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Abstract

Genotype imputation is a key component of genetic association studies, where it increases power, 

facilitates meta-analysis, and aids interpretation of signals. Genotype imputation is 

computationally demanding and, with current tools, typically requires access to a high-

performance computing cluster and to a reference panel of sequenced genomes. Here we describe 

improvements to imputation machinery that reduce computational requirements by more than an 

order of magnitude with no loss of accuracy in comparison to standard imputation tools. We also 

describe a new web-based service for imputation that facilitates access to new reference panels and 

greatly improves user experience and productivity.

After study samples are genotyped on an array, typically assaying 300,000–1,000,000 

single-nucleotide variants (SNVs), imputation finds haplotype segments that are shared by 

study individuals and a reference panel of sequenced genomes, such as those from the 1000 

Genomes Project1 or recent population sequencing studies2–4. Imputation accurately assigns 

genotypes at untyped markers, improving genome coverage, facilitating comparison and 

combination of studies that use different marker panels, increasing power to detect genetic 

association, and guiding fine-mapping5,6.

Imputation accuracy increases with the number of haplotypes in the reference panel of 

sequenced genomes7–9, particularly for rare (minor allele frequency (MAF) < 0.5%) and 

low-frequency (0.5% < MAF < 5%) variants. These rare and low-frequency variants include 

most loss-of-function alleles10 and other high-impact variants that are key for genotype-

based callback and focused studies of natural knockout alleles11–13.

Large reference panels, such as the one developed by the Haplotype Reference 

Consortium14 (HRC), extend accurate imputation to variants with frequencies of 0.1–0.5% 

or less and already include thousands of putative loss-of-function alleles. The HRC panel 

combines sequence data across >32,000 individuals from >20 medical sequencing studies 

and is cumbersome to access directly as a result of participant privacy protections in 

individual studies and the large volumes of data involved. Imputing 1,000 genome-wide 

association study (GWAS) samples using the HRC reference set requires ~2 years on a 

single CPU, or 1 week on a 100-core cluster, using minimac2 (ref. 8).

Here we present new algorithms for genotype imputation that increase computational 

efficiency with no loss of accuracy by leveraging local similarities between sequenced 

haplotypes. We also present a new web-based imputation service that greatly simplifies 
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analysis, eliminates the need for cumbersome data access agreements, and so allows users to 

devote their time to other essential tasks.

The methods described here provide an extremely efficient strategy for genotype imputation. 

Together, they ensure accurate imputation, while reducing computational requirements and 

user time. Our implementation supports reference panels composed of hundreds of 

thousands of haplotypes and is freely available, enabling others to build on our work.

To illustrate the potential benefits of these improved methods for imputation, we first used 

computer simulation (Online Methods and Supplementary Table 1). We found substantial 

gains in imputation accuracy between imputed genotypes and the true simulated genotypes 

as panel size increased. For variants with MAF of 0.01–0.1%, average imputation r2 values 

increased from 0.41 to 0.79 when reference panels grew from n = 1,000 to n = 20,000 

individuals, a near doubling in effective sample size for association (which scales as r2)15.

Imputation into current large GWAS data sets, which total millions of samples, can quickly 

and cost-efficiently identify carriers of many interesting rare and low-frequency variants. For 

example, with a reference panel of 20,000 individuals, our simulations estimate the 

probability that individuals identified as rare allele carriers through imputation actually carry 

the allele is ~84% (MAF of 0.01–0.1%; Supplementary Table 1). If desired, genotypes for 

imputation-identified carriers can be validated through Sanger sequencing or other targeted 

assays before callback phenotyping or other follow-up analyses.

