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Summary

Tumor-secreted extracellular vesicles (EVs) are critical mediators of intercellular communication 

between tumor cells and stromal cells in local and distant microenvironments. Accordingly, EVs 

play an essential role in both primary tumor growth and metastatic evolution. EVs orchestrate 

multiple systemic pathophysiological processes, such as coagulation, vascular leakiness, and 

reprogramming of stromal recipient cells to support pre-metastatic niche formation and subsequent 

metastasis. Clinically, EVs may be biomarkers and novel therapeutic targets for cancer 

progression, particularly for predicting and preventing future metastatic development.
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Introduction

Tumor-secreted EVs are emerging as critical messengers in tumor progression and 

metastasis. In this review we summarize the metastatic role of various EVs: microvesicles, 

exosomes, ectosomes, oncosomes, cytoplast etc (Colombo et al., 2014; Di Vizio et al., 2012; 

Headley et al., 2016; Thery et al., 2009; van der Pol et al., 2012). Exosomes are EVs 30-150 

nm in diameter derived from the multivesicular endosome pathway, but the term is used in 

many studies for small EVs recovered by various protocols which do not actually 

discriminate endosome-derived from plasma membrane-derived EVs. We will thus use the 

term as chosen by the authors of the articles described, not necessarily inferring an 

exclusively endosomal or plasma membrane origin of the EVs. EVs contain bioactive 

molecules, such as nucleic acids (DNA, mRNA, microRNA, and other non-coding RNAs), 

proteins (receptors, transcription factors, enzymes, extracellular matrix proteins), and lipids 

that can redirect the function of a recipient cell (Raposo and Stoorvogel, 2013). Cancer cell-

derived EVs promote angiogenesis and coagulation, modulate the immune system, and 

remodel surrounding parenchymal tissue, which together support tumor progression 

(Ciardiello et al., 2016; Peinado et al., 2011; Ratajczak et al., 2006; van der Pol et al., 2012). 

Clinically, circulating exosomes and microvesicles isolated from cancer patients have been 

associated with metastasis or relapse, and therefore could serve as important diagnostic and 

prognostic markers as well as therapeutic targets (Lener et al., 2015).

Physiological role of EVs: from development onwards

In 1967, Peter Wolf first demonstrated a role for platelet-secreted vesicles during blood 

coagulation (Wolf, 1967). In 1980, Trams et al. uncovered the essential role that EVs play in 

intercellular transport of trophic substances or nutrients (Trams et al., 1981). In 1983, two 

groups described the role of secretory vesicles in reticulocyte maturation through recycling 

of transferrin and its receptor (Harding et al., 1983; Johnstone et al., 1987; Pan and 

Johnstone, 1983). Pioneering studies by Raposo et al. demonstrated the importance of EVs 

derived from B cells in antigen presentation and T cell stimulation (Raposo et al., 1996). 

Since then, many studies have further demonstrated that EVs derived from professional 

antigen presenting cells, such as DCs, express class I, class II MHC, adhesion, and co-

stimulatory molecules that can directly activate CD4+ and CD8+ T cells (De Toro et al., 

2015; Zitvogel et al., 1998).

Pregnancy is characterized by an immune tolerant microenvironment in order to protect the 

fetus, and secretion of vesicles with immunosuppressant activities is increased in pregnant 

women as compared with non-pregnant ones. Several proteins, such as human ligands of the 

activating NK cell receptor NKG2D, FAS-ligand and TRAIL, secreted in placental EVs 

seem to be responsible for the generation of an immune-privileged microenvironment 

(Hedlund et al., 2009; Pap et al., 2008; Stenqvist et al., 2013). EV-mediated bidirectional 

communication between the embryo and uterine endometrium is critical for successful 

implantation of the embryo. Characterization of these EVs revealed several key mRNAs 

related to pluripotency, such as Oct4, Sox2, Klf4, c-Myc and Nanog (Saadeldin et al., 2014). 

Additionally, it has been shown that trophoblast cells shed EVs, and extracellular matrix 

metalloproteinase inducer (EMMPRIN) released in EVs may regulate angiogenesis, tissue 
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remodeling and growth of the placenta (Atay et al., 2011; Sidhu et al., 2004). Recent studies 

of EVs in Drosophila have also demonstrated that EVs may help establish the long range 

gradients of Wnt and Hedgehog required for proper anatomic axes and limb development 

(McGough & Vincent, 2016). To date, most of the studies published have been performed in 

vitro (Saadeldin et al., 2015), and more in vivo data are needed to understand the potential 

implications of EVs during embryonic development and how these EVs relate to the 

characterization and molecular pathways of tumor-derived EVs.

Role of EVs in promoting survival and growth of the primary tumor

During primary tumor formation, tumor cells require active communication with 

neighboring cells and their local microenvironment. During the last decade, the critical role 

of EVs in cell-cell communication between tumor cells and surrounding cells in the primary 

tumor microenvironment has been highlighted (Figure 1). EVs are thought to participate in 

multiple steps during invasive processes and perhaps contribute to early steps involved in 

metastasis.

Primary tumor subpopulations can share oncogenic molecules through EVs

Tumor-secreted vesicles can transfer oncogenic molecules between tumor cells within the 

primary tumor. Al-Nedawi et al. demonstrated that glioma cells expressing epidermal growth 

factor receptor variant III (EGFRvIII) secrete microvesicles harboring EGFRvIII and 

transfer it to EGFRvIII-negative cancer cells in the same primary tumor. This mutation is 

seen in 25-64% of patients with glioblastoma and despite not binding any known ligand, 

EGFRvIII signals constitutively at low levels (Gan et al., 2013). Upon EV-mediated uptake 

by recipient cells, EGFRvIII activates the mitogen-activated protein kinase (MAPK) and 

protein kinase B (PKB/Akt) signaling pathways, thereby inducing morphological 

transformation and accelerating cancer growth (Al-Nedawi et al., 2008).

