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Abstract

The Amyloid Precursor Protein (APP) is the source of amyloid peptides that accumulate in 

Alzheimer’s Disease. However, members of the APP family are strongly expressed in the 

developing nervous systems of invertebrates and vertebrates, where they regulate neuronal 

guidance, synaptic remodeling, and injury responses. In contrast to mammals, insects express only 

one APP ortholog (APPL), simplifying investigations into its normal functions. Recent studies 

have shown that APPL regulates neuronal migration in the developing insect nervous system, 

analogous to the roles ascribed to APP family proteins in the mammalian cortex. The comparative 

simplicity of insect systems offers new opportunities for deciphering the signaling mechanisms by 

which this enigmatic class of proteins contributes to the formation and function of the nervous 

system.
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Introduction: neuronal migration and the formation of the insect nervous 

system

The directed migration of neurons and glia along specific pathways is a universal feature of 

developing nervous systems [1,2], during which cells navigate through a dynamic 

environment of potential guidance cues. The phenomenon of neuronal migration was first 

recognized in vertebrate development, where it is critical to the formation of both the central 

nervous system (CNS) and peripheral nervous systems (PNS) [3,4], and more modern 

methods have revealed extraordinary complexity in the modes of migration that give rise to 

the mammalian cortex [5••, 6•]. The initiation, extent, and termination of migration must be 

precisely regulated, and a variety of evolutionarily conserved guidance cues have been 

identified that influence particular aspects of migratory behavior [7, 8•]. The significance of 

the migratory process has been underscored by the numerous developmental defects and 

neurological diseases arising from errors in migration [9, 10••], although the precise 

mechanisms underlying many of these defects have proven more difficult to ascertain.

Neuronal migration also plays important roles in invertebrate nervous systems, including 

mollusks [11], crustaceans [12], and nematodes [13,14], where the molecular pathways 

regulating the migratory process can be investigated within intact organisms. Until recently, 

however, the contribution of migration to the formation of insect nervous systems was 

under-appreciated. Although the differentiation of the embryonic CNS in insects typically 

involves relatively small displacements of newly generated neurons from their neurogenic 

niches [15, 16•], more dramatic patterns of neuronal and glial migration have now been 

documented in both the embryonic PNS [17] and the developing adult CNS [18,19, 20••]. A 

particularly striking example of migration was recently identified in the developing adult 

visual system of Drosophila, during which streams of newborn neurons travel into the optic 

lobes of the brain to establish discrete layers of interneurons with position-specific 

characteristics [21•, 22••, 23••]. Intriguingly, this process involves Notch-dependent cell fate 

selection and Slit/Robo-dependent cell positioning (both of which also regulate neurogenesis 

in the mammalian cortex), providing an elegant illustration of how evolutionarily conserved 

mechanisms controlling migration play analogous roles in both insect and vertebrate nervous 

systems [2].

The insect Enteric Nervous System: a dramatic example of neuronal 

migration

The most dramatic examples of neuronal migration in insects have been described in the 

developing enteric nervous system (ENS). Analogous to the vertebrate ENS, the insect ENS 

represents a distinct division of the PNS that provides innervation to the gut and regulates 

digestion and metabolism [24], as well as modulating a variety of endocrine functions 

[25,26]. As in other organisms, the insect ENS consists of interconnected peripheral ganglia 

and nerve plexuses that innervate the gut musculature. In contrast to vertebrates, however, 

the insect ENS lies superficially on the gut, making it more amenable to direct experimental 

manipulations. In general, the ENS of all insect species consists of similar components: 

small subsets of neurons from the brain and abdominal ganglia provide some innervation to 
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the anterior and posterior regions of the gut. In addition, distinct populations of enteric 

neurons originate from neurogenic regions in the foregut and populate enteric ganglia on the 

foregut (sometimes called the stomatogastric nervous system) and branching nerve plexuses 

with more dispersed groups of neurons on the midgut. Notably, both the foregut and midgut 

populations of enteric neurons achieve their mature distributions via extensive phases of 

migration [27], analogous to the formation of the mammalian ENS by migrating neural crest 

cells [28]. The following is a brief summary of the ENS in the tobacco hornworm (Manduca 
sexta) to illustrate these events (Figure 1A); however the neuroanatomy of the ENS varies 

dramatically in different species [29,30], reflecting the radically different digestive 

requirements and lifestyles needed by particular animals.

