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Abstract

Background—Digital tonometry is designed to noninvasively screen for endothelial dysfunction 

by the detection of impaired flow-induced reactive hyperemia in the fingertip. We determined 

whether digital reactive hyperemia correlated with risk factors for atherosclerosis in 2 groups of 

children at increased risk for endothelial dysfunction.

Methods—Fifteen obese children and 23 non-obese, dyslipidemic children, 8-21 years of age, 

were enrolled and medical histories, anthropometric measurements, carotid wall thickness by 

ultrasound and fasting blood samples for cardiovascular risk factors were obtained. The standard 

endoPAT index of digital reactive hyperemia was modified to reflect the true peak response or the 

integrated response of the entire post-occlusion period. In each group, age, sex, pubertal status, 

carotid wall thickness and multiple cardiovascular risk factors were tested as predictors of 

endothelial dysfunction.

Results—In the nonobese, dyslipidemic group, but not the obese group, both indices strongly 

correlated with height (r=0.55, P=0.007 by peak response) followed by weight, waist 

circumference and age. In both groups, neither index of reactive hyperemia significantly correlated 

with any other cardiovascular risk factor.

Conclusions—Contrary to the known age-related increase in atherosclerosis, digital reactive 

hyperemia increased with age and its correlates in nonobese, dyslipidemic children and was not 

related to other cardiovascular risk factors in either group. The reason for the lack of this 

relationship with age in obese children is unknown. The age-dependent physiology of digital 

microvascular reactivity and the endothelium-independent factors controlling the peak hyperemic 

response need further study in children with a wide age range.
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Introduction

New guidelines emphasize the likely long-term benefit of early screening and intervention in 

childhood to prevent prevalent adult chronic diseases such as diabetes and cardiovascular 

disease 1. In teenagers and adults, digital tonometry has been shown to be a simple and 

reproducible screening technique to assess the health of arteries 234. With this method, 

reactive hyperemia is induced in the fingertip after the temporary occlusion of blood flow 

with a blood pressure cuff, and proprietary software produces a reactive hyperemia index 

from the change in the pulse wave amplitude. When studied in adults, a low hyperemic 

response was shown to reflect endothelial dysfunction, defined as an imbalance between 

vasodilating and vasoconstricting factors produced by vascular endothelial cells. Major 

contributors to this imbalance are impaired nitric oxide-dependent mechanisms controlling 

vascular dilation 5. In adults, a low level of reactive hyperemia was associated with 

cardiovascular risk factors 6, coronary disease measured by angiography 7 and vascular 

events 89. In adolescents, reactive hyperemia was blunted in Type 1 diabetes 10, 11, 

obesity 12, 1314 and insulin resistance 15 and correlated in the expected direction with several 

cardiovascular risk factors14, 15.

Although digital tonometry may be useful for the assessment of the arterial health of older 

teens and adults, several recent studies that included younger, pre-pubertal normal children 

revealed a strong, positive relationship between digital reactive hyperemia and age, height or 

pubertal status 12, 16-18. This is surprising given the strongly positive relationship between 

age and atherosclerosis from childhood through adulthood 19. However, in 2 of these studies, 

obese children did not show a relationship between reactive hyperemia index and age or its 

correlates 12, 18. Recently, it has been recommended that the standard automated reactive 

hyperemia index produced by the widely used endoPAT digital tonometer be modified in 

children to reflect large age-specific differences in the time course of reactive 

hyperemia20, 21. Using this modified index, a positive correlation with age was still found in 

young, mostly lean children21. The relationship between the modified index of reactive 

hyperemia and cardiovascular risk factors has not been reported in young obese children and 

other children at high risk for endothelial dysfunction and premature cardiovascular disease.

We evaluated the reactive hyperemia of the fingertip microcirculation of obese children and 

non-obese, dyslipidemic children and young adults 8-21 years of age. In each group, the 

standard index of reactive hyperemia was modified for the pediatric age range and correlated 

with age, sex, pubertal status, carotid wall thickness, and multiple other risk factors for 

premature cardiovascular disease.