Tumor-secreted EVs communicate with neighboring non-tumor cells

Tumor EVs exert complex effects on neighboring stromal cells such as endothelial cells and 

fibroblasts. Glioblastoma-derived microvesicles containing mRNA, miRNA, and angiogenic 

proteins are taken up by recipient cells and promote primary tumor growth as well as 

endothelial cell proliferation (Skog et al., 2008). Pancreatic cancer-derived exosomes 

expressing tetraspanin 8 recruit proteins and mRNA cargo that activate angiogenesis-related 

gene expression in endothelial cells (Nazarenko et al., 2010). Tumor-derived exosomes 

containing TGF-β convert fibroblasts into myofibroblasts, contributing to vascularization, 

tumor growth and local invasion (De Wever et al., 2008; Webber et al., 2010). Breast cancer-

derived exosomes also promote a myofibroblastic phenotype in adipose tissue-derived 

mesenchymal stem cells, resulting in increased expression of the tumor-promoting factors 

TGF-β, VEGF, SDF-1 and CCL5 (Cho et al., 2012).

Conversely, exosomes secreted by tumor stroma can also influence tumor progression. 

Breast cancer-associated fibroblasts (CAFs) secrete exosomes that have been shown to 

promote tumor motility, invasion, and dissemination of breast cancer cells through the Wnt-

planar cell polarity (Wnt-PCP) signaling pathway (Luga et al., 2012). Therefore, exosomes 
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mediate bi-directional communication between tumor cells and their environment and are 

central effectors of a feed-forward signaling loop that shapes the ever-evolving tumor 

microenvironment. However, the specific mechanisms through which healthy stromal cells 

are triggered to release exosomes that promote the malignant behavior of cancer cells remain 

to be determined.

In the past decade, much emphasis has been placed on the potential role of miRNAs 

packaged within EVs in regulating cell-cell interactions. Exosomes released by mast cells 

containing both mRNA and miRNA can be transferred to recipient cells and regulate gene 

expression (Valadi et al., 2007). Moreover, transfer of miRNAs specifically targeting PTEN 

expression from astrocyte-derived exosomes to invading tumor cells in the brain 

microenvironment promotes establishment of brain metastasis, although other autocrine and 

paracrine signaling may also cooperate during tumor progression (Zhang et al., 2015). 

However, the significance of this horizontal transfer of miRNAs for the global miRNA 

activity of a target cell remains unclear (Squadrito et al., 2014). Squadrito et al. detected 

transfer of miRNA activity via exosomes but the contribution to target gene repression was 

limited, suggesting exosomal miRNAs are degraded within recipient cell lysosomes 

(Squadrito et al., 2014). While these studies were performed in endothelial cells, other 

microenvironments, such as primary tumors, may facilitate increased miRNA transfer 

among cells (Baer et al., 2013). Recently, it was suggested that cancer exosomes, on average, 

contained only a single miRNA per exosome (Chevillet et al., 2014). However, 

stoichiometry of specific miRNAs may vary by tumor types and therefore the number and 

distribution of miRNAs secreted in other models may differ from these studies (Chevillet et 

al., 2014).

Interactions between metastatic cells and their microenvironment via miRNA-containing 

EVs have also been demonstrated (Zhang et al., 2015). Tumor-derived exosomes, but not 

those released by normal cells, contain key enzymes involved in miRNA biogenesis, which 

enabled cell-independent miRNA biogenesis within exosomes. Inhibition of target mRNA 

expression (e.g., PTEN and HOXD10) by transferred mature miRNAs can lead to cancer 

development in originally non-cancerous cells (Melo et al., 2014). Large oncosomes, 

atypically large EVs with diameter of 1-10 μM secreted by amoeboid tumor cells, from 

RWPE-2 prostate cancer cells are enriched in miR-1227 and may enhance the migration of 

fibroblasts (Morello et al., 2013). Similarly, comparing exosomes from prostate cancer stem 

cells with that of exosomes from the bulk tumor demonstrated a differential miRNA content 

that may contribute to local invasion and pre-metastatic niche formation through fibroblast 

migration (Sanchez et al., 2016). Highly abundant exosomal miRNAs, such as miR-100-5p, 

miR-21-5p and miR-139-5p, increased metalloproteinase (MMPs) −2, −9 and −13, RANKL 

expression and fibroblast migration upon transfection into prostate fibroblasts (Sanchez et 

al., 2016).

miRNAs within EVs from noncancerous cells within the tumor microenvironment have also 

demonstrated an ability to influence tumor growth and drug resistance. Metastatic breast 

cancer cells demonstrated a dormant phenotype when co-cultured with human bone marrow-

derived mesenchymal stem cells (BM-MSCs) secreting exosomes containing miR-23b. In 

recipient breast cancer cells, miR-23b decreased expression of MARCKS, a cell cycle and 
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motility regulator, suggesting that exosomal transfer of miRNAs from the bone marrow may 

promote tumor dormancy in a metastatic niche (Ono et al., 2014). Interestingly, exosomal 

miR-21 transfer from cancer-associated adipocytes and fibroblasts to ovarian cancer cells 

suppresses apoptosis and confers chemoresistance by binding to APAF1 (Au Yeung et al., 

2016). Most of the studies regarding the relevance of miRNA in cancer biology are 

performed in vitro, limiting our interpretation of the data. However, these numerous studies 

support an active role for shuttling of miRNAs between tumor cells and their 

microenvironment during tumor progression and metastasis.

