (Fig. 3B). In summary, consis-
tent with previously published data, residual PPARYy expression
was still detectable in KO mice, indicating receptor deletion in
neurons, but not in other cell types (i.e., microglia, oligodendro-
cytes; Sarruf et al., 2009).

PPARYN®"C K () animals exhibit an anxiogenic-like
phenotype and blockade of PPARY elicits a significant
anxiogenic-like response in WT, but not in KO, mice
A group of PPARy KO (n = 20) and a WT (n = 20) mice were
used for this experiment. Each group was subdivided in 2 sub-
groups (n = 10) and treated with the selective PPARy antagonist
GW9662 (5 mg/kg, i.p.) or vehicle given 12 h and 1 h before the
behavioral tests. In the analysis of time spent in the light side of
the compartment, overall factorial ANOVA revealed a significant
main effect of genotype (F(; 35, = 23.4; p = 0.0000), a significant
main effect of treatment (F, 55y = 5.1; p = 0.020), and a signifi-
cant genotype X treatment interaction (F, 3¢, = 4.7; p = 0.039).
Post hoc analysis showed that PPARy KO mice spent less time in
the light side of the LD compartment compared with WT mice
(p = 0.0001). GW9662 administration significantly (p = 0.003)
reduced the time spent in the light side for WT, but not PPARy
KO, mice (p = 0.75; Fig. 4A). Similarly, for the number of entries
into the light side, overall ANOVA revealed a significant effect of
genotype (F(, 55y = 21.9; p = 0.0001), treatment (F, 55 = 6.1;
p =0.019), and a genotype X treatment interaction (F(, 55, = 5.3;
p = 0.025). Post hoc analysis showed that there were fewer entries
into the light side by PPARy KO mice than by WT mice (p =
0.0009). GW9662 administration significantly (p = 0.010) re-
duced the number of entries into the light side of the arena for
WT, but not PPARy KO, mice (p = 0.685; Fig. 4B).

For the EPM test, each group was subdivided in 2 subgroups
(n = 9/10) and treated with GW9662 (5 mg/kg, i.p.) or vehicle
12hand 1 h before EPM test. Analysis of percentage of time spent
in the open arms showed a significant main effect of genotype
(F133) = 15.98; p = 0.0003), a significant main effect of treat-
ment (F(, 35y = 7.351; p = 0.01), and a significant genotype X
treatment interaction (F; 53y = 15.35; p = 0.0004). Post hoc anal-
ysis showed that PPARy KO mice spent less time in the open arms
of the EPM compared with WT mice (p = 0.0002). GW9662
administration significantly (p = 0.0002) reduced the time spent
in the open arms for WT, but not PPARy KO, mice (p = 0.40;
Fig. 4C). ANOVA also showed a significant genotype difference
in the number of entries into open arms (F, 55, = 5.872; p =
0.021). There was no significant effect of the treatment (F(, 53, =
0.953; p = 0.34), but a significant interaction genotype X treat-
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ment: (F(, 55, = 4.76; p = 0.036) (data not
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shown). Overall ANOVA did not reveal a
significant effect of the genotype (F; 33, =
0.97; p = 0.329) for either treatment
(F133 = 0.97; p = 0.668) or the geno-
type X treatment interaction (F, ;3 =
0.38; p = 0.668) in the total number of
entries (Fig. 4D).

In the open-field test (n = 9/10 mice),
ANOVA showed a significant effect of ge-
notype in the time spent in the center zone
(F1.33 = 10.01; p = 0.0033) and a signif-
icant effect of treatment (F, 55, = 7.9;p =
0.008), but no significant genotype X
treatment interaction (F, 55, = 2.389;p =
0.1316). Post hoc analysis showed that
PPARy KO mice spent less time in the
center zone (p = 0.006), whereas

Bregma 0.14 mm

Bregma -1.22 mm

GW9662 reduced the time in the center
zone in WT only (p = 0.0042; Fig. 4E). B

ANOVA revealed no significant effect of 157
the genotype (F(,35, = 0.9044; p =

in total distance traveled (Fig. 4F).

