Skip to main content
. Author manuscript; available in PMC: 2017 Aug 18.
Published in final edited form as: J Am Stat Assoc. 2016 Aug 18;111(514):787–799. doi: 10.1080/01621459.2015.1044090

Table 2.

Summary statistics for the estimation of Model (B) λ(t | X1, X2) = λ0(t) exp(β1X1 + β2X2 + β3X1X2) when ρ = 1.

Proportion censored β1 β2 β3 ρ Λ(0.3) Λ(0.7)
n Coef Bias ES RE Bias ES RE Bias ES RE Bias ES Bias ES RE Bias ES RE
0% 100 PL -1 17 2 24 -2 24 0 3 0 10
DEL 0 6 9.45 0 18 1.80 -1 17 1.84 0 2 1.84 0 6 2.54
DELρ 0 6 9.38 2 23 1.02 -2 18 1.72 6 26 0 3 1.01 0 10 1.04
400 PL -1 8 1 12 0 11 0 1 0 5
DEL 0 3 9.44 1 9 1.77 0 8 1.64 0 1 2.01 0 3 2.35
DELρ 0 3 9.41 1 12 1.01 0 9 1.50 1 12 0 1 1.03 0 5 1.03
30% 100 PL -2 21 3 29 -2 28 0 3 0 12
DEL -1 6 13.8 0 21 1.92 -1 20 1.93 0 2 1.96 0 8 2.44
DELρ -1 6 13.7 2 28 1.04 -2 21 1.84 8 31 0 3 1.03 0 12 1.05
400 PL -1 9 1 14 0 13 0 2 0 6
DEL 0 3 13.7 0 10 1.88 -1 10 1.78 0 1 2.04 0 4 2.42
DELρ 0 3 13.6 1 13 1.04 -1 10 1.70 2 14 0 1 1.04 0 5 1.06
50% 100 PL -2 27 4 35 -2 36 0 3 0 14
DEL 0 6 23.2 -1 24 2.12 -4 25 2.13 0 2 2.05 1 9 2.45
DELρ 0 6 23.0 2 33 1.09 -4 25 2.11 9 35 0 3 1.05 0 14 1.08
400 PL -1 12 1 16 0 16 0 2 0 7
DEL 1 3 21.0 0 12 1.94 -2 11 1.95 0 1 2.04 0 4 2.35
DELρ 1 3 21.0 0 16 1.03 -2 11 1.91 2 15 0 2 1.04 0 6 1.06

NOTE: β1, β2, and, β3 are the regression coefficients, where the true parameter values are (−0.5, 1, −0.5). Λ(t) = t2 is the baseline cumulative hazard function evaluated at t; PL, the maximum partial likelihood estimator β̂PL; DEL, the double empirical likelihood estimator β̂; DELρ, the extended double empirical likelihood estimator β̂ρ that allows for a different baseline hazard function for the aggregate data; Bias and ES, empirical bias (×100) and empirical standard deviation (×100) of 1,000 regression parameter estimates; RE, the empirical variance of the maximum partial likelihood estimator divided by that of the double empirical likelihood estimators.