Local tumor invasion is promoted by EV-mediated ECM remodeling

During cancer progression, the cellular and molecular milieu of stromal cells, and their 

extracellular proteins and enzymes are dynamically changing due to the evolving influence 

of tumor-derived EVs. Extracellular matrix (ECM)-remodeling is generally thought to 

promote the invasive phenotype of tumors. Secreted tumor exosomes carrying the ECM 

molecule fibronectin promote nascent adhesion assembly and increase cell motility (Sung et 

al., 2015). Proteomic analysis of tumor EVs revealed that annexins, α3 integrin, and 

ADAM10 were enriched in exosomes compared to ectosomes, and correlated with local 

invasion and cell migration, (Keerthikumar et al., 2015). Large oncosomes also harbor 

abundant bioactive molecules involved in local invasion (e.g., ARF6, Cav-1, 

metalloproteinases MMP9, and MMP2) and their abundance also correlated with tumor 

progression (Di Vizio et al., 2012). Sidhu et al. reported that microvesicles shed by tumor 

cells deliver EMMPRIN to fibroblasts, triggering the production of MMPs and enabling 

tumor invasion and metastasis (Sidhu et al., 2004). Endothelial cells stimulated by VEGF 

and FGF-2 release EVs containing MMPs that initiate the proteolysis necessary for tumor 

invasion and uninhibited angiogenesis (Taraboletti et al., 2002). Moreover, Hendrix et al. 

demonstrated that, Rab27b-mediated exocytic release of HSP90 exosomes from metastatic 

breast cancer cells activates MMP2, leading to degradation of ECM components, release of 

growth factors, and promotion of cancer cell invasion (Hendrix et al., 2010).

Association between hypoxic microenvironment and pro-angiogenic tumor-EVs

Among the factors that shape the primary tumor microenvironment, hypoxia plays a central 

role by promoting survival and propagation of tumor cells through modulation of the stroma 

(Finger and Giaccia, 2010). During hypoxia, breast cancer cells exhibit an increase in 

exosome release that may be regulated by hypoxia-inducible factor 1-α (HIF1-α) (King et 

al., 2012). Exosomes derived from highly malignant glioblastoma multiforme (GBM) cells 

growing in hypoxic conditions induce angiogenesis by stimulating cytokine and growth 

factor secretion by endothelial cells, thereby promoting pericyte migration (Kucharzewska et 

al., 2013). In addition, GBM patient-derived exosomes are enriched in multiple hypoxia-

regulated proteins involved in GBM pathogenesis. These observations suggest that the 

hypoxic microenvironment of the primary tumor may significantly impact exosome cargo 

and function, exerting local and systemic effects that warrant further investigation.

Tumor-secreted EVs may play a role in EMT

Tumor EVs also may participate in epithelial to mesenchymal transition (EMT). HRAS 

overexpression in Madin-Darby canine kidney epithelial cells promotes the packaging of 
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mesenchymal markers (e.g., vimentin and MMPs) in exosomes, potentially inducing EMT in 

recipient cells (Tauro et al., 2013). Although not functionally validated, there is an 

association between exosomes derived from mesenchymal cells and induction of EMT in 

epithelial cells (Tauro et al., 2013). Similarly, EVs isolated from the metastatic breast cancer 

cell line MDA-MB-231 stimulated with linoleic acid induce an EMT-like process in 

epithelial MCF10A cells (Galindo-Hernandez et al., 2014). Elucidating the role of EVs in 

the regulation of cell polarity and the initiation of EMT in vivo requires intensive future 

investigation (Lakkaraju and Rodriguez-Boulan, 2008).

Tumor EVs path through the extracellular compartment

Tumor-shed EVs circulate and can be isolated from nearly all body fluids, including blood, 

saliva and urine (Boukouris and Mathivanan, 2015; Ciardiello et al., 2016). Accumulating 

evidence indicates that circulating EVs mediate the “reprogramming” of multiple cell types 

at distant sites and influence diverse processes, such as coagulation, the immune response, 

and the establishment of a pre-metastatic niche (PMN).

Sticky vesicles: Tumor EVs promote coagulation

It is generally accepted that development of metastasis correlates with the risk of thrombotic 

complications, a leading cause of mortality in cancer patients (Stein et al., 2006). 

Coagulation and platelet accumulation at cancer sites prevent recognition of cancer cells by 

the immune system and promote cancer cell migration and dissemination (Sierko and 

Wojtukiewicz, 2007). Microvesicles involved in coagulation can originate from platelets, 

inflammatory cells, and cancer cells (Rak, 2010). Elevated circulating levels of 

microvesicles containing tissue factor (TF) and other coagulation-promoting factors are 

observed in cancer patients and correlate with increased risk of thrombosis (Hron et al., 

2007; Rak, 2010; Tilley et al., 2008). In vivo, TF-containing EVs released by monocytes 

bind to activated platelets and promote the generation of arterial thrombi (Falati et al., 2003). 

Interestingly, KRAS and p53 mutational status correlates with increased levels of TF in 

vesicles secreted by human colorectal carcinoma cells (Yu et al., 2005). Likewise, pancreatic 

cancer cell-derived microvesicles containing active TF and PSGL-1 were shown to 

accumulate at sites of injury, decreasing bleeding upon injection into living mice (Thomas et 

al., 2009). Together, these data suggest that tumor-secreted EVs have a potential pro-

thrombotic effect (Thomas et al., 2009) and support the relevance of coagulation in cancer 

progression and metastasis (Yu et al., 2008).