Materials and Methods

Children and young adults, 8-21 years of age, were recruited from general pediatric, 

cardiology, gastroenterology and lipid clinics and studied at the Weill Cornell Medical 
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College Clinical Translational Science Center after telephone screening. Two groups were 

evaluated: 1) Obese (body mass index >95th percentile) and 2) Non-obese, dyslipidemic 

(body mass index >5th and <95th percentiles). “Dyslipidemic” was defined as a fasting low- 

density lipoprotein cholesterol >130 mg/dL, triglycerides >150 mg/dL, high density 

lipoprotein cholesterol <40 mg/dL, and/or lipoprotein (a)> 2 fold the upper limit of normal. 

“Dyslipidemia” was not an inclusion criteria for the obese group, but 12 of 15 subjects had a 

lipid abnormality: all 12 had low HDL cholesterol (HDL-C), and 6 of these had other lipid 

abnormalities. The majority of the non-obese, dyslipidemic group (20/23) had a lean body 

mass index (<85th percentile). Exclusion criteria included systemic disorders such as 

diabetes (defined as fasting blood sugar >126 mg/dL twice) or autoimmune disease, 

medication and acute illnesses that might affect cardiovascular risk factors or the arteries. 

Current cigarette smokers or abusers of illicit drugs or alcohol were also excluded. The 

protocol was approved by the Weill Cornell Medical College Institutional Review Board.

In the morning after an overnight fast, consent and assent were obtained and then medical 

histories were reviewed. Family history of premature heart disease and stroke, diabetes, 

hypertension, hyperlipidemia, obesity and fatty liver in first-degree relatives and 

grandparents were recorded. Weight and height were measured with digital devices to the 

nearest 0.1 kg and 0.1 cm, respectively. Blood pressure and pulse were measured with an 

automated digital device and the appropriate cuff size after sitting at least 5 minutes. Body 

mass index was calculated as weight divided by height squared (kg*m-2). Body mass index z 

scores were derived from age- and sex-specific norms. Waist circumference was measured at 

the umbilicus; hip circumference at the widest point over the buttocks to the nearest 0.1 cm. 

Pubertal stage was classified as pre-pubertal (no pubertal development), pubertal (some 

development) or post-pubertal (fully developed and, in females, having regular menses) after 

questioning the parent and/or participant.

Digital tonometry was then performed following a strictly standardized procedure as 

specified by the manufacturer (EndoPAT2000, Itamar Medical, Caesarea, Israel). 

Participants were advised to clip long fingernails and fast except water for at least 12 hours 

before testing. Over-the-counter supplements were not taken at least 2 days before the visit. 

The designated study room was dimly lit, quiet and temperature-controlled. For the digital 

tonometry procedure, the participant lay comfortably supine with finger-cuffs placed on 

each index finger and attached by cables to the computer. After 5 minutes of tracing the 

baseline oscillations of blood flow, a blood pressure cuff was inflated to occlude blood flow 

into the non-dominant arm for 5 minutes. Upon release, tracings were obtained for another 5 

minutes. Computerized software with a proprietary algorithm automatically calculated the 

reactive hyperemia index from the fold increase in the pulse wave amplitude relative to 

baseline, corrected for fold changes relative to baseline in the un-occluded arm, during the 

90-150 second interval after the release of the blood pressure cuff. However, as reported by 

others 20, 21, this interval missed the true peak response in 67% of children in the obese 

group and 52% in the nonobese, dsylipidemic group and, in the latter, the time to peak was 

inversely related to age (r= -0.64, P<0.001). For this reason, the true peak response ratio 

corrected for the ratio in the control arm during the same time interval was calculated for 

each subject. In addition, the area under the curve was calculated from the peak response 
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ratios in the occluded arm corrected for changes in the control arm over the entire 5 minutes 

post-occlusion using the trapezoid rule20.

After the completion of measurements of digital reactive hyperemia, blood was sampled and 

assayed for traditional and nontraditional cardiovascular risk factors. The cholesterol, 

triglycerides, and glucose were assayed by enzymatic methods. A direct polymer polyanion 

method to measure high density lipoprotein cholesterol was performed on a Beckman 

Coulter UniCel DXC 800 (Beckman Coulter, Incorporated, Brea, California). Lipoprotein 

(a) was performed by a quantitative immunoturbidity assay. Results were not obtained for 2 

samples. Insulin was assayed with a quantitative immunoradiometric assay kit from 

Millipore (St. Charles, Missouri). The intra-assay and inter-assay coefficients of variation 

are less than 4.4% and 6.0%, respectively, and the range is 3.125 – 200.0 μU/ml. Fasting 

insulin resistance was calculated from the homeostasis model assessment from glucose and 

insulin values 22. The % hemoglobin A1C was determined with a quantitative monoclonal 

antibody agglutination reaction kit from Siemens Healthcare Diagnostics, Incorporated. 

