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Aims The secretion of enzymatically active heparanase (HepA) has been implicated as an essential metabolic adaptation
in the heart following diabetes. However, the regulation and function of the enzymatically inactive heparanase
(HepL) remain poorly understood. We hypothesized that in response to high glucose (HG) and secretion of HepL

from the endothelial cell (EC), HepL uptake and function can protect the cardiomyocyte by modifying its cell death
signature.

....................................................................................................................................................................................................
Methods and
results

HG promoted both HepL and HepA secretion from microvascular (rat heart micro vessel endothelial cells,
RHMEC) and macrovascular (rat aortic endothelial cells, RAOEC) EC. However, only RAOEC were capable of
HepL reuptake. This occurred through a low-density lipoprotein receptor-related protein 1 (LRP1) dependent
mechanism, as LRP1 inhibition using small interfering RNA (siRNA), receptor-associated protein, or an LRP1 neu-
tralizing antibody significantly reduced uptake. In cardiomyocytes, which have a negligible amount of heparanase
gene expression, LRP1 also participated in the uptake of HepL. Exogenous addition of HepL to rat cardiomyocytes
produced a dramatically altered expression of apoptosis-related genes, and protection against HG and H2O2

induced cell death. Cardiomyocytes from acutely diabetic rats demonstrated a robust increase in LRP1 expression
and levels of heparanase, a pro-survival gene signature, and limited evidence of cell death, observations that were
not apparent following chronic and progressive diabetes.

....................................................................................................................................................................................................
Conclusion Our results highlight EC-to-cardiomyocyte transfer of heparanase to modulate the cardiomyocyte cell death signa-

ture. This mechanism was observed in the acutely diabetic heart, and its interruption following chronic diabetes
may contribute towards the development of diabetic cardiomyopathy.
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1. Introduction

In the heart, where contracting cardiomyocytes are incapable of regen-
eration, intrinsic mechanisms are available within the endothelial cell
(EC) to protect the cardiomyocyte against cellular demise.1–4 One con-
ceivable cardioprotective protein, secreted exclusively from the EC in
the heart, is heparanase.5,6 This endoglycosidase is initially synthesized as
a latent (enzymatically inactive; HepL) 65 kDa proheparanase enzyme.
HepL undergoes cellular secretion, which is followed by reuptake into
lysosomes for proteolytic cleavage (removal of a 6 kDa linker peptide).5

Consequently, a 50 kDa polypeptide (enzymatically active; HepA) is
formed that is�100-fold more active than HepL.

In cancer biology, HepA degradation of heparan sulphate proteoglycan
(HSPG) is associated with extracellular matrix and basement membrane
disruption, facilitating tumour cell invasion.5,7–9 Following its nuclear
entry, HepA also influences transcription by cleaving nuclear HSPG, miti-
gating the suppressive effect of heparan sulphate on histone acetyltrans-
ferase.10–14 More recently, we established a novel role for HepA in
modulating cardiac metabolism during diabetes.10,15 The above studies in
cancer and diabetes fixated on the effects of HepA, incorrectly assuming
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that only the HSPG-hydrolyzing ability of heparanase was of importance.
Intriguingly, HepL also has some remarkable properties, including its abil-
ity to activate signalling elements like Erk1/2, PI3K-AKT, RhoA, and Src,
which in turn can contribute to changes in transcription.5 Cancer cells
use secreted HepL to alter gene expression (either through its cell signal-
ling properties, or by its conversion to HepA) in neighbouring cells, pre-
venting their cellular demise and promoting tumour growth.5,16,17 In the
heart, a similar paradigm would appear advantageous, with endothelial
HepL protecting the cardiomyocyte against cell death. For this to hap-
pen, HepL needs to be secreted, followed by its subsequent binding and
uptake into the cardiomyocyte. We hypothesized that, following its
secretion from the EC, HepL uptake and function in the cardiomyocyte
is protective against cell death. Results from this study suggest that HG
increases heparanase secretion from EC, in addition to augmenting its
uptake into the cardiomyocyte, where it has a favourable effect on the
expression of apoptosis-related genes and limits the incidence of cell
death. Occurrence of this EC-to-cardiomyocyte transfer of heparanase
in the acutely diabetic heart, and the interruption of this process follow-
ing chronic and progressive diabetes, may contribute towards the devel-
opment of diabetic cardiomyopathy.18–20