Tumor EVs demonstrate a complex impact on the immune system

The involvement of EVs in immune regulation was first proposed in early studies showing 

that immune cell-derived exosomes carry major histocompatibility complex (MHC) class I, 

MHC class II, and T cell co-stimulatory molecules (Raposo et al., 1996; Zitvogel et al., 

1998). Since then, the role of EVs in immune regulation has been intensively studied and 

several mechanisms have been proposed for the release of exosomes carrying 

immunomodulatory molecules by various immune cells upon infection, which can influence 

primary and secondary immune responses (Admyre et al., 2007; Bhatnagar et al., 2007).

Becker et al. Page 6

Cancer Cell. Author manuscript; available in PMC 2017 December 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In addition to EVs derived from lymphocytes (Raposo et al., 1996), macrophages (Bhatnagar 

et al., 2007) and DCs (Zitvogel et al., 1998), non-immune cell-derived EVs, such as those 

released by epithelial and tumor cells, also express MHC class I molecules and/or tumor 

antigens (e.g., Mart-1/MelanA) and can modulate immune responses (Wolfers et al., 2001). 

While tumor EVs appear to have mostly immunosuppressive effects that support tumor 

progression and metastasis, there is evidence of EVs promoting both pro-tumor and anti-

tumor immunity, suggesting that the relationship between tumor EVs and the immune 

system is complex and may be largely dependent on cell type and EV cargo. The immune 

modulatory activity imposed by tumor exosomes can either involve direct signaling to 

immune cells or transfer of tumor antigens to DCs for antigen presentation to T cells to 

induce primary cytotoxic immune responses (Zitvogel et al., 1998). Chen et al. showed that 

under conditions of heat shock, mouse B cell lymphomas release exosomes carrying 

immunogenic molecules such as MHCs, CD40, CD86, RANTES and IL-1b. These tumor 

exosomes, in turn, induce the maturation of DCs leading to the activation of CD4+ and CD8+ 

T cell responses against the tumor (Chen et al., 2006).

Based on recent findings, several mechanisms have been proposed by which tumor-derived 

EVs mediate immunosuppression essential to tumor progression. For instance, breakdown of 

the subscapular sinus macrophage barrier in lymph nodes by chemotherapy and 

immunotherapy allows melanoma EVs to interact with B lymphocytes and initiate tumor-

promoting humoral immunity (Pucci et al., 2016). The presence of Fas ligand or tumor 

necrosis factor–related apoptosis-inducing ligand (TRAIL) on tumor microvesicles induces 

apoptosis in Jurkat and CD8+ T cells (Abusamra et al., 2005; Kim et al., 2005). Similarly, 

tumor-secreted exosomes suppress the immunological activity of natural killer cells by 

inhibiting their proliferation and compromising their cytolytic activity (Liu et al., 2006).

Suppression of the immune system through an increase in myeloid-derived suppressor cells 

(MDSC) has been correlated with tumor progression and poor survival (Gabrilovich and 

Nagaraj, 2009). Although the mechanism by which tumor exosomes influence MDSC 

differentiation remains controversial, Chalmin et al. proposed that MDSC activation involves 

Hsp72 expressed on tumor exosomes that promotes the activation of signal transducer and 

activator of transcription 3 (STAT3) in a Toll-like receptor 2 (TLR2/MyD88)-dependent 

manner (Chalmin et al., 2010). Controversially, Xiang et al. proposed that only in vivo-

derived tumor exosomes can mediate TLR2-dependent expansion of MDSCs, whereas in 

vitro-derived tumor exosomes regulate MDSC differentiation independently of TLR2 

signaling (Xiang et al., 2010).

Local interactions between tumors and innate immune cells ultimately determine whether 

the cancer can be contained locally or escape and invade both local and distant sites (Benito-

Martin et al., 2015). Breast cancer cell-derived exosomes stimulate the activation of tumor-

associated macrophages (TAMs), resulting in NF-κB activation and secretion of pro-

inflammatory cytokines (Chow et al., 2014). Tumor EVs were shown to transfer miR-150 to 

TAMs and trigger key angiogenic factors, such as VEGF, leading to augmented 

tumorigenicity (Liu et al., 2013). Breast carcinoma cell-derived exosomes increased 

mobilization of neutrophils and tumor growth through an unclear mechanism (Bobrie et al., 

2012). On the other hand, inhibition of TGF-β leads to the recruitment of CD11b+/Ly6G+ 
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tumor-associated neutrophils (TAN) with potent cytotoxic effect on tumor cells (Fridlender 

et al., 2009). These data suggest the local interaction between tumor cells and the immune 

system is extremely dynamic and requires further investigation to understand the balance of 

pro-tumor and anti-tumor immune responses.

Tumor EV's promote vascular leakiness and facilitate circulating tumor cell arrival to 
distant sites

Vascular leakiness is considered a hallmark of PMN formation (Huang et al., 2009; Psaila 

and Lyden, 2009). Melanoma-secreted vesicles induce vascular leakiness, inflammation and 

recruitment of bone marrow progenitor cells through upregulation of factors such as S100a8, 

S100a9 and TNF-α (Peinado et al., 2012). Furthermore, human breast cancer-derived 

exosomes promote vascular leakiness in the lung by upregulating a subset of S100 proteins 

and activating Src kinase signaling (Hoshino et al., 2015). Metastatic breast cancer cells that 

secrete miR-105-containing exosomes cause the destruction of tight junction protein ZO1 in 

recipient endothelial cells thereby increasing vascular permeability and susceptibility for 

metastatic invasion (Zhou et al., 2014). Taken together these data suggest that tumor-

secreted exosomes first permeabilize vessels by delivering specific cargo to endothelial cells 

and then diffuse through this compromised barrier to fuse directly with parenchymal cells 

within PMNs favoring metastatic colonization. However, more work is required to determine 

the exact mechanism by which EVs influence the integrity of the endothelial barrier as well 

as the specificity of this targeting within vasculature of different organs.

