Skip to main content
. Author manuscript; available in PMC: 2017 Aug 18.
Published in final edited form as: J Am Stat Assoc. 2016 Aug 18;111(514):787–799. doi: 10.1080/01621459.2015.1044090

Table 1.

Summary statistics for the estimation of Model (A) λ(t | X1, X2) = λ0(t)exp(β1X1 + β2X2) when ρ = 1.

Proportion censored β1 β2 ρ Λ(0.3) Λ(0.7)
n Coef Bias ES RE Bias ES RE Bias ES Bias ES RE Bias ES RE
0% 100 PL -2 12 3 22 0 3 0 10
DEL -1 5 4.96 0 18 1.48 0 2 1.67 0 6 2.59
DELρ -1 5 4.86 2 22 1.03 7 26 0 3 1.03 0 10 1.05
400 PL 0 6 1 11 0 1 0 5
DEL 0 2 5.62 0 9 1.47 0 1 1.86 0 3 2.35
DELρ 0 2 5.52 0 11 1.02 1 11 0 1 1.05 0 5 1.05
30% 100 PL -1 14 3 26 0 3 0 11
DEL -1 5 6.84 1 20 1.67 0 2 1.76 0 7 2.50
DELρ -1 5 6.68 2 25 1.04 7 31 0 3 1.05 0 11 1.05
400 PL -1 7 1 13 0 2 0 5
DEL 0 2 7.10 0 10 1.60 0 1 1.87 0 4 2.36
DELρ 0 2 6.98 0 13 1.02 1 13 0 1 1.05 0 5 1.04
50% 100 PL -2 17 0 31 0 3 1 13
DEL -1 5 9.64 -2 23 1.84 0 2 1.81 1 8 2.54
DELρ -1 5 9.61 -1 30 1.04 6 32 0 3 1.01 2 13 1.03
400 PL -1 8 1 15 0 2 0 6
DEL 1 2 9.66 0 12 1.72 0 1 1.87 0 4 2.50
DELρ 1 2 9.56 0 15 1.02 1 14 0 2 1.05 0 6 1.04

NOTE: β1 and β2 are the regression coefficients, where the true parameter values are (−0.5, 0.5); Λ(t) = t2 is the baseline cumulative hazard function evaluated at t; PL, the maximum partial likelihood estimator β̂PL; DEL, the double empirical likelihood estimator β̂; DELρ, the extended double empirical likelihood estimator β̂ρ that allows for a different baseline hazard function for the aggregate data; Bias and ES, empirical bias (×100) and empirical standard deviation (×100) of 1,000 regression parameter estimates; RE, the empirical variance of the maximum partial likelihood estimator divided by that of the double empirical likelihood estimators.