To enable many researchers to use larger reference panels and so benefit from this potential 

for improved power and targeted analyses for carriers of rare variants, we devised a new, 

faster imputation algorithm. This algorithm is based on a ‘state space reduction’ of the 

hidden Markov models (HMMs) describing haplotype sharing; it exploits similarities among 

haplotypes in small genomic segments to reduce the effective number of states over which 

the HMM iterates (Fig. 1 and Online Methods). Similar ideas are a fundamental part of 

haplotype sharing analyses and have been used in Beagle16, SHAPEIT17,18, and other 

genomics tools19–21 to improve computational performance. Whereas methods such as 

SHAPEIT are designed to work best in settings where there are few missing genotypes, our 

own algorithm works well with data where most genotypes are missing and need to be 

imputed. Our model divides the genome into consecutive blocks and iterates only over the 

unique haplotypes in each genomic block. It then uses a reversible mapping function that 

can reconstruct exactly the state space used by minimac9 and IMPUTE2 (ref. 22). Two 

important features of the algorithm are that it yields exactly the same results as more 

cumbersome analyses in the original state space and that it remains computationally efficient 

in the presence of missing data (which is essential for imputation). We implemented this 

method in the C++ package minimac3.

We compared run time and memory requirements for minimac3 against those for minimac2 

(ref. 8), Beagle 4.1 (ref. 16), and IMPUTE2 (ref. 9) by carrying out genotype imputation into 

100 individuals of European ancestry using reference panels of 1,091 to 32,390 sequenced 

individuals (Table 1 and Online Methods). For minimac2 and IMPUTE2, memory and run 

time increased linearly with panel size. The newest Beagle 4.1 was substantially faster, and 
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its run time increased slightly less than linearly with panel size. minimac3 consistently 

outperformed all alternatives: increasing panel size ~30-fold from 1,091 to 32,390 samples 

increased memory requirements sixfold and run time eightfold. For this largest panel, 

minimac3 was twice as fast as Beagle 4.1, 29 times faster than minimac2, and 30 times 

faster than IMPUTE2 and reduced memory usage by 72%, 94%, and 97%, respectively 

(Table 1).

In this comparison, all programs were run on a single thread although, because imputation is 

trivially parallelizable, all can benefit from additional CPUs (for example, by imputing 

multiple chromosomes, chromosome segments, or samples in a single or multiple parallel 

invocations of the program). A comparison of multiple-threaded run times for Beagle 4.1 

and minimac3 is presented in Supplementary Table 2.

We compared imputation quality across the four methods by calculating the squared 

correlation coefficient (r2) between imputed allele dosages and masked genotypes (Table 1 
and Online Methods). minimac, minimac2, and minimac3 are based on the same 

mathematical model and hence gave identical results. minimac3 slightly outperformed 

Beagle 4.1 and IMPUTE2, particularly for rare variants (MAF = 0.0004–0.5%) where, with 

3,489 reference samples, IMPUTE2 attained r2 = 53.3%, Beagle 4.1 attained r2 = 54.3%, 

and minimac3 attained r2 = 55.5%. All methods demonstrated improved imputation quality 

with increasing panel size. For example, for minimac3, the imputation quality of rare 

variants increased from r2 = 45.3% to r2 = 77.2% when panel size increased from 1,092 to 

32,390.

The complexity of the minimac3 algorithm depends on the number of unique haplotypes in 

each genomic segment and the total number of such segments in the reference panel (Fig. 1). 

As a result, minimac3 scales better than linearly over our range of reference panel sizes. For 

example, increasing the simulated reference panel from 1,000 to 20,000 individuals (20-

fold) increased memory and CPU requirements sevenfold (Online Methods). In real data, 

increasing the panel size from 1,092 (1000 Genomes Project Phase 1, ~27 million variants) 

to ~33,000 (HRC, ~40 million variants) (>40-fold increase in number of genotypes) 

increased run time only tenfold (5.3 h versus 51.3 h). When we ran the same analysis on the 

same set of markers (~22 million variants common to both panels), the run time increased 

8.5-fold (4.15 h versus 31.1 h).