2. Methods

2.1 Animal care
This investigation conformed to the Guide for the Care and Use of
Laboratory Animals published by the National Institutes of Health and
the University of British Columbia (Animal Care Certificate A13-0098).

2.2 Experimental animals
Streptozotocin (STZ) is a b-cell specific toxin used to induce diabetes.21

Male Wistar rats (240–260 g) were injected intravenously with 55 mg/kg
STZ. With this dose, the animals become hyperglycemic within 24 h.
These animals, used as a model of poorly controlled Type 1 diabetes,
were kept for 4 days (acute) or 6 weeks (chronic) before heart isolation.

2.3 Isolation of cardiomyocytes
Rats were euthanized using a 100 mg/kg intraperitoneal injection of
sodium pentobarbital. Once toe pinch and corneal reflexes were lost, a
thoracotomy was performed prior to removal of the heart. Rat ventricu-
lar calcium-tolerant cardiomyocytes were prepared following previously
described procedures.22 Isolated rat cardiomyocytes were plated on
laminin-coated culture dishes and allowed to settle for 3 h. Unattached
cells were washed away prior to different treatment protocols.

2.4 EC culture
Representative macrovascular (rat aortic endothelial cells, RAOEC) and
microvascular (rat heart micro vessel endothelial cells, RHMEC) EC
were cultured at 37 �C in a 5% CO2 humidified incubator. Cells from the
fifth to the eighth passages of three different starting batches, for each
cell line, were used.

2.5 Treatments
To promote the secretion of heparanase, EC were incubated with high
glucose (25 mM, HG). To test whether exogenous heparanase can be
taken up into EC and cardiomyocytes, cells were treated with 500 ng/mL
recombinant myc-tagged HepL (myc-HepL) for different time intervals. To
elucidate the contribution of cell surface lipoprotein receptor-related pro-
tein 1 (LRP1) towards heparanase uptake, we used receptor-associated

protein (RAP, 200–400 nM, 1 h) or LRP1 neutralizing antibodies (20–
40 mg/mL, 1 h) to inhibit LRP1. To inhibit LRP1 expression, small interfer-
ing RNA (siRNA) specific for LRP1 was used in RAOEC. SST0001
(125lg/mL, 4 h) was used to inhibit heparanase activity. To induce apop-
tosis, cardiomyocytes were incubated in HG (30 mM) for 48 h, or H2O2

(10lM) for 12 h.

2.6 Immunofluorescence
To visualize heparanase uptake into cardiomyocytes, cells were treated
for 4 h with myc-HepL. Cells were washed with cold PBS and fixed with
4% formaldehyde solution. This was followed by permeabilization with
0.2% Triton X-100 for 10 min and incubation with blocking buffer con-
taining 5% goat serum for 1 h at room temperature. Incubation with pri-
mary antibodies was at 4 �C overnight and secondary antibodies at
room temperature for 1 h. To detect lysosome localization, LysoTracker
was added 30 min before fixation. For determination of apoptosis,
Annexin V (1:200) and propidium iodide (PI, 1:500) were used.

2.7 Nuclear isolation
Nuclear and cytosolic fractions were separated using the nuclear/cytosol
fractionation kit from Thermo Fisher Scientific. To validate the purity of
proteins, we used cytosolic (GAPDH) and nuclear (histone H3) protein
markers to detect their predominance in cytosolic and nuclear fractions,
respectively.