Tumor EVs create new sites hospitable for tumor growth: The PMN

The PMN is defined by the development of an environment distant from the primary tumor 

that is suitable for the survival and outgrowth of incoming circulating tumor cells. The 

concept of the PMN has developed from an early observation made by Stephen Paget in 

1889 that different tumor types tend to metastasize to different organs, suggesting that the 

microenvironment plays a role in dictating metastatic invasion (Paget, 1989; Peinado et al., 

2011).

The role of tumor-secreted factors and EVs in PMN initiation and evolution has recently 

gained greater recognition. In 2009, Jung et al. found that the combined effects of soluble 

factors and exosomes derived from CD44 variant isoform (CD44v)-positive pancreatic 

cancer cells mediate the formation of a PMN within the lymph node and lung (Jung et al., 

2009). CD105-positive microvesicles released from human renal cancer stem cells promote 

angiogenesis and the formation of PMNs in the lungs through a defined a subset of pro-

angiogenic mRNAs and microRNAs (Grange et al., 2011). Tumor exosomal miR-494 and 

miR-542p were transferred to lymph node stromal cells and lung fibroblasts, leading to 

cadherin-17 down-regulation and matrix metalloproteinase up-regulation (MMP2, MMP3, 

and MMP14) (Rana et al., 2013). Recently, the alteration of glucose metabolism by transfer 

of mir-122 from breast cancer-derived microvesicles to stromal cells has been shown to play 

an important role in the preparation of the PMN (Fong et al., 2015). By preventing glucose 

uptake in stromal cells via miR-122-mediated inhibition of pyruvate kinase, breast cancer 

cells create a PMN with greater glucose availability for their own utilization (Fong et al., 

2015).
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TLR3 activation in lung epithelial cells by tumor-exosomal non-coding snRNA enhances 

expression of S100A8, A100A9, MMP9, Bv8 and fibronectin which, in turn, contributes to 

lung PMN formation (Liu et al., 2016). Upregulation of TLR3 promotes secretion of 

chemokines that mobilize neutrophils (CD45+CD11b+Ly6G+Ly6Cint cKit+ VEGFR1+), as 

well as macrophages (F4/80+) and monocytes (VEGFR1+Ly6G−Ly6C+) that further support 

PMN formation (Liu et al., 2016). Interestingly, tumor-secreted exosomes have their own 

protein “zip-codes”, namely specific integrin profiles, that address them to specific target 

organs, thus determining metastatic organotropism (Hoshino et al., 2015). Tumor exosomes 

deliver messages which upregulate pro-inflammatory S100 molecules in resident cells of 

target organs and induce molecular and cellular changes that promote PMN development 

(Hoshino et al., 2015). Imaging of tumor-secreted EVs in metastatic organs has indeed 

demonstrated that the interactions of EVs with target cells are highly dynamic in PMNs and 

support their role in eliciting phenotypic alterations within stromal cells at future sites of 

metastasis (Suetsugu et al., 2013; Zomer et al., 2015).

Recruitment of different cell types, such as fibroblasts, endothelial cells, macrophages and 

various populations of bone marrow-derived cells (BMDCs) to the PMN is promoted by 

tumor-secreted exosomes (Costa-Silva et al., 2015; Peinado et al., 2012). Exosomes secreted 

from pancreatic tumor cells execute the stepwise progression of PMN formation in the liver 

(Figure 2) (Costa-Silva et al., 2015). Specifically, Kupffer cells, the resident macrophages in 

the liver, are the primary cell type that is activated following uptake of exosomes derived 

from pancreatic cancer cells (Costa-Silva et al., 2015). Pancreatic tumor-derived exosomes 

loaded with macrophage inhibitory factor (MIF) promote TGF-β secretion in Kupffer cells, 

stimulating neighboring hepatic stellate cells to secrete fibronectin, ultimately leading to the 

recruitment of BMDCs which completes PMN formation (Costa-Silva et al., 2015). 

Melanoma-secreted exosomes foster PMN formation in lung via reprogramming of BMDCs 

leading to the recruitment and activation of cells in the lung (Peinado et al., 2012). 

Mechanistically, transfer of MET from melanoma exosomes to c-Kit+ Tie2+ bone marrow 

progenitor cells results in a pro-vasculogenic behavior (Peinado et al., 2012). More recently, 

exosome-secreted MET has been suggested to promote hepatocellular carcinoma 

progression promoting the mobilization of normal hepatocytes, which may facilitate the 

protrusive activity of HCC cells through liver parenchyma during tumor metastasis (He et 

al., 2015). Evidence has demonstrated that gastrointestinal stromal tumors (GIST) release 

exosomes containing the oncogenic protein tyrosine kinase KIT and triggers the conversion 

of progenitor smooth muscle cells to tumor-promoting cells that promote tumor invasion 

(Atay et al., 2014).

Melanoma-derived exosomes promote cancer cell recruitment, extracellular matrix 

deposition, and vascular proliferation in the lymph nodes (Hood et al., 2011). Several genes 

related to cell recruitment (Stabilin 1, Ephrin receptor β4 and αv integrin), extracellular 

matrix (Mapk14, uPA, Laminin 5, Col 18α1, G-α13) and vascular growth factors (TNF-α, 

TNF-αip2, VEGF-B, HIF-1α, Thbs1) were upregulated by tumor-secreted exosomes in 

lymph nodes (Hood et al., 2011). Exosomes isolated from highly metastatic colorectal 

cancer promote metastasis by recruiting CXCR4-expressing stromal cells, establishing of a 

favorable metastatic microenvironment and reinforcing metastasis of low metastatic models 

(Wang et al., 2015).
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Overall, these data support the role of tumor-derived EVs in both early and late PMN 

formation, and likely suggests their essential contribution to metastatic niche development 

upon the arrival of tumor cells as well as to the progression from micrometastatic to 

macrometastatic disease.

