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Abstract

With the rapidly increasing availability of data in the public domain, combining information from 

different sources to infer about associations or differences of interest has become an emerging 

challenge to researchers. This paper presents a novel approach to improve efficiency in estimating 

the survival time distribution by synthesizing information from the individual-level data with t-
year survival probabilities from external sources such as disease registries. While disease registries 

provide accurate and reliable overall survival statistics for the disease population, critical pieces of 

information that influence both choice of treatment and clinical outcomes usually are not available 

in the registry database. To combine with the published information, we propose to summarize the 

external survival information via a system of nonlinear population moments and estimate the 

survival time model using empirical likelihood methods. The proposed approach is more flexible 

than the conventional meta-analysis in the sense that it can automatically combine survival 

information for different subgroups and the information may be derived from different studies. 

Moreover, an extended estimator that allows for a different baseline risk in the aggregate data is 

also studied. Empirical likelihood ratio tests are proposed to examine whether the auxiliary 

survival information is consistent with the individual-level data. Simulation studies show that the 

proposed estimators yield a substantial gain in efficiency over the conventional partial likelihood 

approach. Two sets of data analysis are conducted to illustrate the methods and theory.
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1. Introduction

Combining information from different sources to infer about associations or differences of 

interest is an important area of research known as meta-analysis. Results of meta-analyses 

have been used to guide the design of future studies, aid the development of regulatory 
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recommendations, and even modify clinical practice. A PubMed search of the word “meta-

analysis” in article titles found 7231 articles in just 2013. With the rapidly increasing 

availability of data in the public domain, taking full advantage of available information 

while saving considerable resources has become an emerging challenge to researchers.

An ideal meta-analysis would be an analysis of pooled individual-level data, where the raw 

data from each study are obtained and analyzed directly. In clinical studies, the use of pooled 

individual-level data enables researchers to conduct subgroup analysis to investigate whether 

patient characteristics are related to treatment effects. In most applications, however, 

synthesis of the information is conducted by analyzing summary statistics, such as means, 

standard deviations, proportions, odds ratios, and relative risks, from each individual study. 

Specifically, meta-analysis calculates a weighted average of the summary statistics across 

studies to provide an overall measure of the association or difference of interest. The major 

drawback of this approach is that covariate-treatment interactions are usually not provided in 

the reports of primary analysis findings, thus making subgroup analysis difficult to perform 

(Simmonds and Higgins, 2007).

On the other hand, methods for combining information from both individual-level data and 

published aggregate data have drawn much attention (Kovalchick, 2013; Liu et al., 2014). 

This research is particularly inspired by the growing interest in exploiting the population-

based cancer survival statistics made available by the Surveillance, Epidemiology and End 

Results (SEER) Program of the National Cancer Institute (NCI). The SEER program 

consists of 18 cancer registries covering approximately 28% of the U.S. population. The 

registries began collecting demographics and cancer factors on all types of incident cancer 

patients in 1973, and the database links to state death certificates for patient survival 

information, including cause of death. The SEER program updates their data annually and 

has been used by thousands of researchers, clinicians, public health officials, policy makers, 

community groups and public for cancer incidence and survival statistics in the United 

States. The SEER Cancer Statistics Review 1973-2010 (http://seer.cancer.gov/csr/

1975_2010/) reports the 5-year survival after cancer diagnosis by race, sex, age, and year of 

diagnosis for the major cancer sites and for all cancers combined using data from the 

population-based cancer registry. For example, the 5-year survival among ovarian cancer 

patients diagnosed before age 65 is 57%, and is 27.7% among patients diagnosed after age 

65. This paper presents a novel approach for combining data from clinical studies, that is, 

individual-level data, and the published subgroup t-year survival probabilities, that is, 

aggregate data. Individual-level data provide estimates of the treatment-covariate 

interactions or effects of biomarkers that are not reported in existing publications, but the 

sample size may be too small to provide accurate estimates. Properly combining with 

survival information available from external sources is expected to yield more efficient 

estimates of the effects of interest as well as more accurate prediction of the risk of the 

failure event.

Our approach to synthesize information from different sources is motivated by the empirical 

likelihood method that was first introduced by Thomas and Grunkemeier (1975) to obtain 

confidence intervals for the Kaplan-Meier estimator. Later, Owen (1988, 1990) studied 

empirical likelihood-based confidence regions for the mean or other functions. It has been 
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shown that the empirical likelihood ratio has a limiting chi-squared distribution under mild 

regularity conditions, and that the empirical likelihood is Bartlett correctable in many 

applications (DiCiccio et al., 1991), leading to an advantage over the bootstrap method in the 

construction of confidence regions. Many researchers have applied the empirical likelihood 

method to more general settings. In particular, Qin and Lawless (1994) made connections to 

estimating equations and demonstrated that the empirical likelihood method can yield the 

most efficient estimator by making optimal use of the estimating equations. Although the 

use of empirical likelihood methods has been very popular in fields such as survey sampling, 

the main interest is usually to improve the estimation of the mean or other functions of the 

distribution function. For example, Chen and Qin (1993), Chen and Wu (2002), Chen et al. 