2.8 Western blot
Western blot was done as described previously.23 In some experiments
using EC, cell culture media was concentrated with an Amicon centrifuge
filter (Millipore) before the detection of heparanase protein.

2.9 Quantitative real-time PCR
Total RNA was isolated from EC, whole hearts, or cardiomyocytes using
TRIzol (Invitrogen). This was followed by extraction using chloroform
and isopropanol, washing with ethanol, and dissolving in RNase-free
water. RNA was reverse transcribed into cDNA using a mixture of
dNTPs, oligo-(dT), and SuperScript II Reverse Transcriptase. cDNA was
amplified by TaqMan probes (b-actin, heparanase, lrp1, tnfrsf10b, tnfsf10,
tnfrsf11b, cflar, bcl-2, tradd, tnfsf1b, bad, caspase 7, and caspase 8) in trip-
licate, using a StepOnePlus Real-Time (RT) PCR system (Applied
Biosystems). Gene expression was calculated by the comparative cycle
threshold (DDCT) method.

2.10 Apoptosis PCR microarrays
For the apoptosis PCR array (Qiagen), 300–1000 ng RNA was isolated
using an RNeasy Mini Kit and cDNA were transcribed using the RT2 First
Strand Kit. The expression of 84 apoptosis-related genes was deter-
mined in control and HepL-treated rat cardiomyocytes.

2.11 Materials
RAOEC and RHMEC were obtained from cell applications and VEC tech-
nologies, respectively. STZ (S0130) and D-Mannitol (M4125) were
obtained from Sigma-Aldrich. Anti-LRP1 antibody (ab92544) was pur-
chased from Abcam. Purified HepL was prepared as described previ-
ously.24 LysoTracker (L-7528) was purchased from Life Technologies. For
western blots that detect only HepL, we used the heparanase (N-Term)
antibody (ABIN786265), which preferentially recognizes the 65 kDa
HepL, from Aviva Systems Biology. For detection of HepA, we initially
used mAb 130 (ANT-193), which can also detect HepL, from InSight
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(Rehovot, Israel). However, due to discontinuation of this antibody, we
subsequently used HP3/17 (INS-26-0000), also from InSight (Rehovot,
Israel). RAP (03-62221) and the LRP1 neutralizing antibody (8G1) were
from American Research Products and Millipore, respectively. Antibodies
for TNFRSF10B (sc-19529), CFLAR (sc-5276) that recognizes both the
full length and short isoforms, and TRAIL (sc-6079) were obtained from
Santa Cruz Biotechnology. TNFRSF11B (PA5-19841) was from Thermo
Fisher Scientific. SST0001 was a kind gift from Sigma-Tau Research
Switzerland S.A. Antibodies for PARP (9542), caspase-3 (9662), and
cleaved caspase-3 (9664) were purchased from Cell Signalling.

2.12 Statistical analysis
Values are means 6 SE. Wherever appropriate, a non-parametric Mann–
Whitney test (for comparison between two groups) or one-way or
two-way analysis of variance (ANOVA), followed by the Tukey test (for
comparison between multiple groups) was used to determine differen-
ces between group mean values. The level of statistical significance was
set at *P< 0.05, **P< 0.01, or ***P< 0.001.

3. Results

3.1 Macrovascular and microvascular EC
secretion and reuptake of heparanase in
response toHG
The concentration and activity of heparanase are elevated in the plasma
and urine of diabetic patients.25 We have also reported that HG can stim-
ulate the secretion of both latent and active forms of heparanase from
EC.26 As EC behave differently based on their vessel type and environ-
ment,27 in this study, we compared the effects of HG on releasing HepL