(Tarrytown, New York). Homocysteine and high sensitivity C reactive protein were 

measured with quantitative sandwich enzyme immunoassay kits from ALPCO Diagnostics 

(Salem, New Hampshire) and R&D systems (Minneapolis, Minnesota), respectively. The 

intra-assay and inter-assay coefficients of variation are less than 8.3% and 10%, respectively, 

and the measurement ranges are 2 – 50 mol/L and 0.78 – 50 ng/ml, respectively. The serum 

concentrations of interleukin-6 and tumor necrosis factor alpha were determined using 

quantitative electrochemiluminescent assay kits from Meso Scale Discovery (Gaithersburg, 

Maryland). The intra-assay and inter-assay coefficients of variation are less than 4.4% and 

2.8%, respectively, and the measurement ranges are from 0.2 pg/ml to 2,500 pg/ml.

On the same morning, the carotid intima-media thickness was measured by a specialized 

ultrasound technologist using an ultrasound scanner (Acuson Sequoia 512; Siemens Medical 

Solutions, Malvern, Pennsylvania) and a high-frequency 15L8-MHz linear-array transducer 

by following a predetermined standardized scanning protocol. The participants were studied 

in the supine position with the head turned slightly away from the side that was examined. 

Images of the arterial wall were obtained from the posterior walls of both common carotid 

arteries 1 cm below the carotid bulb (bifurcation) during three complete and independent 

cardiac cycles and digitally stored. An automated computerized edge detection software 

package (version 1.0, 2002; Siemens Medical Solutions, Malvern, Pennsylvania) was used to 

determine the carotid wall thickness in the frames of each cycle that depicted the narrowest 

and widest vessel diameters. The mean and maximum wall thicknesses were calculated for 

both carotid arteries. All examinations were digitally stored and analyzed by the same 

researcher (A.K.). The coefficient of variation for wall thickness measurements of the 

carotid artery using the same device and scanning protocol was previously calculated to be 

1.3%23.

Data Analysis

All results are expressed as mean ± standard deviation except for the peak response, which is 

presented as the median and interquartile range. The group means were compared with 

student's unpaired t-test or Wilcoxon rank sum/Kruskal-Wallis tests for continuous variables 
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or Fisher's exact test for categorical variables. Univariate analysis evaluated the correlations 

between either the peak response or area under the curve and cardiovascular risk variables 

for each group. The distribution of the peak response was skewed, and values were 

logarithmically transformed before correlation analysis. Variables that were significantly 

correlated with the outcomes were then included in multiple regression analysis. An 

association that yielded a P value <0.05 was considered significant. Values less than the 

detection limit were entered as the detection limit/2. Statistical analysis was carried out with 

JMP Pro 11 (version 11.0.0, SAS Institute Incorporated, Cary North Carolina).

Results

A total of 41 subjects were enrolled, but 2 were excluded because of the use of metformin 

and one with a missing reactive hyperemia index value due to noisy signal from excessive 

movement. Table 1 shows the subject characteristics of the 38 obese and non-obese, 

dyslipidemic subjects included in this report. There were no significant differences between 

groups for age, gender and racial/ethnic backgrounds (37% Caucasian, 34% Hispanic, 13% 

African American, 11% Asian, 5% other). As expected, the obese group had significantly 

higher levels of triglycerides, lower high density lipoprotein cholesterol, and lower low 

density lipoprotein cholesterol than the non-obese group. The majority of the obese group 

(12/15) had low levels of high density lipoprotein cholesterol; the majority of the nonobese, 

dyslipidemic subjects had high levels of low density lipoprotein cholesterol (12/23, 10 with 

the genetic lipid disorder, familial hypercholesterolemia, and low density lipoprotein 

cholesterol ≥ 190 mg/dL). The study groups also differed by pubertal status, with a greater 

percentage of the obese group either pubertal or post-pubertal (87% vs. 69%). Markers of 

insulin resistance (insulin levels and homeostasis model assessment score) and inflammation 

(high sensitivity C reactive protein and interleukin-6) were elevated in the obese group 

compared to nonobese, dyslipidemic group. The mean values for carotid intima-media 

thickness did not differ between groups and were one standard deviation higher than 

published values (0.38 ± 0.04 mm) in a large number of lean and obese children, 5-20 years 

of age, evaluated with the same ultrasound device and scanning protocol24. Age was not a 

correlate in this series.