(2002), and Wu and Sitter (2001) applied the empirical likelihood method to incorporate 

auxiliary covariate information to improve efficiency of estimation. Imbens (2002) provided 

a very nice discussion on how the empirical likelihood methods can be used as an alternative 

for the generalized method of moments.

Application of the empirical likelihood approach to survival data has received much 

attention because variances of statistical estimates can be very difficult to estimate in the 

presence of right censoring. The empirical likelihood method can efficiently establish joint 

confidence regions without directly estimating the corresponding asymptotic variances, and 

can significantly improve coverage accuracy. In a review paper, Li et al. (2005) summarized 

the result of empirical likelihood analysis for censored survival time data. Ren and Zhou 

(2011) investigated the properties of the maximum empirical likelihood estimator and 

compared with the maximum partial likelihood method. Zhou (2006) applied the empirical 

likelihood method to improve estimation of the Cox model with partial information on the 

baseline hazard function.

The proposed application of the empirical likelihood method deals with a nonconventional 

scenario. Under the proportional hazards model, the auxiliary t-year survival probabilities 

amount to a system of nonlinear estimating equations that involve the regression parameters, 

the infinite-dimensional baseline hazard function, and the infinite-dimensional marginal 

distribution function of the covariate X, making it difficult to derive the constrained 

maximum likelihood estimator. To tackle this difficulty, two empirical likelihoods, one based 

on the conditional likelihood of the survival time T give X and another based on the 

marginal likelihood of X, are constructed to combine information from different sources. In 

the same spirit of Breslow's estimator (Breslow, 1972), the baseline hazard function and the 

marginal distribution function of X are profiled out of the conditional likelihood and the 

marginal likelihood, respectively. To the best of our knowledge, this is the first paper that 

considers a double empirical likelihood approach.

This paper is organized as follows. In Section 2 we introduce notation and summarize the 

landmark survival information as unbiased estimating equations. The main results are 

presented in Section 3, where a double empirical likelihood approach is proposed to 

synthesize the auxiliary survival information. Because the auxiliary survival information 

many not be consistent with the individual-level data due to inclusion/exclusion criteria of 

the clinical study, in Section 4 we extend the proposed double empirical likelihood method 

to allow the population from which the aggregate survival information is derived to have a 
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different baseline risk. We present results of simulation studies in Section 5 and illustrate the 

proposed methods with two sets of data analysis in Section 6. Some concluding remarks are 

given in Section 6.

2. Model Setup

Let T denote the time from disease onset to a failure event or an event of interest. Assume 

that T is absolutely continuous, that is, T has a probability density. Let X denote a p × 1 

vector of baseline covariates. Denote by f(t | x) and S(t | x) the conditional density function 

and the conditional survival function of T given X = x. We assume that the survival time T 
follows the proportional hazards model (Cox, 1972)

where β is a vector of p × 1 regression parameters and λ(t) is an unspecified baseline hazard 

function. Let  be the corresponding baseline cumulative hazard function. 

The observation of the survival time is usually subject to right censoring due to study end or 

premature dropout. Thus, instead of observing the actual value of the survival time T, we 

observe the possibly censored survival time Y = min(T, C), where C is the time of censoring. 

In many applications, it is reasonable to assume that C is independent of T given the 

observed covariates X.

Our goal is to derive an efficient estimator of the Cox model by incorporating published t-
year survival probabilities. To express the auxiliary information on survival at the time point 

t*, we use Ωk, k = 1, …, K to denote the kth subgroup whose t*-year survival is provided. In 

the aforementioned ovarian cancer example, we set Z to be the age of diagnosis, where Z is a 

subset of the covariate of interest X, which may include biomarkers and other risk factors of 

ovarian cancer. Write X = (Z, W). Thus the two subgroups of ovarian cancer patients are Ω1 

= {(Z, W) : Z < 65} and Ω2 = {(Z, W) : Z ≥ 65}, and the auxiliary 5-year survival 

probabilities obtained from the SEER Cancer Statistics Review 1973-2010 are given by pr(T 
> 5 | X ∈ Ω1) = 0.56 and pr(T > 5 | X ∈ Ω2) = 0.277.

A general expression of the auxiliary survival information for subgroup k at the time point t* 

is

or, equivalently, pr(T > t*, X ∈ Ωk) – ϕk × pr(X ∈ Ωk) = 0. By double expectation and under 

the assumed Cox model, we can derive
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Define the estimating function

Then the subgroup survival information at t* is summarized by

(1)

where the random function ψk(X, β, Λ), k = 1, …, K, is bounded by 2. Note that the 

estimating equations only involve the regression parameter β and the baseline cumulative 

hazard function evaluated at t*. Hence, by setting α = Λ(t*), equation (1) can be reexpressed 

as E{ψk(X, β, α)} = 0, k = 1, …, K.

3. Method

In this section, we introduce a double empirical likelihood method to synthesize information 

from different sources. Under the Cox model, the density of the bivariate random variable 

(T, X), relative to the product of the Lebesgue measure and the marginal distribution of X, is 

given by exp(β′x)λ(t) exp{−Λ(t) exp(β′x)}dG(x), where G is the distribution function of X. 