and HepA from macrovascular and microvascular EC. Incubation of
RAOEC in HG promoted the release of both forms of heparanase into
the incubation medium (Figure 1A); HepA by purinergic receptor activation
and lysosomal secretion,28 and HepL by activation of the serine/threonine
protein kinase D (PKD), an enzyme involved in the fission of proteins des-
tined for the cell surface (see Supplementary material online, Figure S1).
Similar results were observed when using RHMEC (Figure 1B). The osmo-
larity control, mannitol, had no influence on heparanase release in either
cell type (data not shown). After its cellular release, HepL must be taken
back up into EC5 for maturation into HepA. Hence, heparanase reuptake
was also determined in EC subsequent to its release by HG. The decline
in RAOEC lysate HepA at 30 min was followed by a substantial recovery
at 60 min, resulting in an increase in the HepA/HepL ratio (Figure 1C, left
panel). Measurement of heparanase in the medium also demonstrated a
higher HepA/HepL ratio over time (Figure 1C, right panel), confirming the
reuptake and processing of HepL into HepA, which was eventually
secreted into the medium. Remarkably, unlike RAOEC, the reuptake and
subsequent processing of HepL into HepA was not evident in RHMEC
(Figure 1D). To substantiate that only macrovascular, but not microvascu-
lar, EC can take up HepL, we used EC incubated with recombinant myc-
tagged latent heparanase (myc-HepL). In RAOEC, there was a robust
time-dependent uptake of HepL and conversion into HepA, effects that
were not apparent for RHMEC (Figure 1E), suggesting that microvascular
EC have a limited capacity for HepL reuptake.

3.2 LRP1 is important for HepL uptake
Multiple receptors have been implicated in facilitating the uptake of
HepL, including the mannose-6-phosphate receptor, HSPG, and LDL

receptor related protein (LRP1).29 We focused on LRP1 given its pro-
miscuous role in the endocytosis of a number of different proteins.30,31

Of considerable interest was the observation that RAOEC demon-
strated a robust expression of LRP1. This expression was not apparent
in RHMEC (Figure 2A and B), and could explain the disparate abilities of
these two cell types to take up HepL. Using siRNA, we effectively
reduced LRP1 expression in RAOEC (Figure 2C bottom panel and 2D).
As a consequence, myc-HepL uptake and conversion to HepA over 24 h
was reduced in these cells compared to control (Figure 2C top panel and
2E), validating the contribution of LRP1 in HepL uptake (schematic). In
spite of LRP1 knockdown, some HepL was still detected, albeit at a level
much lower as compared to control, and likely as a consequence of non-
specific binding of HepL to the EC surface. Simple binding to the cell sur-
face exterior, with limited uptake, will fail to increase the amount of
HepA, as shown in Figure 2C. The essential role of LRP1 was further sub-
stantiated using the specific blocker RAP (an LRP1 chaperone) (Figure
2F), and an LRP1 neutralizing antibody (Figure 2G), both of which
reduced the uptake of HepL by RAOEC. Our data implicate LRP1 as an
essential contributor in the endocytosis of HepL in EC.

3.3 Extracellular uptake determines
presence of heparanase in cardiomyocytes
In the heart, EC outnumber cardiomyocytes by 3:12. Intriguingly, com-
pared to EC, there is a negligible amount of heparanase gene expression
in cardiomyocytes (Figure 3A). We reasoned that the absence of a reup-
take machinery in microvascular EC would lead to HepL, secreted from
these cells, to be taken up into cells that are in close proximity; for exam-
ple, the cardiomyocytes. Indeed, our results indicate that cardiomyocytes
contain a significant amount of heparanase protein (Figure 3B), suggesting
that HepL, taken up from neighbouring microvascular EC, is converted to
HepA in the cardiomyocyte lysosome. These results are supported by our
previous work using EC co-cultured with cardiomyocytes.10 The uptake
and lysosomal localization of myc-HepL were further confirmed using
immunofluorescence (Figure 3C), whereas the nuclear presence of HepA

was established using western blot (Figure 3D). Given the importance of
LRP1 in EC HepL uptake, we determined and confirmed its expression in
cardiomyocytes (Figure 3E and F). In addition, and analogous to RAOEC,
administration of either RAP or an LRP1 neutralizing antibody reduced
the cardiomyocyte uptake of myc-HepL (Figure 3G).