Our state space reduction also provides an efficient way to represent haplotype data, 

substantially reducing file size relative to the now standard VCF format. The relative 

efficiency of the representation reflects population genetics: for example, data from 

European-ancestry samples can be compressed more efficiently than data from African-

ancestry samples (Supplementary Table 3). We adapted the VCF format to allow for these 

efficiencies, resulting in the m3vcf format that stores only one copy of each unique 

haplotype in a genomic segment (Online Methods). For the HRC data set with >60,000 

haplotypes, uncompressed m3vcf files are ~97% smaller than uncompressed VCF files; 

gzip-compressed m3vcf files are ~86% smaller than gzip-compressed VCF files. Our 

minimac3 distribution includes simple utilities to manipulate m3vcf files.
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Continued computational improvements in imputation tools are necessary for imputation to 

remain practical as millions of samples are genotyped and reference panels increase in size 

to tens of thousands of sequenced genomes. An additional burden of imputation and other 

genomics tools is the requirement for users to master and manage large high-performance 

computing clusters and associated tools.

To reduce these burdens, we incorporated minimac3 in a cloud-based imputation server, 

which combines minimac3, the MapReduce paradigm23, and a user-friendly interface. 

Behind the scenes, the server divides reference and target data sets into small chromosome 

segments that are processed in parallel. Results are collected and pasted together so that the 

process is seamless to end-users. The server uses Apache Hadoop MapReduce for low-level 

tasks, such as parallelization and distribution of jobs, and the Cloudgene24 workflow system 

to drive the user interface (Supplementary Fig. 1). It automatically performs quality checks 

(verifying strand orientation, allele labeling, file integrity, MAF distribution, and per-sample 

and per-variant missingness, among others; Supplementary Fig. 2). If no major problems 

are encountered, samples are phased (if this has not been done already) and then imputed 

using one of the currently available reference panels: HRC14, 1000 Genomes Project Phase 1 

(refs. 25,26) or Phase 3 (ref. 1), HapMap Phase 2 (ref. 27), or African-ancestry genomes 

from CAAPA. Data can be uploaded directly or by specifying a remote secure file transfer 

protocol (sftp) location. Data transfers are encrypted, and input data are deleted after 

processing. We require each user to agree not to try to identify the underlying panel. As 

imputation proceeds, users are provided feedback on progress, summary reports, e-mail 

notification, and a download link for the imputed data. Results are encrypted with a one-time 

password available only to the user and deleted after 7 d (Online Methods). More than 4.5 

million genomes have been processed by >1,200 users since the service was announced at 

the American Society of Human Genetics annual meeting in October 2014.

Here we have described improved computational methods, resources, and interfaces to 

enable researchers to rapidly impute large numbers of samples, without first becoming 

experts in the intricacies of imputation software and cluster job management, and to 

conveniently access large reference panels of sequenced individuals, such as those from the 

HRC. To make imputation highly scalable, we reengineered the core algorithms in our 

minimac imputation engine. Our state space reduction provides a computationally efficient 

solution for genotype imputation with no loss in imputation accuracy and enables the use of 

large reference panels. Our cloud-based interface simplifies analysis steps and can be 

adapted to other analysis needs, such as linkage-disequilibrium-aware genotype calling from 

low-coverage sequence data. This trend, where cutting-edge software, large data, 

computational power, and a friendly interface are packaged together, will become 

increasingly important as genomic data sets increase in size and complexity.

ONLINE METHODS

Simulations

We simulated haplotypes for a three-population coalescent model using the program ms8. 

We chose a demographic model consistent with patterns of diversity observed in European-

ancestry samples28.
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Imputation method with state space reduction

Here we describe the state space reduction that uses the similarity between haplotypes in 

small genomic segments to reduce computational complexity. We recommend first reading a 

description of the original minimac algorithm9. Consider a reference panel with H 
haplotypes and a genomic segment bounded by markers P and Q. Let U ≤ H be the number 

of distinct haplotypes in the block.