Assume that the observed data (Yi, Δi, Xi), i = 1, …, n, on n subjects are independent and 

identically distributed realizations of (Y, Δ, X). Dropping the factors involving the censoring 

time distribution, the log full likelihood based on the observed data is

Define the functions , k = 0, 1, 2, with x⊗2 = 

x′x. Following the empirical likelihood method of Owen (1988) and Qin and Lawless 

(1994), we denote by λi the jump of Λ at Yi and by pi the jump of G at Xi. The full 

empirical likelihood can then be decomposed as the product of the conditional likelihood of 

(Y, Δ) given X and the marginal likelihood of X, where the log conditional likelihood is

and the log marginal likelihood is
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For a fixed β, differentiating the log conditional likelihood ℓC with respect to λi and setting 

the derivative to 0 yields

which leads to the Breslow (1972) estimator for the baseline cumulative hazard function

Another well-known result is that replacing Λ with ΛB̂ in ℓC yields the (log) partial 

likelihood function.

Assume that the auxiliary survival information is consistent with the individual-level data, 

that is, individuals in the clinical study are a representative sample of the population from 

which the aggregate survival information is derived. A simple idea to combine auxiliary 

information is applying the empirical likelihood method to maximize the full likelihood with 

respect to the constraints

Because the estimating function ψk only involves the value of Λ(t) at t = t*, intuitively, one 

may replace Λ(t*) in ψk with its Breslow-type estimator Λ̂
B(t*, β). However, simulation 

studies suggest that this simple approach yields biased estimation, because the Breslow-type 

estimator involves unknown parameter β.

We propose to combine the auxiliary subgroup survival information to estimate the Cox 

model by formulating two empirical likelihoods – one of which is derived from the 

conditional likelihood and the other is derived from the marginal likelihood. Our idea is to 

treat α = Λ(t*) as a nuisance parameter and construct an empirical likelihood for α. We then 

formulate the usual empirical likelihood for β and Λ using the auxiliary survival information 

which depends on β and α.

The steps to construct the double empirical likelihood are described below. By definition, 

. We propose to maximize the log conditional likelihood ℓC 

subject to the constraint
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Applying Lagrange multipliers ν, the objective function to be maximized is

Taking derivative of the objective function with respect to λi and setting the derivative to 0 

yields

(2)

where the Lagrange multiplier is determined by

Substituting (2) back to the objective function yields, up to a constant,

Hence the marginal empirical score function for β is

Next, we maximize the log marginal likelihood ℓM with respect to the constraints pi ≥ 0, 

, and  for k = 1, …, K. Write ψ(x, β, α) = {ψ1(x, β, α), 

…, ψK(x, β, α)}′. Given β and α, a unique maximum exists provided 0 lies in the convex 

hull of ψ(X1, β, α), …, ψ(Xn, β, α). Applying the classic empirical likelihood argument, we 

have

and the constrained log marginal likelihood, up to a constant,
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where the Lagrange multipliers ξ = (ξ1, …, ξK)′ are determined by

Combing the two constrained log likelihoods yields the constrained log full likelihood 

function ℓ, where, up to a constant,

The procedure described above enables us to change an infinite dimension problem to a 

finite-dimension problem at the expense of introducing an additional (K + 2)-dimensional 

parameters.

To estimate β, we solve a system of empirical score equations:

with the usual convention 0/0 = 0. These empirical score functions are derived by taking 

derivative of the empirical likelihood ℓ with respect to θ = (β, ξ, ν, α). Let β0, Λ0, and α0 be 

the true parameter values, and denote θ0 = (β0, 0, 0, α0). Define U0k = Uk(β0, 0, 0, α0), k = 

1, 2, 3, 4, that is, U0k is the value of Uk evaluated at θ0. Define  and 

, where U04 = 0. We show in the Appendix that, under some 

regularity conditions, n−1/2U0 converges in distribution to a zero-mean multivariate normal 

distribution with variance-covariance matrix
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where Σ, J, K are defined in the appendix. Note, for convenience, we use 0 and I to denote a 

matrix of 0's and an identity matrix with proper dimensions.

Denote by θ̂ = (β̂, ξ̂, ν̂, α̂) the solution to U(θ) = 0. The large-sample properties of θ̂ are 

presented in Theorem 1, the proof of which is given in the Appendix.

Theorem 1 Assume that X is bounded, the true regression parameter β0 lies in a compact 

set, and both T and C are absolutely continuous. Moreover, assume that E{ψ(X, β0, α0)ψ(X, 

β0, α0)′} is positive definite and α0 = Λ0(t*) < ∞. Then n1/2(β̂ – β0) converges in 

distribution to a zero mean multivariate normal distribution with variance-covariance matrix 

Γ−1 = (Σ+BQ−1B′)−1, provided Γ is non-singular, where B and Q are specified in the 

Appendix.

Interestingly, Σ−1 is the asymptotic covariance-covariance matrix of n1/2(β̂PL − β0), where 

β̂PL is the maximum partial likelihood estimator. Hence Theorem 1 implies that the 

proposed estimator β̂ is asymptotically more efficient than the maximum partial likelihood 

estimator β̂PL.