In Manduca, the first phase of ENS neurogenesis commences within three neurogenic zones 

within the mid-dorsal foregut epithelium (Figure 1B–D), which generates a series of 

neuronal and glial precursors via sequential delamination. Neurons derived from these zones 

then migrate anteriorly to form two foregut ganglia (frontal and hypocerebral ganglia) that 

are ensheathed by trailing glial populations [31]. During the second neurogenic phase, a 

distinct population of ~300 neurons (EP cells) invaginates from a neurogenic placode in the 

posterior foregut lip to form a discrete packet of post-mitotic neurons (Figure 1D–E) [32]. 

After spreading bilaterally around the foregut, subsets of these neurons then migrate rapidly 

onto the midgut via eight muscle bands to form a branching nerve plexus (the Enteric 
Plexus), (Figure 1F–G). Because of their superficial location on the gut surface, the EP cells 

and their processes can be readily visualized by a variety of methods throughout their 

differentiation (Figure 1H–J). However, unlike many neurons in the insect CNS, the 

migratory EP cells are not uniquely identifiable; rather, the pathways followed by individual 

neurons are stochastic, and only after migrating do they express particular phenotypes that 

are regulated in part by their final positions [33,34]. This developmental sequence of 

directed migration and delayed differentiation is also seen in the developing vertebrate ENS, 

in which enteric neurons migrate substantial distances to form the nerve plexuses of the gut 

while delaying their terminal differentiation until migration is largely complete [35,36].

In Manduca, the EP cells only traverse about 20% of the midgut before transitioning to 

axonal outgrowth and subsequent innervation of the lateral musculature, while in 

grasshoppers, neurons migrate along the entire length of the midgut [30]. Curiously, this 

aspect of ENS development has been lost in flies, whereby a substantial portion of the 

midgut remains uninnervated [37]. In this regard, the insect ENS offers an elegant example 

of how evolutionary changes in common developmental programs can mold the form and 

function of the nervous system, providing a rich opportunity to explore the relationship 

between evolution and development of the nervous system. Meticulous studies have 

delineated the genetic regulation of the foregut neurogenic zones in Drosophila [38•], 

providing new tools for investigating how gene mutations that perturb migration in the insect 

ENS may also contribute to congenital disorders affecting human development. In addition, 

a number of groups (including our laboratory) have exploited the experimental advantages of 

the insect ENS to define the roles of particular neuronal guidance factors and signal 

transduction pathways that regulate different aspects of the migratory process, including the 

insect ortholog of the Amyloid Precursor Protein (APPL; as summarized below).
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Amyloid Precursor Protein: a complicated protein with complex functions

The Amyloid Precursor Protein (APP) is a transmembrane glycoprotein (Figure 2A) that is 

strongly associated with Alzheimer’s Disease (AD) but that also may serve important 

functions in neuronal development [39•, 40••]. Although multiple isoforms of APP are 

generated by alternative splicing [41], the predominant form in neurons is APP695, which 

undergoes dynamic patterns of expression, trafficking, and cleavage by membrane-

associated proteases (called secretases) [42, 43•]. In addition, APP can be processed either 

via the “non-amyloidogenic” (Figure 2B) or the ‘”amyloidogenic” pathway (Figure 2C); the 

latter generates β-amyloid peptide fragments (Aβ40–42) that are thought to trigger neuronal 

dysfunction in AD [44, 45•]. Other APP cleavage fragments have been ascribed a 

bewildering array of biological activities, although their authentic functions remain 

controversial [41, 46•]. By comparison, growing evidence suggests that APP695 itself can 

function as a transmembrane receptor that regulates multiple aspects of neuronal motility, 

including migration and outgrowth, synaptogenesis, and response to injury [39•, 47••, 48•], 

albeit via mechanisms that are still poorly understood. Under some conditions, APP has 

been found to promote neuronal motility, while in other assays, APP signaling restricts 

growth [49, 50•]. Moreover, APP can potentially interact with dozens of binding partners 

and cytoplasmic proteins [51, 47••] and is subject to complex patterns of intracellular 

trafficking that may modulate its bioavailability [52•, 53••]. An added complication is that 

mammalian neurons express two closely related orthologs of APP (APLP1 and APLP2; 

Figure 2D) with partially overlapping biological activities [54, 55•]. Although deemed 

“intellectually unsatisfying” but some authors [56], these paradoxical effects are reminiscent 

of other guidance receptors that can both promote and restrict motile responses, depending 

on the developmental context [57•, 58•].