Clinical Potential of EVs as Biomarkers and Therapeutics

EVs as Biomarkers

Circulating tumor-derived EVs have emerged as promising biomarkers to monitor cancer 

progression and as novel targets for future anticancer therapies. Although many unanswered 

questions and methodological challenges remain, this rapidly advancing field will ultimately 

provide important insights into the relevance of EVs in the clinical setting.

Finding proteins unique to tumor-derived EVs has been the subject of intense research. One 

such tumor-derived EV biomarker is the epithelial cell adhesion molecule (EpCAM) (Runz 

et al., 2007). EpCAM positive exosomes increase during ovarian cancer progression and are 

significantly higher in patients with ovarian cancer than in women with benign ovarian 

disease and healthy control subjects (Taylor and Gercel-Taylor, 2008). Exosomal integrins 

(as opposed to tumor-expressed integrins) could serve as biomarkers to predict the likelihood 

of cancer as well as metastatic propensity for specific organ sites (Hoshino et al., 2015). 

Specific exosomal integrin combinations seem to dictate organ-specific metastasis. For 

instance, α6β4 and α6β1 exosomal integrins are associated with lung metastasis, αvβ5 

exosomal integrin with liver metastasis, and αvβ3 exosomal integrin with brain metastasis 

models (Hoshino et al., 2015). Circulating exosomes from patients with Stage IV melanoma 

contain a protein signature consisting of the melanoma-specific protein tyrosinase-related 

protein-2 (TYRP2), very late antigen 4 (VLA-4), HSP70, and MET oncoprotein (Peinado et 

al., 2012). Furthermore, exosomes from plasma of melanoma patients are enriched in 

caveolin-1 compared to the healthy controls, rendering caveolin-1 positive exosomes as 

another potential melanoma biomarker (Logozzi et al., 2009). Serum-circulating exosomes 

from melanoma patients have been demonstrated to contain S100B and Melanoma 

Inhibitory Activity (MIA) (Alegre et al., 2016). High levels of exosomes carrying the 

melanoma marker Melan-A and characteristic miRNA signatures could be isolated from 

liver perfusates of patients with liver metastases from uveal melanoma (Eldh et al., 2014). 

Exosomal glypican-1 has also been proposed as a diagnostic and prognostic marker for 

pancreatic cancer disease (Melo et al., 2015). In patients with pancreatic ductal 

adenocarcinoma (PDAC), the quantity of the protein MIF within exosomes may serve as a 

prognostic marker for liver metastasis. Circulating exosomes from stage I PDAC patients 

who later developed liver metastasis exhibited enhanced levels of MIF compared to patients 

whose cancer did not progress and to healthy control subjects (Costa-Silva et al., 2015).

Exosomal genetic material also shows potential as a diagnostic marker of cancer and 

metastasis. Tumor specific mRNA isolated from microvesicles from serum and tissue of 

glioblastoma patients reflects the mutational status of EGFRvIII (Pelloski et al., 2007; Skog 

et al., 2008). Microvesicles also carry single-stranded DNA (ssDNA) that recapitulates 

genomic aberrations such as oncogene amplifications (i.e., c-Myc), in the primary tumor 

(Balaj et al., 2011). In the metastatic setting, a higher level of double-stranded DNA 
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(dsDNA) in exosomes was found in aggressive melanoma as compared to melanoma with 

low metastatic potential or non-metastatic melanoma (Thakur et al., 2014). Importantly, 

exosomal dsDNA reflects the oncogenic mutational status of the respective parental cancer 

cell (Kahlert et al., 2014; Melo et al., 2015; Thakur et al., 2014), highlighting the utility of 

exosomal dsDNA as valuable biomarker for the detection of oncogenic mutations in the 

clinical setting.

MiRNAs within circulating EVs have diagnostic and/or prognostic potential for many cancer 

types. In patient serum, exosomal miR-17-92a was correlated with increased colon cancer 

recurrence and exosomal miR-19a was associated with a poorer prognosis (Matsumura et al., 

2015). Serum exosomal levels of seven miRNAs were found significantly higher in primary 

colorectal cancer patients compared to healthy controls. These miRNA levels decreased after 

surgical resection of tumor, suggesting their potential tumor origin (Ogata-Kawata et al., 

2014). Several miRNAs are differentially expressed in circulating tumor exosomes from 

prostate cancer, compared to controls (Bryant et al., 2012; Li et al., 2016). Exosomal 

miR-141 and miR-375 have been associated with metastatic prostate cancer (Bryant et al., 

2012; Li et al., 2016). Another study associated higher levels of miR-1290 and miR-375 

within serum exosomes with decreased survival in patients with castration-resistant tumors 

(Huang et al., 2015). Exosomal miR-107 and miR-574-3p concentrations were higher in the 

urine of men with prostate cancer compared with controls, suggesting EV- miRNAs could 

serve as a biomarker in other fluids (Bryant et al., 2012). In melanoma, lower levels of 

miR-125b in serum circulating exosomes were observed in advanced melanoma (Alegre et 

al., 2014). When comparing exosomes from patients with metastatic sporadic melanoma to 

patients with familial melanoma patients or unaffected control subjects, miR-17, miR-19a, 

miR-21, miR-126, and miR-149 were found to be expressed at higher levels (Pfeffer et al., 

2015). Exosomal miR-21 has been correlated with esophageal cancer recurrence and distant 

metastasis (Liao et al., 2016). One of the hurdles faced by analyzing both EV and non-EV 

derived miRNAs is that they could originate from either tumor or non-tumor cells and 

therefore their origin is unknown. Thus, translational studies will be crucial to determine the 

clinical utility of miRNAs-containing EVs as tumor biomarkers.