When the subgroups involved in the auxiliary survival information are determined by a 

subset of covariates, the efficiency gain in the estimated coefficients for other covariates is 

expected to be minimum. To see this, consider a simple case where X = (X1, X2) and the 

subgroups are determined only based on X1. Then the auxiliary survival information for the 

kth subgroup can be reexpressed as

Because the proposed estimation procedure allows for an arbitrary distribution function G 
for (X1, X2), after reparameterization, it is equivalent to maximize the log marginal 

likelihood  with respect to the constraints
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where Xi = (Xi1, Xi2) and  is the jump of G at (Xi1, Xi2/β2). It is easy to see that, after 

profiling out , the auxiliary survival information does not involve β2. Thus the proposed 

estimation procedure is expected to significantly improve the efficiency in the estimation of 

β1 but has only limited impact on the estimation of β2.

To estimate the baseline cumulative hazard function Λ(t), we consider the following 

empirical likelihood-based estimator to incorporate the auxiliary survival information:

Applying the functional delta method, we can show that n1/2{Λ̂
EL(t) – Λ(t)} converges to a 

zero-mean Gaussian process on [0, τ]. A sketch of the proof is given in the Appendix.

The validity of the proposed method holds when the t-year survival probabilities 

summarized by (1) are consistent with the individual-level data. To test the conformity of the 

auxiliary survival information, an empirical likelihood ratio test statistic can be constructed 

in the spirit of Corollary 4 of Qin and Lawless (1994) and Qin and Lawless (1995). 

Specifically, we consider the test statistic

Note that when the conformity assumption holds, that is, ξ = 0, the likelihood ℓ(β, α, 0, ν) is 

maximized by (β, ν, α) = (β̂PL, 0, α̂
PL), where α̂

PL = Λ̂
B(t*, β̂PL) is the Breslow-type 

estimator of the baseline cumulative hazard function at time t*. Theorem 2 summarizes the 

asymptotic properties of empirical log-likelihood ratio statistic R.

Theorem 2 Under the regularity conditions specified in Theorem 1 and the null hypothesis 

that ξ = 0, the empirical log-likelihood ratio R converges in distribution to a χ2 random 

variable with K degrees of freedom as n → ∞.

4. An Extension

As discussed before, a major limitation of the estimation procedure described in Section 3 is 

that the auxiliary information must be consistent with the individual-level data. However, 

due to study inclusion/exclusion criteria, subjects enrolled in the clinical study may not be a 

representative sample of the population from which the aggregate survival information is 

derived. Hence it is desired to allow the aggregate data to have a different survival time 

model. To this end, we propose to accommodate the inconsistency by assuming that the 

Huang et al. Page 10

J Am Stat Assoc. Author manuscript; available in PMC 2017 August 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



hazard function of the survival time in the aggregate data follows the Cox model λ*(t)exp(β
′ x), where

(3)

so that the potential differences in the two data sources are characterized by a scale factor ρ. 

Of note, ρ = 1 indicates that survival time model for the aggregate data is the same as that 

for the individual-level data.

Similar to the discussions in Section 3, the auxiliary survival information pr(T > t* | X ∈ Ωk) 

= ϕk, k = 1, …, K, can be summarized by the estimating equations

where, under model (3), ψ̂
k(X, β, α, ρ) = I(X ∈ Ωk)[exp{−ραexp(β′X)} − ϕk]. The 

constrained log full likelihood function is given by, up to a constant,

Taking derivative of the empirical likelihood ℓ̃ with respect to θ̃ = (β, ξ, ν, α, ρ), we reach a 

system of empirical score equations:

with the usual convention 0/0 = 0. Let ρ0 be the true parameter value for ρ, and denote 

. Define Ũ0k = Ũk(θ̃0), k = 1, …, 5, that is, Ũ0k is the value of 

Ũk evaluated at θ0̃. Define  and , 

where Ũ04 = Ũ05 = 0. Let θ̂ρ be the solution to Ũ(θ̃) = 0 and βρ̂ be the corresponding 

estimated regression coefficient. The large-sample properties of θ̂ρ are presented in Theorem 

3, with the proof given in the Appendix.
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Theorem 3 Assume that the matrix E{ψ̃(X, β0, α0, ρ0)ψ̃(X, β0, α0, ρ0)′} is positive 

definite. Then, under the same regularity conditions in Theorem 1, n1/2(βρ̂ – β0) converges 

in distribution to a zero mean multivariate normal distribution with variance-covariance 

matrix Γ̃−1 = (Σ + B̃Q̃−1B̃′)−1, provided Γ̃ is non-singular, where B̃ and Q̃ are specified in 

the Appendix.