Label the original haplotypes as X1, X2, ..., XH and the distinct unique haplotypes as Y1, 

Y2, ..., YU. For example, in Figure 1, block B bounded by markers P = 1 and Q = 6 has U = 

3 distinct haplotypes. Let  and  denote the left probabilities for the original states 

and reduced states at marker k (ref. 29). Assuming we know LP(X1), ..., LP(XH), equation 

(1) allows us to obtain  for each distinct haplotype.

(1)

In this reduced state space, we modify the Baum–Welch forward equations30 to obtain 

recursively for k = P + 1, P + 2, ...., Q.

(2)

In equation (2), θk denotes the template switch probability between markers k and k+1 

(analogous to a recombination fraction), Sk+1 is the genotype in the study sample, P(Sk+1|Yi) 

is the genotype emission probability, and Ni is the number of haplotypes matching Yi in the 

original state space (for example, in Fig. 1, N1 = 4, N2 = 2, and N3 = 2). Once we obtain 

 values for all the reduced states, we use them to calculate  at the final block 

boundary, enabling us to transition between blocks. To accomplish this, we split probability 

 into two parts,  and , where  denotes the left probability at 

marker Q when no template switches occur between markers P and Q and  denotes 

the probability when at least one switch occurs. This leads to equation (3) (where i is such 

that Yi = Xj)

(3)

Similar equations can be derived for the right probabilities Rk(.) and . Once we have 

the left and right probabilities for all the reduced states, the posterior probabilities for a 

template including any allele of interest at marker k can be calculated within the reduced 

state space as
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(4)

Computational complexity and optimal allocation

Methods that perform phasing and imputation simultaneously (for example, MaCH29 and 

IMPUTE31) have a computational cost proportional to the number of study samples (N), the 

number of genotyped markers in the reference panel (M), and the square of the number of 

reference haplotypes (H2), or in total O(NMH2). In the context of prephasing, as in minimac 

and IMPUTE2 (ref. 9), this computational cost is reduced to O(NMH).

For imputation using mimimac3, we break up a chromosome into K consecutive segments. 

If Ui denotes the number of unique haplotypes and Mi denotes the number of markers in 

segment i, then complexity is

The second term accounts for the complexity of transitions between blocks, which occur in 

the original state space. Thus, although very short segments could reduce the number of 

unique haplotypes per segment (Ui) and complexity measured by the first term, such 

segments would also increase the total number of segments (K) and complexity measured by 

the second term. An optimal allocation of genomic regions must balance these two goals.

We implement a recursive dynamic programming algorithm to find the optimal allocation of 

the genomic segments, as a brute force approach is not feasible (~2M–1 alternatives). We 

assume that the optimal complexity of imputation until marker i < M is denoted by C(i) and 

calculate C(M) recursively as

(5)

In equation (5), C(i) is the optimal cost for imputation from marker 1 to marker i and U(i,M) 

is the number of unique haplotypes between marker i and marker M (inclusive). This 

expression requires at most M2 comparisons; this number can be further reduced because we 

do not need to consider large segments, as the unique number of haplotypes in large 

segments will be close to the total number of haplotypes.
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Parameter estimation under reduced state space

We implemented both the expectation–maximization algorithm and Monte Carlo Markov 

chain (MCMC) sampling to estimate θ for adjacent marker pairs and ε for each marker. θ is 

the template switching rate, which reflects a combination of population recombination rates 

and relatedness between the samples. ε is the error parameter, which reflects a combination 

of genotyping error, gene conversion events, and recurrent mutation (for details, see refs. 

9,29).