With respect to neuronal migration, compelling studies have implicated APP695 in regulating 

motile neurons within the developing mammalian cortex, during which undifferentiated 

neurons must travel along radial glial progenitors to reach their appropriate cortical layers 

[5••, 6•]. Once again, however, different experimental methods have yielded contradictory 

results. Genetic deletion of all three APP family proteins (APP, APLP1 and APLP2) induced 

a striking pattern of excessive, inappropriate neuronal migration, resulting in heterotopias 

near the outer layer of the cortex [59]. These results suggest that signaling by APP and its 

orthologs normally restricts the extent of neuronal migration. In contrast, knocking down 

APP expression in neuronal precursors resulted in the premature arrest of migration, 

suggesting that APP normally promotes migration in response to permissive cues [60]. 

Recent evidence demonstrating that APP family proteins also regulate the mitotic behavior 

of cortical progenitors may provide an explanation for these disparate results [61]. 

Nevertheless, deciphering how APP family proteins regulate neuronal migration within the 

mammalian nervous system remains an ongoing challenge.
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Insights from an insect model: APPL and the control of neuronal migration 

in the ENS

APP is a member of an evolutionary ancient family of transmembrane receptors with 

orthologs in all higher organisms [62,63]. In contrast to mammals, insects only express one 

ortholog (APP-Like, or APPL); Figure 2E), which contains the same protein interaction 

motifs identified in APP695 [64–66], and that is processed by homologous classes of 

secretases to generate similar fragments [67,68]. Transgenic studies in Drosophila have also 

shown that human APP695 can rescue defects caused by the loss of APPL [69], while 

overexpression of Drosophila Aβ-like fragments induces neurodegenerative responses 

resembling AD [70]. However, insect APPL is only expressed by neurons [64,66], 

simplifying an analysis of its normal functions.

Similar to mice lacking APP, flies deleted for APPL are viable [69], but they exhibit a 

variety of neurodevelopmental and behavioral defects [69,71], accompanied by substantially 

reduced lifespans [72]. In Drosophila, APPL has been found to regulate synaptic growth at 

the neuromuscular junction [65], axonal targeting by developing photoreceptors, and 

dendritic sprouting within the metamorphosing brain [65,73,74]. Also like APP695, APPL 

expression is substantially upregulated in response to injury [75], providing further evidence 

that APP family members participate in multiple aspects of neuronal motility and growth. In 

many instances, APPL appears to function as a transmembrane receptor, although both its 

cleaved ectodomain and AICD fragments have also been implicated in some of these 

functions [72,73,75]. In adult flies, APPL is required for associative memory [76••] and 

circadian clock activity [77••], supporting other evidence that perturbing the normal 

functions of APP may contribute significantly to the behavioral deficits that occur in AD 

[40••, 47••].

Does APPL play a role in regulating neuronal migration, similar to the roles ascribed to 

APP695? To investigate this question, we adapted a well-characterized assay of neuronal 

migration in the developing ENS of Manduca, using an embryonic culture assay that permits 

direct manipulations and imaging of the migratory EP cells [27]. Initially, we showed that 

the EP cells first express APPL shortly after emerging onto the foregut, and concentrate the 

full-length protein in their leading processes throughout their subsequent phases of 

migration and outgrowth (Figure 2F–G) [66]. Based on provocative evidence that APP695 

interacts with the heterotrimeric G protein Goα [78], we also showed that APPL co-

localizes with Goα in the EP cells, and we used co-immunoprecipitation and bi-molecular 

fluorescence assays to demonstrate that the two proteins directly interact [66,79]. We also 

used an embryonic culture assay to show that inhibiting APPL expression (with antisense 

constructs) or Goα activity (with pharmacological reagents) induced the same distinctive 

pattern of ectopic migration and outgrowth onto the interband regions, compared to cultured 

controls (Figure 2H–I). In contrast, hyperactivating APPL-Goα signaling had the opposite 

effect, causing a dramatic inhibition and stalling of migration and outgrowth [79,80]. These 

results are analogous to the ectopic migration seen in mice lacking all three APP family 

proteins [59], and they substantiated our earlier studies showing that Goα signaling restricts 

migration via the local activation of a calcium (Ca2+) current in the EP cells [81].
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Conclusions and future directions