Theorem 3 implies that the extended double empirical likelihood estimator β̂ρ is 

asymptotically more efficient than the maximum partial likelihood estimator β̂PL. Moreover, 

it is easy to see that, θ̂ = (β̂, ξ̂, ν̂, α̂) is the maximizer of ℓ(β, ξ, ν, α, ρ ≡ 1). In the proof of 

Theorem 3, we also show that β̂ρ is less efficient than β̂. To test if the same baseline hazard 

function is shared by the individual-level data and the aggregate data, we consider the 

empirical log-likelihood ratio statistic

Under minor regularity conditions and the null hypothesis that ρ0 = 1, the empirical log-

likelihood ratio R̃ converges in distribution to a χ2 random variable with 1 degrees of 

freedom as n → ∞. The proof closely follows that for Theorem 2, and thus is omitted.

5. Numerical Studies

5.1 Monte Carlo Simulations

We conducted two sets of Monte Carlo simulations to examine the finite-sample 

performance of the proposed methods. In both simulation studies, we generated X1 from the 

standard normal random variable and X2 from a Bernoulli distribution with pr(X2 = 1) = 

pr(X2 = 0) = 0.5. The survival time T in the individual-level data was generated from the 

proportional hazards models (A) λ(t | X1, X2) = λ(t) exp(β1X1 + β2X2) with (β1, β2) = 

(−0.5, 0.5), and (B) λ(t | X1, X2) = λ(t) exp(β1X1 + β2X2 + β3X1X2) with (β1, β2, β3) = 

(−0.5, 1, −0.5), where we set λ(t) = 2t for both models. The censoring time C was generated 

from an uniform distribution so that the censoring rate was approximately 0%, 30%, and 

50%. In each simulation, we generated 1000 datasets, each with a sample size of n = 100 

and n = 400.

In the first set of simulations, we considered the case where the individual-level and the 

aggregate data share the same survival time model, that is, ρ = 1 in model (3). We derived 

the auxiliary survival information at t = 0.5 for subgroups Ω1 = {(X1, X2) : X1 ≤ 0, X2 = 0} 

and Ω2 = {(X1, X2) : X1 > 0, X2 = 0} under the assumed Cox model. This specification aims 

to mimic the situation where in a randomized clinical trial we exploit the information about 

the 6-month survival probabilities in the standard-of-care control group (X2 = 0) and where 

X1 is a baseline risk factor. The 6-month survival probabilities for the two subgroups are 

approximately 0.68 and 0.84 under Models (A) and (B).

Tables 1 and 2 summarize the empirical bias and empirical standard deviation of the 

maximum partial likelihood estimator β̂PL, the double empirical likelihood estimator β̂, and 
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the extended double empirical likelihood estimator βρ̂ that allows for a different baseline 

hazard function for the aggregate data. All three estimators are close to their estimands 

under Models (A) and (B). Compared with the maximum partial likelihood estimator β̂PL, 

the two double empirical likelihood estimators β̂ and β̂ρ enjoy substantial efficiency gains. 

Under Model (A), the relative efficiency ranges from 4.86 to 9.66 for the estimated 

coefficient of baseline risk factor and from 1.02 to 1.84 for the estimated treatment effect. 

Under Model (B), the relative efficiency in the treatment-covariate interaction ranges from 

1.50 to 2.13, suggesting that the use of proposed methods can substantially reduce the 

sample size requirement by about 18%– 58% in investigating treatment heterogeneity. As 

expected, β̂ρ is slightly less efficient than β̂ and the estimated value of ρ is close to 1 using 

the extended double empirical likelihood approach. We also reported the estimated baseline 

cumulative hazard function at t = 0.3 and 0.7. As expected, the double empirical likelihood 

approach enjoys a substantial gain in efficiency in the estimation of Λ(t), while the 

efficiency gain for the extended approach is minimal because it allows for a different 

baseline risk in the aggregate data. Finally, our simulations (results not shown) also show 

that the efficiency gain increases with the number of constraints.

In the second set of simulations, we assume that the auxiliary survival information is derived 

from the Cox model with a different baseline hazard function λ*(t) = 1.5λ(t), that is, we set 

ρ = 1.5 in model (3). The 6-month survival probabilities for the same subgroups are 

approximately 0.57 and 0.77 under both Model (A) and Model (B). Tables 3 and 4 give the 

summary statistics of the simulation results. As expected, the double empirical likelihood 

estimator β̂ which assumes consistency between the individual-level data and the aggregate 

data yields biased estimates. On the other hand, the extended double empirical likelihood 

estimator β̂ρ performs very well in terms of bias and efficiency gain, and the estimated value 

of ρ is very close to its true value 1.5.

5.2 Data Example

5.2.1 Example 1: Prostate cancer study—To demonstrate how the proposed methods 

can improve efficiency by incorporating auxiliary survival information with the individual-

level data, we investigated the comparative effectiveness of two modes of androgen 

deprivation therapy (ADT), intermittent and continuous ADT (IADT and CADT), on 

survival outcomes in men with advanced prostate cancer. Continuous ADT has been the 

conventional palliative approach in the U.S. for the control of advanced prostate cancer, and 

intermittent ADT has been proposed as an alternative to CADT for the potential advantages 

of improved quality of life, reduced cost, and reduced risk of side effects. However, it 

remains unclear whether IADT has a survival benefit comparable to CADT. While age and 

prostate specific antigen (PSA) level have been shown to be important prognostic factors in 

advanced prostate cancer, it remains unclear whether the comparative effectiveness of IADT 

versus CADT differs by PSA level at diagnosis after adjustment for men's age at diagnosis. 