0.3485), no significant effect of treat- :‘—;’
ment (F; 53 = 0.0274; p = 0.8694), and =
no significant genotype X treatment in- QZE:
teraction (F(; 33y = 0.4944; p = 0.4868) E,;? s
o
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c-Fos analysis reveals a different

s
ek

pattern of stress-induced neuronal
activation in PPARy KO and WT mice
c-Fos immunoreactivity was assessed in
PPARYy KO and WT mice (n = 3-4 per
group) after exposure to the bright illumi-
nated and novel environment as in the
light dark exploration test (Fig. 5). Ro-
dents show an innate aversion for bright
illuminated compartments and the contemporary exposure to
light and a novel environment acts as a mild stressor (Bourin and
Hascoét, 2003). For each brain region, data were collected bilat-
erally from at least two separate sections. Brains were collected 90
min after the LD test (stressed group). The control group (non-
stressed) remained in their home cages. The results for all regions
analyzed are reported in Figure 5. In the paraventricular nucleus
of the thalamus (PVA), two-way ANOVA did not show a main
effect of genotype (F, o, = 1.25; p = 0.290), but there was a
significant main effect of stress (F, o) = 9.3; p = 0.015) without a
significant genotype X stress interaction (F(, ) = 0.2; p = 0.65).
Post hoc analysis showed a significant increase in the number of
c-Fos-positive cells after stress in both WT (p = 0.033) and KO
mice (p = 0.042). In the paraventricular nucleus of the hypothal-
amus (PVN), ANOVA revealed no main effect of genotype (F(, o
= 0.03; p = 0.857), a significant effect of stress (F, o) = 48.9;p =
0.0000), and a significant genotype X stress interaction (F, ¢y =
9.5; p = 0.013). Post hoc analysis showed a significantly higher
number of c-Fos-positive cells after stress in both WT (p =
0.0004) and KO mice (p = 0.022). Moreover, the data revealed
that, under basal conditions, KO mice expressed a higher level of
c-Fos compared with WT mice (p = 0.045).

In the AMY region, ANOVA showed no effect of genotype
(F(1,9) = 0.37;p = 0.558), a significant effect of stress (F(, ) =
5.7;p = 0.031), and a significant genotype X stress interaction
(Fa9p = 10.6; p = 0.0098). Newman-Keuls post hoc test

Figure 3.
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A, Dark-field photomicrographs from autoradiograms depicting the pattern of PPARy expression of coronal mouse
brain section at the bregma level 0.14 mm (top) and 1.2 mm (bottom). B, PPAR-y mRNA levels of PPARy """ K0 and WT mice
inthe BNST, CeA, BLA, S1, habenula, thalamus, and septum. The data represent the mean == SEM (n = 7 per group). **p < 0.01;
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showed a significantly higher level of c-Fos-positive cells in
WT mice after stress (p = 0.015), but not in KO mice (p =
0.50). PPARy KO stressed mice exhibited a significantly lower
expression level of c-Fos compared with WT stressed mice
(p = 0.019). In the HIPP, the analysis showed no effect of
genotype (F(, o) = 0.2; p = 0.661), but there was a significant
difference between groups in the main effect of stress (F, oy =
7.1; p = 0.025) and a significant genotype X stress interaction
(F(1,9) = 6.6; p = 0.030). Post hoc analysis showed that c-Fos
expression was increased only in WT after stress (p < 0.020).
c-Fos did not change in KO stressed mice compared with non-
stressed control mice (p = 0.944), but showed a trend close to
significance with lower expression in KO mice after stress
compared with WT stressed mice (p = 0.063).