EVs for Therapy: Novel Mode of Drug Delivery and New Drug Targets

The properties of cancer exosomes in modulating the immune system and transforming 

healthy cells toward a malignant phenotype illustrate the clinical potential of exosomes in 

immunotherapy, therapeutic targeting and drug delivery. Activation of anti-tumor specific T 

cell responses by DC exosomes has been proposed to play a key role in suppression of 

established tumor growth (Zitvogel et al., 1998). The strategy of loading DC-derived 

exosomes with MHC/tumor antigen has been used for phase I clinical trials in patients with 

advanced melanoma (MAGE-A3, melanoma-associated antigen) (Escudier et al., 2005) and 

non-small cell lung carcinomas (MAGE-A3, -A4, and –A10) (Morse et al., 2005). These two 

studies showed the feasibility of DC exosome production and a tolerable safety profile for 

DC exosome therapy. In a subsequent phase II clinical trial in patients with advanced non-

small cell lung carcinomas, interferon-γ-maturated DC exosome therapy failed to show a 

durable clinical response, but increased NK cell activity was observed in some patients with 
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low initial NKp30 expression, correlating with longer progression-free survival (Besse et al., 

2016).

EV biogenesis serves as a key strategy for EV targeting in cancer therapy (Azmi et al., 2013; 

Bobrie et al., 2012; Iero et al., 2008). Several Rab proteins have been shown to be involved 

in the selective packaging and production of exosomes in both normal cells and tumor cells 

(Ostrowski et al., 2010; Rak, 2010; Raposo and Stoorvogel, 2013). Rab27a knockdown in 

highly metastatic melanoma cells led to significant reduction in exosome production, 

primary tumor size, and metastasis (Peinado et al., 2012). Thus, determining the profile of 

Rab proteins responsible for exosome release in cancer cells may lead to unique therapeutic 

opportunities. In addition to targeting EV production, targeting their specific oncogenic 

cargo (i.e MIF, MET) and transmembrane integrins may result in reduced metastasis.

Recently, tumor microvesicles have been implicated in promoting resistance to 

chemotherapy. Transfer of miR-100, miR-222 and miR-30a miRNAs from the exosomes 

derived from adriamycin- and docetaxel-resistant MCF-7 breast cancer cells to drug 

sensitive MCF-7 cells increased the drug resistance of the previously sensitive cell line, 

although this requires further validation to rule out induction of miRNA expression in drug 

sensitive cells (Chen et al., 2014). Boelens and colleagues demonstrated that exosomal RNA 

from stromal cells can be transferred to breast cancer cells, activating NOTCH3 as well as 

STAT1-dependent antiviral signaling in these cancer cell resulting in the expansion of cancer 

cells resistant to chemotherapy and radiation (Boelens et al., 2014). In addition to transfer of 

chemoresistance-associated biomolecules to recipient cells, another mechanism associated 

with chemoresistance is EV-mediated expulsion/sequestration of chemotherapeutic agents 

from cancer cells. To this effect, enhanced release of exosomes has been associated with 

increased cisplatin resistance in melanoma (Federici et al., 2014) as well as ovarian 

carcinoma cells (Safaei et al., 2005).

Based on their surface protein composition, exosomes may be directed to specific tissues 

(Costa-Silva et al., 2015; Hoshino et al., 2015). These properties make them promising 

nanovehicles for the biodelivery of therapeutic RNAs, proteins, and other agents. In fact, an 

in vivo proof of principle study showed that neuron-targeted exosomes loaded with BACE1 

siRNAs significantly reduced BACE mRNA (60%) and protein (62%), specifically in 

neurons (Alvarez-Erviti et al., 2011). Similarly, exosomes loaded with artificial siRNA 

against MAPK were able to efficiently knockdown the MAPK1 gene upon their delivery into 

monocytes and lymphocytes in vitro (Wahlgren et al., 2012). A significant reduction of the 

RAD51 transcript was observed in human embryonic kidney 293 cells (HEK293) and 

HCT116 colon cancer cell lines upon their incubation with exosomes carrying siRNA 

against RAD51 by electroporation (Shtam et al., 2013). These examples of cargo 

manipulation suggest that exosomes may prove beneficial as drug delivery vehicles.

Future directions

Currently, there are few markers (i.e., TSG101, syntenin, and simultaneous expression of 

three tetraspanins [CD9, CD63 and CD81]) to distinguish exosomes from other EVs, such as 

microvesicles or apoptotic bodies (Kowal et al., 2016). Furthermore, no reliable methods are 
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available to characterize exosomes secreted by normal tissues. Most studies to date are based 

on heterogeneous populations of EVs which leaves open the question of whether different 

EV subpopulations play unique biological roles in cancer progression. Do these various 

sized particles have distinct tumor cell origins (i.e., tumor stem cells)? Do heterogeneous 

particles target specific cell types and help facilitate formation of the PMN and metastatic 

microenvironment through different yet complementary mechanisms?

Further analysis of molecules, such as integrins, that define EV subpopulations involved in 

exosome uptake in metastatic organs is needed. Tumor exosomes exert their systemic effects 

partly through transfer of exosome cargo, resulting in the ‘reprogramming’ of stromal cells, 

immune cells and BMDCs. Is the underlying mechanism of reprogramming a genetic or 

epigenetic process? Are the effects permanent or transient? Interestingly, multiple 

observations suggest that exosomes may lead to the transfer of complete phenotypic 

features, resulting in a phenocopy of the tumor (Balaj et al., 2011; Costa-Silva et al., 2015; 

Hoshino et al., 2015; Peinado et al., 2012; Zomer et al., 2015). Advances in biomedical 

engineering would advance our understanding of exosome biology by providing answers to 

questions related to categorization, nomenclature, and function of EVs.