Although clinical trials and meta-analysis have ben conducted to investigate this issue, the 

answer remains inconclusive due to lack of statistical power needed for subgroup analysis 

(Tsai et al., 2013; Hussain et al., 2013).
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We used the linked Surveillance, Epidemiology and End Result (SEER)-Medicare dataset in 

this example. The SEER-Medicare dataset matches incident cancer patients identified from 

SEER registries to their data from Medicare, the major insurer in the U.S. for people 65 

years and older, to obtain longitudinal inpatient and outpatient treatment information and 

determine patients' receipt of ADT. Our study population was defined as men 66 years and 

older diagnosed with advanced prostate cancer anytime from January 1, 2004 to December 

31, 2009 who received ADT anytime during 2004 to 2010. After excluding men who did not 

have continuous Medicare coverage from 2004 to 2010, who did not receive either CADT or 

IADT, and who were missing diagnosis age and PSA measures, a total of 4548 patients were 

included in this illustrative data example. Among these patients, 71.7% of them received 

continuous ADT treatment and 45.0% died before December 31, 2010. The median age at 

diagnosis was 75 years and the median PSA level was 16.2 ng/mL. To illustrate the proposed 

estimation procedure, we randomly selected 300 cases from the complete dataset, that is, 

6.6% of the available 4548 cases. The selected subset has a median age at diagnosis of 75 

years and a median PSA level of 17.1 ng/mL. Additionally, 68.7% of the cases in the subset 

received continuous ADT treatment and 46% died before December 31, 2010.

We fitted a Cox model to analyze survival after diagnosis of prostate cancer using diagnosis 

age (66-75, 76-80, and > 80) and PSA level (0-40 and > 40) as categorical covariates. Table 

5 shows the maximum partial likelihood estimators and their standard errors by using the 

complete dataset with 4548 cases and the subset with 300 selected cases. We also applied the 

two double empirical likelihood estimators to synthesize information from the subset data 

with three sets of auxiliary survival information at the 5-year landmark: (I) The five year 

survival probabilities were 70.5% and 34.5% for IADT-treated patients whose PSA levels 

were below and above 40 ng/mL at diagnosis; (II) The five year survival probabilities were 

64.2% and 20.1% for CADT-treated patients whose PSA level were below and above 40 

ng/mL at diagnosis; (III) The aforementioned survival information are available in both 

IADT and CADT groups. Note that these auxiliary survival probabilities were derived by 

applying the Kaplan-Meier estimator to the corresponding subgroups from the complete 

dataset. To obtain the standard errors for the estimated regression coefficients, we adopted a 

nonparametric bootstrap method by sampling 300 subjects with replacements from the 

subset data. The resampling procedure was repeated 1000 times, and the standard errors 

were estimated with the standard deviation of the 1000 estimates.

As expected, incorporating auxiliary survival information in the data analysis using the 

proposed methods yields smaller standard errors than the conventional partial likelihood 

approach using the subset data, and the largest efficiency gains are observed in Scenario III 

where a greater amount of information is incorporated. Of note, the estimator βρ̂ that allows 

for a different baseline hazard function for the aggregate data gives almost identical results 

as the one that assumes consistency between the two populations. As expected, the estimated 

value of ρ is very close to 1 in all scenarios because the selected subset is a random sample 

of the complete data. Interestingly, the analysis with complete data shows the comparative 

effectiveness of IADT versus CADT to differ significantly by patients' PSA level after 

adjusting for age at diagnosis, yet the significance disappears when applying conventional 

analysis in the subset data but is revealed in our proposed approaches with auxiliary survival 
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information, thus highlighting the practical value of employing a more efficient 

methodology.

5.2.2 Example 2: Pancreatic cancer study—We now apply the extended double 

empirical likelihood estimator to another example where the auxiliary survival information 

may be inconsistent with individual-level data. We analyzed data from a pancreatic cancer 

study conducted at the Johns Hopkins Hospital to study risk factors affecting survival 

following pancreatectomy. Pancreatic ductal adenocarcinoma (PDAC), the most common 

histological subtype of pancreatic malignancy, is a very resilient disease with a very poor 

prognosis. To date, radical surgical resection remains the only treatment for PDAC that 

offers clinical benefit in terms of overall survival. Unfortunately, less than 20% of pancreatic 

cancer patients have surgically resectable disease at the time of diagnosis, and the majority 

of resected pancreatic cancer recurs within 5 years. Despite advances in the treatment of 

cancer during the past few decades, improvement in long-term survival of PDAC patients 

has been modest. The major risk factors influencing survival after pancreatic cancer surgery 

are tumor characteristics. Favorable prognostic factors include negative resection margin, 

negative lymph node, and absence of perineural invasion.