Comparison of minimac2, minimac3, IMPUTE2, and Beagle 4.1

We evaluated the performance of minimac3 (v1.0.14) in comparison to the three most 

commonly used imputation tools: minimac2 (v2014.9.15), IMPUTE2 (v2.3.1), and Beagle 

4.1 (v22Feb16) (Table 1). We combined chromosome 20 data across multiple whole-

genome sequencing studies to generate large reference panels. We compared results for the 

following seven reference panels: (i) 1000G Phase 1: 1,092 individuals from 1000 Genomes 

Project Phase 1 (refs. 25,26), (ii) AMD: 2,074 individuals sequenced for study of age-related 

macular degeneration32, (iii) 1000G Phase 3: 2,504 individuals from 1000 Genomes Project 

Phase 3 (ref. 1), (iv) SardiNIA: 3,489 individuals from the SardiNIA project4, (v) 

COMBINED: 9,341 individuals combined together from AMD, SARDINIA, the BRIDGE 

study of bipolar disorder (L.J.S., unpublished data) (2,464 samples), and the Minnesota 

Twins study33 (1,314 samples), (vi) Mega: 11,845 individuals obtained by merging 

COMBINED and G1KP3, and (vii) HRC v1.1: 32,390 individuals from HRC14. To mimic a 

GWAS, we selected 25 unrelated individuals each from AMD, SardiNIA, BRIDGE Study, 

and Minnesota Twins and masked all variants except those typed on the Illumina Duo 1M 

chip (resulting in ~20,000 genotyped variants for chromosome 20). To evaluate imputation 

accuracy, we estimated the squared Pearson correlation coefficient (r2) between the imputed 

genotype probabilities and genotype calls from sequence data. We evaluated imputation 

accuracy at the 227,925 variants that were present in all the respective data sets and had 

MAF of at least 0.00005 in all contributing studies. For each of the combinations of the four 

imputation methods and seven reference panels, we recorded the average imputation 

accuracy, total computational time, and physical memory required to impute 100 GWAS 

individuals.

Imputation server architecture

The Michigan Imputation Server implements the whole-genotype imputation workflow 

using the MapReduce programming model for efficient parallelization of computationally 

intensive tasks. We use the open source framework Hadoop to implement all workflow steps. 

Maintenance of the server, including node configuration (for example, amount of parallel 

tasks, memory for each chunk, and monitoring of all nodes), is achieved using the Cloudera 

Manager. During cluster initialization, reference panels, genetic maps, and software 

packages are distributed across all cluster nodes using the Hadoop file system HDFS. The 

imputation workflow itself consists of two steps: first, we divide the data into non-

overlapping chunks (here, chromosome segments of 20 Mb). Second, we run an analysis 

(here, quality control or phasing and imputation) in parallel across chunks. To avoid edge 
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effects, 5 Mb for phasing and 500 kb for imputation are added to each chunk. Finally, all 

results are combined to generate an aggregate final output.

Genotype imputation can be implemented with MapReduce, as the computationally 

expensive whole-genome calculations can be split into independent chromosome segments. 

Our imputation server accepts phased and unphased GWAS genotypes in VCF file format. 

File format checks and initial statistics (numbers of individuals and SNVs, detected 

chromosomes, unphased/phased data set, and number of chunks) are generated during the 

preprocessing step. Then, the submitted genotypes are compared to the reference panel to 

ensure that alleles, allele frequencies, strand orientation, and variant coding are correct. In 

this first MapReduce analysis, the map function calculates the VCF statistics for each file 

chunk, and the reducer summarizes the results and forwards only chunks that pass quality 

control to the subsequent imputation step (Supplementary Fig. 2). The MapReduce 

imputation step constitutes a map-only job. This means that no reducer is applied and each 

mapper imputes genotypes using minimac3 on the previously generated chunk. If the user 

has uploaded unphased genotypes, the data are prephased with one of the available phasing 

engines: Eagle 2, HAPI-UR34, or SHAPEIT17. A post-processing step generates a zipped 

and indexed VCF file (using bgzip and tabix35) for each imputed chromosome. To minimize 

the input/output load, the reference panel is distributed across available nodes in the cluster 

using the distributed cache feature of Hadoop. To ensure data security, imputation results are 

encrypted on the fly using a one-time password. All result files and reports can be viewed or 

downloaded via the web interface.