Our results also provide new support for the model that APP family proteins function as 

unconventional Goα-coupled receptors that regulate neuronal migration. Within the 

developing insect ENS, we propose that activation of APPL signaling (by ligands associated 

with the interband regions) stimulates Goα-dependent Ca2+ influx that induces local 

retraction responses (Figure 3A), thereby helping to maintain the migratory neurons on their 

pathways. However, several outstanding issues remain to be resolved. (1). What are the 

ligands that regulate APPL signaling in the developing ENS? Work in mammalian systems 

has shown that multiple members of the Contactin family of cell adhesion receptors can 

directly interact with APP [82, 83•]. By comparison, insects express only a single Contactin 

ortholog that is expressed by glial and epithelial cells [84], and we are currently testing 

whether Manduca Contactin serves as an APPL ligand within the developing ENS. (2). Does 

APPL regulate neuronal migration in other regions of the nervous system? Because many 

examples of migration in Drosophila involve relatively small distances, the modulatory 

effects of APPL might have been previously overlooked. However, given the robust 

migratory patterns that were recently discovered in the developing fly visual system [21•, 

22••, 23••], a renewed investigation of how APPL signaling affects optic lobe formation 

might provide new insight into the mechanisms controlling migration in the insect CNS. (3). 

How does APPL signaling promote neuronal motility in some contexts while inhibiting 

growth in others? Like other APP family proteins, APPL may interact with a diversity of 

binding partners and signaling proteins besides Contactins and Goα [71,75,85], supporting 

the view that APPL can be recruited into distinct signaling complexes in a context-

dependent manner (Figure 3B). With the advent of improved protocols for visualizing 

dynamic protein interactions within neurons [86•, 87•], it may now be possible to exploit the 

comparative simplicity of insect models to address this challenging issue within the 

developing nervous system.
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HIGHLIGHTS

• Neuronal migration is essential to the formation of the insect nervous 

system

• The Amyloid Precursor Protein family regulates multiple types of 

neuronal motility

• The insect ortholog of APP (APPL) is expressed in all developing 

neurons

• APPL regulates neuronal migration in the insect enteric nervous system

• APP and APPL may control neuronal motility via similar molecular 

pathways
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Figure 1. Embryonic development of the insect Enteric Nervous System (ENS) involves extensive 
patterns of neuronal and glial migration
(A), Schematic drawing of the ENS and associated neurosecretory organs in the larval stage 

of the tobacco hornworm Manduca sexta (modified from [27]). The primary ganglion on the 

foregut is the frontal ganglion (FG; red), connected to the overlying brain lobes by paired 

frontal ganglion connectives (FGC). Several nerve branches extend anteriorly onto the 

pharynx, while the recurrent nerve (RN) extends posteriorly to the hypocerebral ganglion 

(HG; orange), situated below the brain. In Manduca, the hypocerebral ganglion initially 

forms during embryogenesis but then becomes closely opposed to the frontal ganglion and is 

no longer readily distinguished in later stages. The HG is also connected to the paired 

corpora cardiaca (CC; blue), the primary neurosecretory organs of the brain, which are 

adjacent to the corpora allata (CA; the source of Juvenile Hormone). From the HG, the 

esophageal nerve (EN) extends posteriorly along the length of the foregut, giving rise to 

short nerve branches that innervate the foregut musculature. Near the foregut-midgut 

boundary, the esophageal nerve connects with the enteric plexus that spans the foregut-

midgut boundary, which includes nerve branches extending along radial muscles on the 

foregut and major nerves that extend along eight well-defined muscle bands that lie 

superficially on the midgut (purple). The enteric plexus contains a population of ~300 

distributed neurons (EP cells; green), which includes intermingled groups of neurons 

expressing a variety of morphological and transmitter phenotypes. The EP cells occupy 

positions along the anterior 20% of the midgut, and extend long axons posteriorly along the 

muscle bands with sparse lateral branches that provide a diffuse innervation of the interband 

midgut musculature. The hindgut is innervated by branches of the proctodeal and rectal 

nerves that originate in the terminal abdominal ganglion of the ventral nerve cord. Branches 

of the proctodeal nerve also extend onto the posterior midgut and contain several peripheral 

neurosecretory cells (yellow). (B–C), Neurogenesis of the developing ENS in Manduca 
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(after [31]). Panels show lateral views of the foregut midline; anterior is to the left, dorsal is 

to the top. When raised at 25°C, Manduca embryogenesis is complete in 100 hr (1 hr = 1 

hour post-fertilization, or hpf). (B), By ~24 hpf, three neurogenic zones (Z1, Z2, & Z3) have 