Currently available studies are based on exosome injection or in vitro models, but it is 

essential to analyze the role of exosomes in vivo through the generation of genetic models in 

which exosome dynamics could be monitored over time. How is the rate of exosome 

secretion changing as the primary tumor grows? Are exosomes complementary or redundant 

to soluble factors? Recently, development of a biotinylated EV-Gaussia luciferase reporter 

enabled in vivo tracking of IV-administered EVs (Lai et al., 2014). Furthermore, in vivo 

imaging of fluorescent and bioluminescent EV membrane reporters revealed that both EV 

uptake and translation of EV-delivered mRNAs in cancer cells occurred at a rapid rate (Lai 

et al., 2015). Ridder et al. have developed a Cre-lox-based model of tracking EV-mediated 

RNA transfer from tumor to MDSCs in the tumor microenvironment in vivo and showed 

immunosuppressive phenotype and miRNA profiles in response to EV uptake (Ridder et al., 

2015). Strikingly, Van Rheenen et al. have developed an intravital model to visualize 

spontaneous exosome transfer where highly metastatic cell-derived exosomes were received 

by less metastatic tumor cells and distant stromal cells (Zomer et al., 2015). Pittet and 

colleagues have developed additional in vivo labeling models for tracking tumor exosome 

dissemination via lymphatics (Pucci et al., 2016). In vivo models will serve to confirm the 

multiple roles of tumor exosomes during the metastatic process and potentially identify 

novel functions of exosomes in tumor biology.

By transferring content from tumor cells to non-cancerous cells, tumor EVs potently 

influence recipient cell behavior and promote the development of an environment hospitable 

toward cancer growth, invasion, and metastasis. Decoding how cancer-derived EVs mediate 

inter-cellular communication and harnessing these mechanisms for diagnostic and 

therapeutic purposes holds great promise to further understand cancer's widely systemic 

effects on the body and to improve the standard of care for cancer patients.
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Figure 1. Role of tumor-derived EVs on the primary tumor microenvironment
Tumor EVs cause fibroblasts to differentiate into myofibroblasts, which release MMPs and 

lead to extracellular matrix remodeling. The breakdown of ECM leads to the release of 

growth factors embedded in the ECM and promotes invasion through parenchymal cells. 

Tumor EVs activate tumor-associated macrophages to secrete G-CSF, VEGF, IL-6, and 

TNFα, which together promote angiogenesis and create an inflammatory niche. Tumor EVs 

affect immune system homeostasis mostly by triggering immunosuppressive changes that 

protect the tumor. Tumor EVs activate and expand Tregs and MDSCs, which inhibit CD8+ T-
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cell mediated targeting of the tumor. Furthermore, tumor EVs have been shown to express 

FasL and TRAIL on their membrane and directly induce apoptosis of CD8+ T-cells. Tumor 

EVs increase neutrophil mobilization and to be associated with increased tumor progression. 

Natural killer cells, which play an important role in antitumor immunity, can be either 

activated or suppressed by tumor EVs, depending on the tumor model studied and the EV 

cargo. Dendritic cells can be activated by the tumor-derived antigens delivered via tumor 

EVs and enforce a CD8+-mediated anti-tumor response. As the tumor grows, it develops 

metabolic demands that outgrow its blood supply and thus becomes increasingly hypoxic. In 

response to low oxygen concentrations, the tumor secrets angiogenic factors and EVs that 

promote blood vessel recruitment. EVs derived from the primary tumor can stimulate 

epithelial cells to release factors involved in EMT that trigger the loss of tumor cell adhesion 

(Fibronectin and Vimentin), ECM remodeling, and angiogenesis (MMPs), which together 

promote the release of tumor cells into the circulation and their spread to distant sites.
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Figure 2. Tumor-derived EVs promote pre-metastatic niche formation and metastasis
EVs play a distinct role at multiple steps in PMN formation at distant sites of future 

metastasis. Depending on the cancer cell of origin, EVs can circulate through both blood and 

lymphatic vessels to reach their destination for PMN initiation. Through an unknown 

mechanism, tumor EVs can induce vascular leakiness and interact with the resident cells of 

distant organs. Depending on their membrane composition, such as specific exosomal 

integrin combinations (exosomal α6β4 and α6β1 integrins associated with lung metastasis / 

exosomal αvβ5 integrin with liver metastasis), EVs are targeted to particular resident cell 
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types within a particular organ. Upon their uptake by the recipient cells, EVs can induce the 

expression of several inflammatory mediators (e.g. S100 family proteins, TGFβ, IL-6, IL-8 

and TNFα), resulting in the activation and remodeling of stromal cells and the recruitment 

of BMDCs to the PMN, which are critical for tumor progression. In pancreatic cancer, 

migration inhibitory factor (MIF)-containing exosomes are taken up by Kupffer cells 

promoting TGFβ secretion. TGFβ, in turn, then induces fibronectin secretion by hepatic 

stellate cells. The increase in fibronectin ultimately leads to the recruitment of BMDC's, 

which are critical for establishment of the PMN. In melanoma, exosomes can educate 

BMDCs through the transfer of MET and help establish a PMN in the lung. Melanoma-

derived exosomes can also prepare lymph node PMN formation, by promoting recruitment 

of melanoma cells, extracellular matrix deposition, and vascular proliferation in the lymph 

nodes.
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