Digital reactive hyperemia expressed as the peak response or area under the curve was 

significantly lower in the obese group compared to the nonobese, dyslipidemic group (Table 

1). Age-specific normal values based on the true peak response have not been established for 

children; however, our median values for peak response correspond closely to values 

previously reported in children with narrower age range (12-18 years): 2.15 for lean children 

with normal lipid levels and 1.50 for severely obese children 14. Thirty-three% of the obese 

group and 9% of the nonobese, dyslipidemic group had peak responses lower than the 

abnormal cut-point of 1.35 proposed for adults2. In the nonobese, dyslipidemic group, the 

subset with LDL cholesterol levels >190 mg/dL and at extremely high risk of premature 

coronary artery disease did not significantly differ in the 2 indices of microvascular function 

from the other nonobese, dyslipidemic subjects (1.95 ± 0.53 vs 2.11 ± 0.62, P=0.51 for peak 

response). This was true despite this subset having a significantly younger age distribution 

that would lower the reactive hyperemia index.
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Correlation analysis failed to reveal significant relations in either group between peak 

response or area under the curve and sex, body mass index z scores, waist/hip circumference 

ratio, pubertal stage, blood pressure, family history of diabetes or premature cardiovascular 

disease, or the biochemical cardiovascular risk factors listed in Table 1. However, Table 2 

and Figure 1 illustrate the strong, significant, positive relationship between peak response 

and height in the nonobese, dyslipidemic group (bottom panel) but not the obese group (top 

panel). A similar significant positive correlation was found in the nonobese, dyslipidemic 

group for the area under the curve. Less strong positive relationships existed between the 2 

indices and age, weight, and waist circumference that are correlates of height. In stepwise 

regression analysis with height, age, weight and waist circumference as the predictive 

variables, height was the only significant determinant of both the peak response and area 

under the curve. There were no significant correlations between carotid wall thickness and 

indices of reactive hyperemia, height and its correlates, or any of the other tested variables.

Discussion

Endothelial dysfunction occurs early in atherosclerosis and develops in both the large 

conduit arteries and the microvasculature. Digital tonometry is an attractive noninvasive 

screening method with the potential to detect endothelial dysfunction early in life and target 

those who need intensive therapy. However, in our study of obese and non-obese, 

dyslipidemic children with a wide age span, two indices of digital reactive hyperemia 

adapted for the pediatric age group did not correlate with any risk marker of endothelial 

dysfunction and vascular disease. Instead, in the group of non-obese, dyslipidemic children, 

indices of reactive hyperemia most strongly correlated with height in a positive direction that 

is unexpected given the expected progression in atherosclerosis with growth in children with 

hyperlipidemia18. The positive relationships between digital reactive hyperemia and the 

correlates of growth confirm similar findings by others in normal children16-18 and extend it 

to lean, dyslipidemic children. The lack of this relationship in the obese group was also 

reported by others who studied obese children with a wide age distribution using the 

standard reactive hyperemia index12, 18.

The increase in digital reactive hyperemia with growth has been attributed to an increase in 

nitric oxide production during puberty, possibly due to increased estrogen and 

dehydroepiandrosterone sulfate levels17. Another possibility is that endothelium-

independent factors that contribute to the reactive hyperemia index vary with childhood 

development. In adults, an impaired reactive hyperemic response of the digital circulation is 

associated with impaired dilation of the coronary arteries after the infusion of acetylcholine2 

to stimulate production of nitric oxide. Such studies of the coronaries have not been 

performed in young children, but, flow-induced vasodilation of the brachial artery is blunted 

in young children with cardiovascular risk factors and not confounded by age 25. However, 

in adults, the agreement between digital reactive hyperemia and the flow-induced 

vasodilation of the brachial artery has been inconsistent 726. This may be because only 50% 

of digital reactive hyperemia could be attributed to nitric oxide when assessed in adults after 

the infusion of a nitrous oxide synthase inhibitor 5. The relative balance between 

vasodilators that increase levels of nitric oxide and vasoconstrictors such as the renin-

aldosterone system27, prostaglandins 28 or sympathetic tone 29 may change with normal 
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childhood development. The complex anatomy of the fingertip circulation that includes 

arterio-venous anastomoses 30 may also differ in young children. For these reasons, digital 

reactive hyperemia in children may reflect many growth-dependent factors other than those 

affecting endothelial function. Our results suggest that these factors and their association 

with growth may further differ in obese children. Because of these differences, further 

modifications may be needed in the endoPAT procedure and proprietary algorithms when 

used in the younger age group.