The imputation server workflow has been integrated into Cloudgene24 to provide a graphical 

user interface. Cloudgene is a high-level workflow system for Apache Hadoop designed as a 

web application using Bootstrap, CanJs, and JQuery. On the server side, all necessary 

resources are implemented in Java using the RESTful web framework Restlet. The 

Cloudgene API provides methods for the execution and monitoring of MapReduce jobs and 

can be seen as an additional layer between Hadoop and the client. The imputation server is 

integrated into Cloudgene using the provided workflow definition language and its plugin 

interface. On the basis of the workflow information, Cloudgene automatically renders a web 

form for all required parameters to submit individual jobs to the Cloudgene server. The 

server communicates and interacts with the Hadoop cluster and receives feedback from 

currently executing jobs. Client and server communicate by asynchronous HTTP requests 

(AJAX) with JSON as an interchange format. All transmissions between server and client 

are encrypted using SSL (Secure Socket Layer).

Parameter estimation study

Parameter estimates for the reference panel can be precalculated and saved to speed up the 

imputation process. To examine the importance of GWAS panel individuals during the 

parameter estimation step, we used 938 unrelated individuals from 53 worldwide 

populations from the Human Genome Diversity Panel36. We compared the imputation 

accuracy across three parameter estimation methods: constant parameters (θ = 0.001 and ε = 

0.01), reference panel only for updating the parameters using a leave-one-out method, and 

reference and GWAS panels for updating. The results of imputation accuracy evaluated on 
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~6,000 masked variants from chromosomes 20–22 on the ExomeArray are shown in 

Supplementary Figure 3. We see that updating the parameters results in increased 

imputation accuracy in comparison to constant estimates (especially for European samples, 

where imputation r2 increases from 0.35 to 0.45 in the lowest MAF bin). However, including 

the target panel (along with the reference panel) typically produced only a very small 

improvement in imputation accuracy.

Optimized file structure for large reference panels

The idea of state space reduction can be applied not only to improve HMM implementation 

efficiency but also to store large reference panels using less disk space. We introduce the 

m3vcf (minimac3 VCF) format, which is compatible with the Variant-Call Format (VCF) 

format. m3vcf files save each genomic segment in series where each segment has the list of 

bi- and multiallelic variants in order along with the unique haplotypes at these variants and a 

single line at the beginning of the block that describes which individual maps to which 

unique haplotype. This format reduces disk space requirements because it saves only the 

unique haplotypes at each block rather than all the haplotypes. The way in which the unique 

haplotypes are ordered (along columns) creates long runs of 0's and 1's (as they are ordered 

lexicographically from the first variant to the last variant) and is thus even more helpful in 

disk space reduction when using standard file compression methods such as gzip.

We calculated the order of disk space saved using m3vcf files in comparison to the usual 

VCF files (in both unzipped and zipped formats) and found that, for 1000 Genomes Project 

Phase 1 with ~1,000 reference samples, we save 60% of disk space using zipped m3vcf files 

in comparison to zipped VCF files and 93% when compared across unzipped formats. The 

saving is even greater for larger panels. For example, for the HRC reference panel with 

~33,000 samples, we save ~84% and 98% of disk space using zipped and unzipped m3vcf 

files, respectively (Supplementary Table 4).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Overview of state space reduction. We consider a chromosome region with M = 9 markers 

and H = 8 haplotypes: X1, X2, ..., X8. We break the region into consecutive genomic 

segments (blocks) and start by analyzing block B from marker 1 to marker 6. In block B, we 

identify U = 3 unique haplotypes: Y1, Y2, and Y3 (colored in green, red, and blue, 

respectively). Given we know the left probabilities of the original state space at marker 1 