This data example is from a retrospective cohort study of 209 consecutive patients who had 

surgical resection of PDAC and follow-up at the Johns Hopkins Hospital from January 9, 

1998 to June 13, 2007. Thorough chart reviews were conducted to ascertain patient's 

demographics and results of laboratory test, clinical and pathological exams. Treatment data 

were collected from the electronic medical records. Disease recurrence was determined 

clinically through imaging studies (computed tomography, positron emission tomography) 

or pathological diagnosis (CT-guided biopsy, wedge resection or lobectomy). All-cause and 

cancer-specific deaths and dates of death were determined by a combined review of clinical 

follow-up information, Social Security Death Index, and the National Cancer Database.

We fitted a Cox model to evaluate the effects of presence of lymph nodes, positive resection 

margins, presence of perineural invasion (PNI), age at surgery (≤ 65 and > 65), and gender 

on overall survival. Table 6 shows the estimated covariate effects using the partial likelihood 

method. We also applied the double empirical likelihood estimators βρ̂ to synthesize three 

sets of auxiliary survival information reported in Cameron et al. (2006): (I) the three-year 

survival probabilities for node-negative and node-positive patients were 40% and 26%, 

respectively. (II) the three-year survival probabilities for margin-negative and margin-

positive patients were 35% and 20%, respectively. (III) All the four survival probabilities 

given in (I) and (II). These survival probabilities were estimated from 1000 consecutive 

pancreatectomies performed by a single surgeon between March 1969 and May 2003.

We only reported the results of β̂ρ in Table 6 because the baseline hazard function in the 

aggregate data is expect to be different due to potential differences in patients' 

characteristics. As before, incorporating auxiliary survival information in the data analysis 

using the proposed methods yields smaller standard errors than the conventional partial 

likelihood approach, and the largest efficiency gains are observed in Scenario III where a 

greater amount of information is incorporated. Note that the effect of positive lymph nodes 

is only marginally significant when applying the partial likelihood method, but becomes 
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statistically significant when combining with the auxiliary survival information. The 

estimated value of ρ is 0.8 and is significantly lower than 1, indicating that the baseline risk 

in patients in the study reported by Cameron et al. (2006) is lower than that in patients in our 

clinical study.

6. Remarks

In this paper, we have proposed two double empirical likelihood approaches to synthesize 

information from both patient-level right-censored survival data and the auxiliary survival 

information. We first construct an efficient estimation procedure by imposing consistency 

between the individual-level data and the aggregate data, and then extend the estimation 

procedure to allow for potential differences in the survival models for the two data sources. 

Many researchers, including Imbens and Lancaster (1994), Hellerstein and Imbens (1999), 

and Chaudhuri et al. (2008), have considered estimation of the general/generalized linear 

models by imposing additional moment restrictions. Most of the existing work deals with 

complete data, while this paper considers estimation of the semiparametric Cox proportional 

hazards model using right-censored survival data by incorporating a system of nonlinear 

constraints. The simulation studies show large gains in efficiency by incorporating marginal 

moments from published survival probability information. We believe that the proposed 

methodologies will have a significant impact on the practice of meta-analysis.

The proposed approaches are more flexible than the conventional meta-analysis in the sense 

that they can automatically combine survival information for different subgroups and the 

information may be derived from different studies. For example, one study may publish 

survival probabilities for different age groups, while the other study may publish survival 

probabilities for different disease stages. The proposed double empirical likelihood methods 

provide a unified framework to incorporate all the available information in the form of non-

linear constraints.

The sample size of the external data source, such as disease registries, is in general much 

larger than that of the individual-level data. As a result, the variability in the published 

survival information is usually negligible compared to the variability in the parameter 

estimates using the individual-level data. In the case where the variability is not negligible, a 

higher-order Taylor expansion needs to be employed to summarize the auxiliary survival 

information as estimating equations. This will be explored elsewhere.
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Appendix: Large-Sample Properties

Proof of Asymptotic Normality for U0. Define Ni(t) = ΔiI(Yi ≤ t) and 

. Thus we have

For convenience, let s(k)(t, β) denote the limit of S(k)(t, β), that is, s(k)(t, β) = limn→∞ S(k)(t, 
β) for k ∈ {0, 1, 2}. Because Mi(t) is a local square-integrable martingale and Xi–S(1)(u, 

β0)/S(0)(u, β0) and I(u ≤ t*)/S(0)(u, β0) are both predictable quadratic variation processes, we 

have E(U01) = 0, E(U03) = 0,

and

Moreover, by double expectation, it can be shown that  and E(U03U02) = 0. 

Define J = var(n−1/2U02). It is easy to see that | ψk(X, β0, α0) |≤ 2 for k = 1, …, K. Thus, by 

the martingale central limit theorem and the classic central limit theorem, U0 converges in 

distribution to a zero mean multivariate normal distribution with the variance-covariate 

matrix Ω as n → ∞.