3.4 HepL modulates expression of
apoptosis-related genes in cardiomyocytes
Entry of heparanase into the nucleus to regulate histone acetylation has
been suggested as a mechanism modulating gene transcription and pro-
tection against apoptosis.11 We hypothesized that, following its uptake
into the cardiomyocyte, HepL can protect against cell death by influenc-
ing apoptosis-related genes. Using a rat apoptosis gene array in cardio-
myocytes incubated with myc-HepL we found that, among the 70 genes
that had well-defined functions and significant levels of expression, 15
out of 27 anti-apoptotic genes were up-regulated, and 29 out of 43 pro-
apoptotic genes were down-regulated (Figure 4A and B). Of the 18 genes
that were significantly different (fold change>1.5) compared to control,
15 were in favour of cell survival (six anti-apoptotic genes were up-regu-
lated; nine pro-apoptotic genes were down-regulated) (Figure 4A and B;
Supplementary material online, Table S1). Further examining selective
pro-apoptotic genes that were down-regulated, and anti-apoptotic
genes that were up-regulated, results from the microarray were con-
firmed by quantitative RT–PCR (Figure 5A and B) and western blot (Figure
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..5C and D). As SST0001, a specific heparanase inhibitor, reversed the
effects of heparanase (Figure 5E), our results suggest that heparanase can
protect against apoptotic cell death.

3.5 Contrasting effects of diabetes on
cardiomyocyte cell death signature
RAOEC incubated in HG demonstrate an increase in LRP1 expression
(see Supplementary material online, Figure 2), emphasizing the

importance of HG in mediating its expression. Using a model of acute
(4 days) diabetes, we assessed the impact of HG on whole heart and car-
diomyocyte LRP1. Hearts from acute diabetic animals demonstrated
augmented LRP1 expression (Figure 6A). This effect likely contributed to
a higher uptake of HepL and its subsequent conversion into HepA, which
resulted in a higher HepA/HepL ratio (Figure 6A). Extending this observa-
tion, cardiomyocytes isolated from animals with acute diabetes also
exhibited higher LRP1 expression and intracellular heparanase content
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..(Figure 6B). The latter effect was unrelated to changes in heparanase
gene expression (Figure 6C). It should be noted that, unlike EC, when car-
diomyocytes were exposed to HG, no change in LRP1 expression was
observed, up to 48 h after incubation (data not shown). Nevertheless,
we observed an increased uptake and lysosomal localization of hepara-
nase at 4 h in cardiomyocytes incubated in HG (see Supplementary mate

rial online, Figure 3A and B). As the inhibition of Src activation by PP2
abrogated this effect, this proto-oncogene, rather than augmented
expression of LRP1, can be implicated in HG-mediated cardiomyocyte
heparanase uptake in vitro (see Supplementary material online, Figure 3C
and D). Whether Src activation also has a contributory effect in vivo is
currently unclear because its activation by HG was detected within
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30 min in vitro, whereas diabetic animals are euthanized after 4 days of
STZ. Of considerable significance was the observation that these effects
on cardiomyocyte LRP1 and heparanase were abolished upon extending
the duration of diabetes to 6 weeks (Figure 6B), suggesting that cardio-
myocyte LRP1 expression and heparanase uptake are affected in an
opposite fashion depending on the duration of hyperglycemia. As
apoptosis-related gene (Figure 6D) and protein (Figure 6E) expression
and cleaved caspase 3 and PARP (see Supplementary material online,
Figure S4) followed a similar pattern predicated on the duration of diabe-
tes, our data suggest that chronic diabetes nullifies the favourable effects
of heparanase in cardiomyocytes.