formed in the dorsal foregut epithelium, which give rise to a series of mitotically active 

precursor cells via sequential delamination. Precursors giving rise to neurons typically 

divide only once (or occasionally twice) after delaminating, similar to midline precursors in 

the embryonic CNS. (C), By 28 hpf, streams of zone-derived cells have begun to migrate 

anteriorly along the foregut, while the remaining zone 3 cells delaminate as a group. The 

epithelium surrounding the original position of zone 3 subsequently differentiates into a 

distinct placode that will form the EP cells (green). (D), By 33 hpf, migrating zone cells 

have begun to form the frontal ganglion (FG), while the remaining zone 2 cells delaminate 

as a group. The EP cell placode has also begun to invaginate from the EP cell packet 

(described below). Zone 1 continues to generate cells until almost 40 hpf (not shown); late-

emerging zone cells derived from all three zones tend to become glial precursors that remain 

mitotically active throughout much of embryogenesis and establish the glial sheath 

surrounding the foregut nerves and ganglia. (E–F), Formation of the midgut enteric plexus; 

panels show dorsal views of the developing ENS at the foregut-midgut boundary (after [88]). 

(E), By 40 hpf, the EP cells (green) have invaginated en mass from their neurogenic placode 

located within the posterior dorsal lip of the foregut (D, green). The neurons then commence 

a bilateral spreading phase of migration (arrows) that almost completely encircles the 

foregut, adjacent to the foregut-midgut boundary. Concurrently, subsets of longitudinal 

muscles on the midgut (magenta) begin to coalesce into eight well-defined bands as dorsal 

closure of the midgut proceeds. Anteriorly, the EP cell packet is in continuity with the 

developing esophageal nerve (EN), which contains populations of proliferating glial 

precursors (pink; derived from zone 3) that will subsequently ensheath the enteric plexus. 

(F), By 55 hpf, the EP cells have almost completely surrounded the foregut, and subsets of 

the neurons have aligned with each of the midgut muscle bands (only the dorsal four are 

shown). (G), By 58 hpf, subsets of EP cells have begun to migrate in a chain-like manner 

along the midgut muscle bands; smaller subsets also migrate onto radial muscles of the 

foregut (muscles not shown). Proliferating glial cells (pink) subsequently migrate along the 

pathways established by the neurons, thereby ensheathing the branches of the enteric plexus. 

(H), Magnified view of EP cell groups migrating on the mid-dorsal band pathways (at 58 

hpf) of an embryo immunostained with an antibody recognizing all isoforms of the cell 

adhesion receptor Fasciclin II (Fas II). The migratory neurons and underlying muscle bands 

(b) express transmembrane Fas II (TM-Fas II), while the trailing glial cells express GPI-

linked Fas II. The migratory EP cells and their processes remain primarily confined to their 

band pathways while avoiding the adjacent interband musculature (ib). (I), Scanning 

electron micrograph showing the migratory EP cells on the mid-dorsal band pathways (b) of 

an embryo at 65 hpf. (J), Lower magnified view of the developing ENS at 62 hpf, in an 

embryo that was immunostained with anti-TM-Fas II (green). TM-Fas II immunoreactivity 

in the mid-dorsal muscle bands is shown in magenta to better distinguish the EP cell 

processes (after [79]). At this stage, the EP cells have migrated ~200 µm and have begun to 

extend fasciculated axons (arrows) more posteriorly along the muscle bands (b). Throughout 

this developmental period, the EP cells avoid the adjacent interband regions (ib), extending 
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terminal branches onto the lateral musculature only after migration and axogenesis is 

complete (~80 hpf). Scale = 20 µm in (H); 5 µm in (I); 60 µm in (J).
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Figure 2. The insect ortholog of Amyloid Precursor Protein regulates neuronal migration in the 
developing ENS
(A–E), the structure and processing of APP family proteins is similar in insects and 

mammals. (A), human APP695 (containing 695 amino acids) has the topology of a type-1 

transmembrane glycoprotein, consisting of two extracellular protein interaction domains (E1 

and E2); a transmembrane domain that contains the Aβ cleavage fragment; and a short 

cytoplasmic tail that contains highly conserved binding domains for the heterotrimeric G 

protein Goα (Go) and a tyrosine-based sorting motif (Y). A wide variety of potential 

binding proteins and ligands have been identified that can interact with the E1–E2 

extracellular domains, while numerous intracellular adapter and signaling proteins besides 