PPARy WT and KO animals show a similar endocrine
response to acute stress

Plasma corticosterone levels were detected in PPARy KO and
WT mice under basal conditions and after 1 h of restraint
stress. Mice were divided into 4 groups (n = 7—-8/group) and
corticosterone levels were assessed. WT mice showed a corti-
costerone level of 65.5 = 8.0 ng/ml that was increased to 124.
6 * 8.0 ng/ml after stress. KO basal costicosterone was 72.1 =
8.7 ng/ml and increased to 151.1 * 18.5 after stress. Two-way
ANOVA did not show a significant overall difference between
groups with main effect of genotype (F(, ,5) = 1.39; p = 0.248),
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Figure4. A, B,PPARy"*™"*K0 mice and WT animals treated with GW9662 spent significantly less time (4) and displayed fewer entries into the light side of the apparatus (B) compared with
controlsinthe light dark test. €, PPARy """ KO mice and WT mice treated with GW9662 spent significantly less time in the open arms compared with controls in the EPM. D, No differences among
groups were observed in total number of entries in the EPM. E, PPARy """ KO mice and WT mice treated with GW9662 spent significantly less time in the central zone of the open-field arena.
F, No differences among groups were observed in the total distance traveled in the open field. The data represent the mean = SEM (n = 10 per group). Difference between PPARy"*"“¢ K0 and
WT mice: ##p << 0.01, ###p << 0.001 and difference between GW9662-treated mice and control: **p << 0.01, ***p << 0.001.

but revealed a significant main effect of stress (F(, ,5) = 26.04;
p = 0.0000) without a significant genotype X stress interac-
tion (F,5 = 0.5 p = 0.460). The Newman-Keuls test
showed an increase of corticosterone levels in stressed mice
compared with the baseline in both WT (p = 0.013) and KO
(p = 0.001) mice.

Intra-AMY, but not intra-HIPPocampal, infusion of
pioglitazone reduces stress-induced increase in anxiety-like
behavior

Restraint-stressed WT mice (n = 13 mice per group) were treated
with pioglitazone or vehicle twice 12 h and 10 min before stress
directly into the AMY (2.5 ng/side/0.3 ul). A third group of mice
(n = 15) not subjected to restraint stress but injected into the
AMY with vehicle served as a control. Anxiety-like behavior was
monitored by the LD test. One-way ANOVA revealed a signifi-
cant overall difference between groups (F, 5,y = 4.8; p = 0.013).
Newman—Keuls test revealed that restraint stress significantly re-
duced the time spent in the light compartment compared with
unrestrained control mice (p = 0.014). Pretreatment with piogli-
tazone reversed the anxiogenic effect of restraint stress (p =
0.035; Fig. 6B). ANOVA showed no overall effect of the treatment
in the number of entries into the light side (F(, 5,, = 0.62; p =
0.541; Fig. 6C). When the other two groups of mice (n = 9-10/
group) were tested for anxiety-like behavior in LD in response
to intra-AMY pioglitazone infusion under basal conditions
(nonstressed), no drug effect was detected in the time spent in
the light side (¢(,,) = 0.36, NS) or in the total number of entries
in the light side (¢,,) = 0.81, NS).

When pioglitazone or its vehicle was infused into the HIPP of
stressed mice (n = 11/group), compared with nonstress controls
(n = 11), ANOVA revealed a significant overall difference be-
tween groups (F, 35, = 7.9; p = 0.0016). Newman—Keuls test
showed that restraint stress significantly reduced the time spent
in the light compartment compared with unrestrained control

mice (p = 0.0067). Pretreatment with pioglitazone did not mod-
ify the effect of stress (p = 0.035; Fig. 6E). ANOVA showed no
overall effect of the treatment in the number of entries into the
light side (F(, 55y = 1.7; p = 0.20; Fig. 6C).

PPARY is largely expressed in GAD2 cells

PPARYy expression was analyzed in the AMY (Fig. 7) and HIPP
(Fig. 8). The RNAscope multiplex fluorescent technique with
simultaneous detection of PPARYy transcript expression and
GAD2 and DAPI staining allowed us to analyze the colocalization
of PPARvy in GABAergic cells. After counterstaining the sections
with DAPI, we found the most PPARYy expression in GAD2 cells
in both areas.