The strengths of our study include the extensive cardiovascular risk profiles on participants, 

the carefully standardized measurements of digital reactive hyperemia and carotid intima-

media thickness, and the inclusion of children with severe lipid abnormalities and diverse 

racial/ethnic backgrounds. However, a larger number of participants of all pubertal stages 

that includes lean children without lipid abnormalities would clarify the true relationships 

between digital reactive hyperemia and correlates of growth. A professional examination of 

pubertal stage instead of self-assessment would also improve the accuracy of the analysis.

In conclusion, digital tonometry using methodology developed in adults appears to be useful 

to stratify at-risk older post-pubertal adolescents and adults, but the reactive hyperemic 

response by this technique is strongly confounded by correlates of growth in younger non-

obese children. Whether the same holds true for young obese children requires further study. 

The physiological changes underlying this “juvenile micro-vascular response” 16, if it exists, 

may be relevant to vascular homeostasis and blood pressure control in general. Additional 

validation and a better understanding of the endothelium-independent factors controlling the 

digital microcirculation are needed before the endoPAT technique can be successfully used 

in childhood.
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Figure 1. 
Relationships between height and reactive hyperemia, expressed as the log-transformed 

reactive hyperemia index derived from true peak response.

Top panel= 15 obese (r=0.12, P=0.675); Bottom panel= 23 nonobese, dyslipidemic (r=0.55, 

P=0.007)
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Table 1
Subject characteristics in obese and nonobese, dyslipidemic children

Group 1 Group 2 P value

Number 15 23

Male Gender (%) 6 (40) 14 (61) 0.320

Age (yr) 13 ± 3 14 ± 4 0.295

Height (cm) 160 ± 13 159 ± 17 0.759

BMI (%) 98 ± 1 59 ± 26 <0.001

BMI z score 2.1 ± 0.3 0.3 ± 0.8 <0.001

Waist circ (cm) 94 ± 14 71 ± 10 <0.001

Systolic BP 112 ± 9 109 ± 8 0.411

Pre-pubertal (%) 2 (13) 7 (30)

Pubertal (%) 9 (60) 4 (17) 0.026

Post-pubertal (%) 4 (27) 12 (52)

Family Hx CVD (%) 6 (40) 8 (35) 1.000

Family Hx DM (%) 7 (47) 13 (57) 0.741

Total Chol (mmol/L) 4.03 ± 0.96 5.77 ± 2.15 0.005

LDL-C (mmol/L) 2.46 ± 0.62 4.19 ± 2.15 0.005

HDL-C (mmol/L) 0.96 ± 0.18 1.22 ± 0.28 0.004

TG (mmol/L) 1.31 ± 0.82 0.80 ± 0.41 0.016

Lp(a) (mg/dL) 33 ± 40 41 ± 29 0.475

Glucose (mmol/L) 4.39 ± 0.33 4.61 ± 0.44 0.302

Insulin (μU/mL) 202 ± 104 104 ± 42 0.001

HbA1C (%) 5.9 ± 1.3 5.4 ± 0.3 0.096

HOMA-IR 5.4 ± 2.5 3.2 ± 1.6 0.002

Homocysteine (μmol/L) 7.6 ± 2.0 7.9 ± 1.3 0.525

25-OH vitamin D (nmol/L) 52 ± 10 69 ± 41 0.119

hsCRP (mg/L) 2.44 ± 1.63 1.08 ± 2.41 0.064

IL-6 (pg/mL) 1.59 ± 0.90 0.63 ± 0.47 <0.001

TNF (pg/mL) 4.85 ± 4.36 5.02 ± 2.06 0.867

Carotid IMT (mm) 0.42 ± 0.04 0.42 ± 0.05 0.799

Peak response 1.52 [1.22-1.97] 2.04 [1.61-2.46] 0.038

Area under the curve (AUC) 19 ± 4 24 ± 6 0.010
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