(that is, L1(X1), ..., L1(X8)), we fold them to get the left probabilities of the reduced state 

space at marker 1: , , and . We implement HMM on the reduced state 

space (Y1, Y2, and Y3) from marker 1 to marker 6 to get , , and . We 

next unfold the left probabilities of the reduced state space at marker 6 to obtain the left 

probabilities of the original state space: L6(X1), ..., L6(X8). We repeat this procedure on the 

next block, starting with L6(X1), ..., L6(X8), to finally obtain L9(X1), ..., L9(X8).
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Table 1

Comparison of minimac3, minimac2, IMPUTE2, and Beagle 4.1

Reference panel Number of samples minimac3 minimac2 IMPUTE2 Beagle 4.1

Time (in CPU-hours)

1000G Phase 1 1,092 4 27 34 5

AMD 2,074 9 59 73.5 9

1000G Phase 3 2,504 6 61 78 9

SardiNIA 3,489 7 85 108 11

COMBINED 9,341 17 236 288 31

Mega 11,845 21 304 364 40

HRC v1.1 32,390 31 925 951 128

Memory (in CPU-GB)

1000G Phase 1 1,092 0.09 0.34 0.91 0.51

AMD 2,074 0.14 0.62 1.58 0.39

1000G Phase 3 2,504 0.13 0.75 1.88 0.56

SardiNIA 3,489 0.13 1.03 2.55 0.46

COMBINED 9,341 0.28 2.73 6.57 0.41

Mega 11,845 0.33 3.51 8.28 0.43

HRC v1.1 32,390 0.55 9.31 22.08 1.98

Imputation accuracy (mean r2), MAF = 0.0001–0.5%

1000G Phase 1 1,092 0.45 0.45 0.43 0.42

AMD 2,074 0.54 0.54 0.51 0.52

1000G Phase 3 2,504 0.52 0.52 0.49 0.52

SardiNIA 3,489 0.55 0.55 0.53 0.54

COMBINED 9,341 0.76 0.76 0.74 0.76

Mega 11,845 0.76 0.76 0.74 0.76

HRC v1.1 32,390 0.77 0.77 0.75 0.77

Imputation accuracy (mean r2), MAF = 0.5–5%

1000G Phase 1 1,092 0.77 0.77 0.76 0.73

AMD 2,074 0.82 0.82 0.80 0.80

1000G Phase 3 2,504 0.79 0.79 0.78 0.79

SardiNIA 3,489 0.79 0.79 0.78 0.80

COMBINED 9,341 0.89 0.89 0.88 0.89

Mega 11,845 0.89 0.89 0.88 0.89

HRC v1.1 32,390 0.90 0.90 0.89 0.90

Imputation accuracy (mean r2), MAF = 5–50%

1000G Phase 1 1,092 0.96 0.96 0.95 0.95

AMD 2,074 0.96 0.96 0.96 0.96

1000G Phase 3 2,504 0.96 0.96 0.96 0.96

SardiNIA 3,489 0.96 0.96 0.96 0.96

COMBINED 9,341 0.97 0.97 0.97 0.97

Mega 11,845 0.97 0.97 0.97 0.97
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Reference panel Number of samples minimac3 minimac2 IMPUTE2 Beagle 4.1

HRC v1.1 32,390 0.98 0.98 0.98 0.98

This table compares the imputation accuracy, run time, and memory required to impute 100 whole genomes using different reference panels and 
imputation tools (Online Methods). Run time is interpolated from analysis on chromosome 20. All four tools were run on 5-Mb chunks with 1-Mb 
overlap (13 chunks in serial or chromosome 20, yielding a total of 227,925 variants). minimac3, minimac2, and IMPUTE2 were run with 
precalculated recombination and error estimates. minimac3 and Beagle 4.1 were run with their input file formats (m3vcf and bref, respectively), 
while minimac2 and IMPUTE2 were run on VCF files. The number of variants in the three MAF bins is 32,945 (0.0001–0.5%), 70,016 (0.5–5%), 

and 104,751 (5–50%). The best results for each reference panel (lowest run time, lowest memory, or highest mean r2) are highlighted in bold.
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