Discussion

In this study, we show that genetic deletion of neuronal PPAR7y
enhances the emotional response to acute stress and exacerbates
anxiety. PPARyin the AMY appears to play a major role. Initially,
we found that systemic PPARy activation by the selective agonist
pioglitazone inhibited the anxiogenic effect of a stressor in out-
bred mice. To confirm that the effect of pioglitazone was medi-
ated by selective activation of PPARvy, we pretreated the mice
with the selective receptor antagonist GW9662 and found that it
fully reversed pioglitazone anxiolytic effect. Based on these find-
ings, we hypothesized that neuronal PPARY is involved in the
regulation of anxiety-related behavior associated with stress. To
further explore the relationship between PPARy regulation and
anxiety, we investigated stress response in PPARyNe"<r¢ KO
mice. The genetic deletion of PPARyin the brains of KO mice was
confirmed by ISH data showing a marked reduction of receptor
transcript expression in several regions involved in emotional
control, including the septum, BNST, BLA, CeA, habenula, and
thalamus. Consistent with previously published data, residual
PPARYy expression was still detectable in KO mice, indicating



12618 - J. Neurosci., December 14, 2016 - 36(50):12611-12623

No Stress

Domi et al. @ Amygdalar PPARy and Anxiety

Stress

R
Bregma -0.46

)'QZ

L g Ve

[ e
Bregma -0.82

HIPP

1501 .

B
S 100+
c
)
2
‘B
o)
o
» 504
o)
LL
(5}

0

PVA

PVN

wr KO

.| No StressWT
. No Stress KO
[ StressWT
B Stress KO

i B

Hipp

Figure5. Top, Representative images of c-Fos immunohistochemistry in PPARy """ K0 and WT mice under basal conditions or after exposure to amild stress (n = 3—4 per group). Scale bar,
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versus no stress; °p << 0.05 KO no stress versus WT no stress; #p << 0.05 KO stress versus WT stress.

receptor deletion in neurons but not in other cell types (i.e.,
microglia, oligodendrocytes; Sarruf et al., 2009).

Neuronal PPARY is involved in anxiety-related behaviors

In a battery of tests to explore anxiety-related behaviors, neu-
ronal PPARy™N*H< KO mice exhibited higher innate anxiety
responses compared with WT mice. Notably, in the open-field

test, we observed that PPARy KO mice, despite spending
less time in the center or the arena, showed no differences in
the total distance traveled. Moreover, the two mouse lines did
not differ in the total number of arm entries into the EPM,
excluding the possibility that anxiety tests could have been
influenced by differences in locomotor behavior. This result is
consistent with previous pharmacological data revealing that
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Figure 6. A, Restraint stress significantly decreased the time spent in the light side of the apparatus, whereas intra-AMY administration of pioglitazone reversed the anxiogenic-like effect of
stress. B, No differences were detected in the number of entries into the light side of the arena. €, Schematic representation of intra-AMY sites of injection assessed by histological analysis. D,
Restraint stress significantly decreased the time spentin the light side of the apparatus, whereas intra-HIPPocampal administration of pioglitazone did not reverse the anxiogenic-like effect of stress.
E, No differences were detected in the number of entries into the light side of the arena. F, Schematic representation of intra-HIPP sites of injection assessed by histological analysis at the completion
of the experiment. Data are expressed as mean == SEM (n = 1315 per group of intra-AMY injections; n = 11 per group of intra-HIPP injections). Difference between restraint stressed mice (S) and
nonstressed (NS) controls: *p << 0.05, **p << 0.01. Difference between vehicle and pioglitazone in stressed mice: #p << 0.05.

PPARY activation by pioglitazone and rosiglitazone did not
result in locomotor impairment or reduction in muscle
strength in rodents (Morgenweck et al., 2010; Sadaghiani et
al., 2011; de Guglielmo et al., 2014). Altogether, these results
suggest a specific involvement of PPARYy in the modulation of
anxiety and indicate that this effect is mediated by neuronal
mechanisms.