3.6 HG and H2O2 induced cardiomyocyte
cell death is attenuated by HepL

In HG, a greater production of reactive oxygen species (ROS) together
with its disrupted detoxification causes cardiomyocyte cell death.32

Given the effects of ROS on gene expression in cells undergoing apopto-
sis, cardiomyocytes were incubated with HG in the presence or absence
of heparanase. In HG, HepL caused a significant decrease in the Bax/Bcl-2
mRNA ratio, a marker of cellular apoptosis (Figure 7A). Cleaved PARP
and caspase 3, apoptosis biomarkers that were augmented in cardiomyo-
cytes treated with HG, were also significantly decreased upon hepara-
nase addition (Figure 7B). Importantly, the HG-induced decrease in the
number of viable cardiomyocytes, as determined by Annexin V/PI stain-
ing, was improved by HepL (Figure 7C). As these beneficial effects of
HepL on apoptosis were reproduced in H2O2 induced oxidative stress
(see Supplementary material online, Figure 5), our data suggest that hep-
aranase modulates the cell death signature and is protective against car-
diomyocyte cell death.

4. Discussion

Under physiological conditions, the EC is responsible for secreting fac-
tors that support cardiomyocyte function.1–4 Heparanase is one such
example, having a unique responsibility to release cardiomyocyte cell
surface HSPG-bound lipoprotein lipase (LPL) to promote lipoprotein-
TG breakdown. The resultant fatty acid (FA) generated is then trans-
ported to the cardiomyocyte for oxidative energy generation.15 In addi-
tion to liberating HSPG-bound proteins, heparanase, either by binding to
putative cell-surface receptors, or subsequent to its internalization and
nuclear entry, has also been suggested to affect gene transcription.5,11–

14,33,34 In cancer cells, this property of secreted heparanase can induce
cell signalling and gene expression in both parent and adjacent cells,
maintaining their survival and delaying demise.11,16,17,35–37 Our data sug-
gest, for the first time, that HG promotes both the secretion of hepara-
nase from EC as well as its uptake into cardiomyocytes, initiating pro-
survival mechanisms to temper the consequences of hyperglycemia in
the diabetic heart.

In EC, HepA resides in lysosomes5 and hyperglycemia, a major compli-
cation of diabetes, is an effective stimulus for its secretion.28 We have
previously described a mechanism for this process, which includes puri-
nergic receptor activation, as well as cortical and stress actin reorganiza-
tion.28 As EC are not all created equal and exhibit differences depending
on their anatomical sites-such as arterial compared to venous architec-
ture, or macro compared to their microvascular locations27—we com-
pared the secretion of heparanase in RAOEC and RHMEC. Here we
show that HG similarly affects the secretion of HepL from both EC cell
types. Following its secretion, the EC has a capacity to reuptake HepL for

lysosomal conversion to HepA. Interestingly, although both cell types
had a similar capacity to secrete HepL in response to HG, only macro-
vascular EC were competent for its reuptake, an observation that was
confirmed using myc-HepL. A receptor that has been implicated in HepL

uptake is LRP1.38 Consistent with the differential uptake of HepL into
the two cell types, only RAOEC showed a robust expression of LRP1.
We further established that LRP1 is indispensable for HepL uptake into
RAOEC by silencing the receptor using RAP or an LRP1 neutralizing
antibody, both of which decreased the uptake of HepL. Our data imply
that the reuptake of HepL by macrovascular EC is dependent on LRP1,
an uptake mechanism that is missing in microvascular EC. At present, the
mechanism behind the differential LRP1 expression observed in macro-
vascular and microvascular ECs is unclear, but could be related to shear
stress, a stimulus that is known to change gene expression.39,40 The
absence of this reuptake machinery in microvascular EC suggests that
the HepL secreted from these cells is likely taken up, in the heart, by
proximal cells. Given the proximity of cardiomyocytes (which do not
express the heparanase gene) to microvascular EC, it is plausible to envi-
sion the exogenous uptake of EC-secreted heparanase into cardiomyo-
cytes. In support of this theory, we detected both the latent and active
forms of heparanase in isolated cardiomyocytes. This observation,
coupled with the robust expression of LRP1 in cardiomyocytes, whose
inhibition abrogates HepL uptake, indicates that transfer from exogenous
sources determines the presence of heparanase in cardiomyocytes.