Proof of Theorem 1. Arguing as in the proof of Lemma 1 in Qin and Lawless (1994), under 

some regularity conditions, we can show that the full constraint empirical likelihood attains 

the maximum at some point (β̂, α̂) in the interior of the ball {(β, α) : ‖ (β, α) − (β0, α0) ‖≤ 

n−1/3} with probability 1. Next, straightforward algebra yields
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(4)

Where

and, similarly,

with H = −n−1E {∂ψ/∂α(X1, β0, α0)}. It follows from H′KH + J being positive definite that 

Q is negative definite. By singular value decomposition, one can derive

Define Γ = Σ + BQ−1B′, then

By definition, θ̂ is the solution to U(θ̂) = 0. Write  with . 

Then, by (4) and a Taylor series expansion, we have

(5)

Thus we establish the asymptotic representation n1/2(β̂–β0) = Γ−1(n−1/2U01)–

Γ−1BQ−1(n−1/2U*)+ op(1). Because U01 and U* are orthogonal, the asymptotic variance of 

n1/2(β̂ – β0) is given by
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Let G = H′J−1H + K−1. It can be verified that

Straightforward algebra yields

(6)

Hence the asymptotic variance of {n1/2(β̂ – β0)} is given by Γ−1 = (Σ + BQ−1B′)−1 ≤ Σ−1.

Proof of Asymptotic Normality for Λ̂(t). To establish the asymptotic normality of Λ̂(t), we 

first note that the double empirical likelihood-based estimator for the baseline cumulative 

hazard function can be reexpressed as Λ̂(t, β̂, ν̂), where

Note that Λ̂ defines a functional of two empirical processes  and S(0)(u, β) 

+ νI(u ≤ t*), and the mapping defined by Λ̂ is compactly differentiable. Define Fu(t) = 

E{N1(t)} and let Λ0(t) be the true baseline cumulative hazard function. It can be shown that 

Λ̂(t, β0, 0) converges almost surely to .

A Taylor series expansion of Λ̂(t, β̂, ν̂) about (β0, 0) yields

Huang et al. Page 19

J Am Stat Assoc. Author manuscript; available in PMC 2017 August 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(7)

where  lies between (β̂, ν̂) and (β0, 0). Given the consistency of θ̂ and by the 

Glivenko-Cantelli theorem, we can show that almost surely

and

as n → ∞. Moreover, applying the functional delta method to Λ̂(t, β0, 0) yields

(8)

It follows from (5), (7), and (8) that n1/2{Λ̂(t, β̂, ν̂) − Λ0(t)} is asymptotically equivalent to a 

sum of i.i.d. monotone processes with bounded second moments, and thus, following 

example 2.11.16 of van der Vaart and Wellner (1996), converges weakly to a mean zero 

gaussian process.

Proof of Theorem 2. Note that (β̃, α̃) is the solution to U1(β, 0, 0, α) = 0, and U3(β, 0, 0, α) 

= 0. Hence (β̃, α̃) has the following asymptotic representation

It follows from (5) and n1/2(H′ξ̂ + ν̂) = n−1/2U04 + op(1) = op(1) that
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Expanding the partial likelihood ℓ(β̃, 0, 0, α̃) at θ̂ yields

Define  and denote the asymptotic 

variance of n1/2ξ by

By tedious algebra, we can show that VWVWV = VWV and rank(WV) = K, that is, the 

quadratic form of the asymptotically normally distributed random variable ξ satisfies the 

conditions of Ogasawara-Takahashi Theorem (Rao, 1973, page 188). Thus we prove that R 
converges in distribution a χ2 distribution with K degrees of freedom as n → ∞.

Proof of Theorem 3. The proof of Theorem 3 closely follows that of Theorem 1. Hence we 

only highlight their differences. It is easy to see that Ũ01 = U01,

Ũ03 = U03, Ũ04 = U04 = 0, Ũ05 = U05 = 0. Arguing as before, 

 converges in distribution to a zero mean multivariate 

normal distribution with the variance-covariate matrix Ω̃ as n → ∞, where

where J̃ = var(n−1/2Ũ02).

Define the matrices
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where

and H̃ = −n−1E {∂ψ̃/∂α(X1, β0, α0, ρ0)}. Straightforward algebra yields

where κ = (B̃, 0) with .

By a Taylor series expansion, we have

where . Define Γ̃ = Σ + κΦ−1κ′. Arguing as before, we establish the 

asymptotic representation n1/2(β̂ρ − β0) = Γ̃−1(n−1/2Ũ01) − Γ̃−1κΦ−1(n−1/2Ũ*) + op(1). 

Because Ũ01 and Ũ* are orthogonal, the asymptotic variance of n1/2(β̂ρ − β0) is given by
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Arguing as in the proof of Theorem 1, we can show that

Together with (7) and

we have
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Hence we prove that var{n1/2(βρ̂ − β0)} = Γ̃−1 = (Σ + κΦ−1κ′)−1 ≤ Σ−1, where Σ−1 is the 

variance-covariance matrix for the maximum partial likelihood estimator βP̂L. Moreover, 

because κΦ−1κ′ = B̃Q̃−1B̃′−(B̃Q̃−1L)(L′Q̃−1L)−1(B̃Q̃−1L)′ ≤ B̃Q̃−1B̃′, we also prove that 

βρ̂ is less efficient than β̂ which is the maximum empirical likelihood estimator for β when 

the true parameter value ρ0 = 1 is known.
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