Our finding of a neuronal contribution of PPARYy to
anxiety-related behavior has important implications because,
given evidence that the stress/anxiety response is associated
with neuroimmune signaling and increased expression of cy-
tokines (Raison et al., 2006; Garcia-Bueno et al., 2008a; Leon-
ard and Myint, 2009; Hou et al., 2013), one possibility would
have been that the PPARYy system modulates anxiety thro-
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Figure 7.  Representative images (40X magnification) of the AMY for: GAD2 (red) + PPARy (green) (4); PPAR-y + DAPI (blue) (B); GAD2 + DAPI (), and merge of PPARy +
GAD2 + DAPI (D). E, lllustration of the region of the AMY sampled for RNAscope ISH (Paxinos and Franklin, 2003). Arrows indicate representative cells showing PPARy + GAD2 + DAPI
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Figure 8. Representative images (40X magnification) of the HIPP for: GAD2 (red) + PPARy (green) (A); PPARy + DAPI (blue) (B); GAD2 + DAPI (C), and merge of PPARy +
GAD2 + DAPI (D). E, lllustration of the region of the HIPP sampled for RNAscope ISH (Paxinos and Franklin, 2003). Arrows indicate representative cells showing PPARy + GAD2 + DAPI
colocalization.
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ugh anti-inflammatory mechanisms (Feinstein, 2003; Garcia-
Bueno et al., 2005; Heneka and O’Banion, 2007; Woster and
Combs, 2007; Yuan et al., 2015). In contrast to this hypothesis,
we found a distinct anxiogenic-like phenotype in neuron-
specific PPARy KO mice, suggesting that this negative
affective state is linked to the lack of PPARy in neuronal cells.

To further validate whether the specific blockade of PPARYy
would increase anxiety, we administered the PPARy antagonist
GW9662 to WT and KO mice that were then tested for an
anxiety-like response. As expected, blockade of PPARy exerted a
marked anxiogenic-like effect in WT mice, whereas no effects
were observed in KO mice.

Mapping neuronal activation using
c-Fos immunohistochemistry
Having ascertained that PPARy-mediated response in anxiety is
regulated by neuronal mechanisms, we used c-Fos immunobhis-
tochemistry to map neuronal activation in WT and KO mice
under basal conditions and in response to a mild stressful stimu-
lus consisting of the exposure to the light side of the LD compart-
ment. The results provided two important pieces of information:
(1) basal c-Fos expression was generally higher in KO mice com-
pared with WT mice (effect significant in the PVN) and (2) in WT
mice, exposure to LD enhanced c-Fos expression in areas respon-
sible for emotional control (i.e., AMY and HIPP) and in struc-
tures mediating the endocrine response to stress (i.e., PVN and
PVA). Conversely, in KO mice, enhanced c-Fos expression after
stress was only observed in endocrine-relevant areas and in par-
ticular in the PVN, which plays a key role in initiating the hypo-
thalamic—pituitary—adrenal (HPA) response to stress (Cullinan
etal., 1995; Herman et al., 2002; Herman et al., 2003; Smith and
Vale, 2006). Based on c-Fos expression pattern, we anticipated no
differences in HPA response to stress between KO and WT mice,
but an altered emotional processing occurring in mice lacking
PPARY function in limbic areas such as the AMY or the HIPP.
Our prediction was confirmed by endocrinology data show-
ing no difference between WT and KO mice in the basal cortico-
sterone level or levels after stimulation by acute stress. This
finding is consistent with previous work demonstrating that the
protective effects of PPARy ligands on stress were independent of
systemic hormonal responses because no differences were ob-
served in plasma corticosterone levels in rats treated with rosigli-
tazone or vehicle and exposed to restraint stress (Garcia-Bueno et
al., 2005).

AMY is the site of action of PPARy-mediated

anxiety responses

After the hypothesis of an altered emotional processing in re-
sponse to stress, we next focused our attention on the limbic
system and, in particular, on the AMY, in which marked c-Fos
hyporesponsivity was observed in PPARy KO mice compared
with WT mice. The AMY is an important relay responsible for the
modulation of anxiety and is activated in response to stress
(Roozendaal et al., 2009). PPARY in this area appears to modu-
late gene networks linked to GABA and glutamate neurotrans-
mission (Ferguson et al., 2014), which are both important in the
regulation of affective responses (Hartmann et al., 1993). There-
fore, we monitored the effect of intra-AMY injection of pioglita-
zone on anxiety-like behavior in WT mice exposed to restraint
stress. As predicted, the selective activation of PPARy in the AMY
abolished the anxiogenic-like effect of restraint stress. Next, con-
sidering that differential c-Fos activation between PPARy KO
and WT mice was detected also in the HIPP, we investigated the
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effect of pioglitazone injection in this region. Activation of
PPARYy in this region was, however, unable to prevent the
anxiogenic-like effect of restraint stress. This suggests that the
AMY is a specific neuronal substrate for the anxiolytic effect of
pioglitazone.