One implication of cardiomyocytes acquiring HepL is its subsequent
intracellular conversion to HepA, followed by its nuclear entry to influ-
ence gene transcription. By cleaving nuclear HSPG, HepA mitigates the
suppressive effect of heparan sulphate on histone acetyltransferase to
activate gene expression.11 Using an apoptosis PCR array, which detects
both pro- and anti-apoptotic genes, we discovered that cardiomyocytes
incubated with HepL down-regulated pro-apoptotic genes (e.g.
Tnfrsf10b, Tnfsf10), whereas anti-apoptotic genes (e.g. Cflar, Tnfrsf11b)
were up-regulated. As cardiomyocytes isolated from heparanase trans-
genic mice also showed a similar trend in this gene expression pattern
(unpublished data), our data imply that HepL displayed pro-survival
effects on the cardiomyocyte by initiating a program that protects against
apoptosis. This effect of heparanase on gene expression relies on its
activity, as its inhibition by a specific heparanase inhibitor reversed its
beneficial effects on gene expression. Additionally, the changes in gene
expression induced by heparanase translated into protection against car-
diomyocyte cell death, as confirmed by the reduction in the Bax/Bcl-2
mRNA ratio, cleaved PARP and caspase 3, and Annexin V/PI staining. In
diabetes, hyperglycemia can provoke cardiomyocyte cell death and con-
tribute to cardiomyopathy.18–20,41 However, it should be noted that it is
the EC that is exposed to this metabolic alteration before the cardio-
myocyte. As such, through their release of HepL, EC, as first responders
to hyperglycemia, could pre-condition the cardiomyocyte against
impending metabolic damage. For this to work, hyperglycemia also needs
to increase HepL uptake into the cardiomyocyte. Indeed, we observed
robustly increased LRP1 expression and levels of HepA, as well as a pro-
survival gene signature in whole hearts and cardiomyocytes isolated
from acutely diabetic animals. Hyperglycemia and its associated oxidative
stress, which resembles hypoxia, and its attendant increase in HIF-1a,
could be one explanation for LRP1 induction in short-term hyperglyce-
mia. HIF-1a is a known factor that can induce LRP1 expression in cardio-
myocytes42 and in other cell types.43–46 These effects were lost
following chronic diabetes, and could contribute to the development of
cardiomyopathy in these animals. The disappearance of LRP1, with pro-
longed duration of diabetes, may be related to a further attenuation of
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circulating insulin, as islets that escaped the initial insult by STZ are later
lost due to the combined features of hyperglycemia and hyperlipidemia
(gluco-lipotoxicity). Interestingly, several studies have reported that
LRP1 is down-regulated in brains from chronically diabetic mice, an effect
associated with sustained hyperglycemia and insulin deficiency in these
animals.47,48 Confirmation of the beneficial effects of heparanase in the
prevention of diabetic cardiomyopathy requires the induction of diabe-
tes in mice that overexpress heparanase, experiments that are currently
underway in our lab.

In summary, our data reveal a novel and complex role for EC in pro-
viding functional support to subjacent cardiomyocytes by communicating
via soluble paracrine mediators. In this study, HG was a common stimu-
lus for HepL secretion from the EC, in addition to promoting its uptake
into the cardiomyocyte. The presence of heparanase in the cardiomyo-
cyte dramatically changed the expression of apoptosis-related genes,
providing an acute cardioprotective effect. Data obtained from these
studies, suggesting a novel, favourable effect of HepL in the cardiomyo-
cyte, will assist in devising novel therapeutic strategies to prevent or
delay diabetic heart disease.
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Supplementary material is available at Cardiovascular Research online.
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