Subsequently, we studied the localization of PPARY in these
regions. In the AMY, results confirmed a relatively high expres-
sion of the receptor in cells positive for the GABAergic marker
GAD?2. Interestingly, recent findings from cross-species genome-
wide approaches have identified GAD2 and PPARYy as intriguing
candidate genes in anxiety disorders (Sokolowska and Hovatta,
2013). In the HIPP, lower receptor expression levels were de-
tected even though colocalization with GAD2-positive cells was
confirmed. These neuroanatomical data may reflect the possibil-
ity that PPAR'y activation elicits anxiolytic action through mod-
ulation of the GABAergic transmission within the AMY.

One aspect of the study that remains elusive is why, in outbred
mice, pioglitazone showed its anxiolytic effect only after exposure
to stress, whereas in PPARy KO mice, excessive anxiety also ap-
peared under basal conditions, indicating a tonic control of this
emotional state by PPAR+y. One possibility is that the genetic
deletion of the receptor sets the condition of reduced resilience to
environmental changes, dampening the innate ability of the
mouse to adapt to external stimuli that are then perceived as
stressors. If moderately stressful stimuli, such as those experi-
enced in the LD or EPM tests, are perceived as highly aversive,
then they may also activate stress mechanisms under basal con-
ditions. An aspect of the study that has remained unexplored is
whether activation of PPARYy after exposure to stress is able to
attenuate anxiety and restore normal affective condition

Another element of the study to be considered is that the
results from the KO mice point to a neuronal-mediated mecha-
nism for the modulation of anxiety by PPARy. This finding is
particularly important because recent clinical data have provided
preliminary evidence for the efficacy of pioglitazone and rosigli-
tazone in attenuating depression and bipolar disorder in patients
(Kemp et al., 2014; Zeinoddini et al., 2015). In these studies, the
anti-inflammatory and glia inhibitory properties of PPARy ago-
nists were proposed as key factors for the effect of these two
TDZs. Challenging this assumption, we provide here evidence
that PPARYy activity is mediated by neuronal extrahypothalamic
mechanisms involving the AMY. The exact cellular processes
through which PPARy modulates AMY transmission remain to
be determined. Here, we have shown a high level of colocalization
with GABA cells. Moreover, we have shown recently that PPARy
activation modulates presynaptic GABA transmission and atten-
uates opioid-induced stimulation of DA neurons in the VTA.
Finally, in a recent gene expression study, it was shown that
PPARY stimulation results in marked changes in the levels of
several transcripts linked to GABA and glutamate transmission in
the AMY (Ferguson et al., 2014). It is well known that intrinsic
and extrinsic circuitry formed by GABA and glutamate neurons
in the BLA-CeA plays a critical role in the regulation of mood and
affect (Veinante and Freund-Mercier, 1998). Therefore, it is pos-
sible that PPARY, by regulating the connectivity of these circuit-
ries through modulation of amino acid transmissions, may affect
anxiety and possibly also other affective states. One limitation of
our study is that we have not been able to determine the specific
role of these two AMY subregions that, based on our ISH and
c-Fos results, could be both involved in mediating the effects of
PPARY. In fact, due to the small size of the BLA and the CeA, it
was not possible to target these neighboring regions separately
through microinjection experiments in the mouse. Future stud-
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ies, possibly using electrophysiology recordings, are needed to
determine the exact role of PPARyin the regulation of GABA and
glutamate neurocircuitry in these different subregions of the
AMY.

In conclusion, our findings open new vistas on the role of
PPARYyin the regulation of mood disorder, indicating that damp-
ened transmission may contribute to exacerbate anxiety and the
negative effects of stress. The results also suggest that the activa-
tion of PPARy may be beneficial in the treatment of psychiatric
conditions associated with stress and, in particular, anxiety dis-
orders. We have also demonstrated previously marked efficacy of
PPAR‘y agonists in preventing relapse to alcohol seeking by stress
(Stopponi et al., 2011; Le Foll et al., 2013; Stopponi et al., 2013).
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