Goα (are capable of interacting with the cytoplasmic domains. Studies in a variety of 

systems have shown that APP695 is capable of functioning as a transmembrane receptor, 

whereby activation with candidate ligands can induce signaling responses that modulate 
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neuronal motility. (B), In the non-amyloidogenic pathway of APP processing, APP is first 

cleaved by α-secretases at a juxtamembrane site within the Aβ domain, which releases a 

soluble/secreted ectodomain fragment (sAPPα) and a short transmembrane C-terminal 

fragment (CTF; not shown). CTF fragments are then rapidly cleaved by the γ-secretase 

complex (containing presenilins) to produce a cytoplasmic APP intracellular domain (AICD) 

and a small “p3” peptide of no apparent significance (not shown). (C), In the amyloidogenic 

pathway, APP is first cleaved by β-secretase (BACE) to generate a slightly shorter sAPPβ 
ectodomain fragment and a slightly longer CTF fragment containing the Aβ peptide (not 

shown). This intermediate fragment is then rapidly cleaved by the γ-secretase complex to 

generate an identical AICD fragment and β-amyloid peptide fragments (Aβ40–42) of varying 

lengths that accumulate in the brain with aging. Secreted sAPP ectodomain fragments have 

been ascribed a variety of functions (both beneficial and harmful to neurons), including 

activation of APP signaling (via interactions with the transmembrane holoprotein); AICD 

fragments have been shown to induce changes in gene transcription (analogous to the Notch 

intracellular domain; NICD), although the biological significance of these activities remains 

under debate. (D), In addition to APP, vertebrates also express to closely related orthologs: 

APP-Like Protein 1 & 2 (APLP1 and APLP2). Both family members contain extracellular 

and intracellular protein interaction domains that are closely similar to these domains in APP 

and have been shown to have partially overlapping functions within the nervous system. (E), 

Insects only express a single APP family protein, APPL (APP-Like). They also contain 

similar extracellular and intracellular domains that share considerable sequence conservation 

with human APP695, including 100% conservation within the Go domain (required for direct 

interactions with Goα; [79]). Drosophila APPL has also been shown to contain an Aβ-like 

fragment (dAβ) that is generated by sequential cleavage of APPL by endogenous β- and γ-

secretases [70]). Antibodies specific for the n-terminal (α-nAPPL) and c-terminal (α-

cAPPL) regions of APPL have been generated that can distinguish the distribution of the 

holoprotein from its cleavage fragments. (F–G), The embryonic ENS of Manduca at 

different developmental stages, labeled with anti-TM-Fas II (green) and anti-cAPPL 

(magenta). (F), At 58 hpf, TM-Fas II is expressed by both the EP cells and their muscle band 

pathways on the midgut (b). The migratory EP cells also strongly express APPL (arrows) as 

they travel onto the bands while largely avoiding the adjacent interband regions (ib). 

Previous studies have shown that transmembrane APPL traffics into their leading processes 

(arrowheads), where it interacts with Goα [79]). (G), By 65 hpf, the EP cells have 

transitioned from migration to axon outgrowth, but they continue to robustly express APPL 

in their cell bodies (arrows) and advancing growth cones (out of the field of view). Paired 

white hatchmarks indicate the foregut-midgut boundary; scale bar = 30 µm. (H–I), examples 

of the ENS in embryos that were opened to expose the developing ENS prior to the onset of 

EP cell migration (~50 hpf) and allowed to develop for an additional 18 hr (through the 

periods of migration and outgrowth). At the completion of the culture period, embryos were 

fixed and immunostained with anti-Fas II to reveal the extent of migration and outgrowth, 

and analyzed by camera lucida methods. (H), Embryo that was treated with control antisense 

morpholino constructs with no known gene targets in insects; EP cell migration and axon 

outgrowth (arrowheads) was largely confined to the normal band pathways. (I), Embryo that 

was treated with antisense morpholino constructs specific for Manduca APPL mRNA; 

although EP cells that maintained strong contact with their bands migrated and extended 
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axons normally along these pathways, a substantial number of neurons migrated and 

extended processes inappropriately onto the interband regions (black arrows). A similar 

pattern of ectopic migration was caused by inhibiting the heterotrimeric G protein Goα or 

by blocking Goα-dependent Ca2+ influx [79,81].
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Figure 3. 
Proposed model for how APP family proteins regulate the motile behavior of developing 

neurons in response to context-dependent guidance cues. (A), Stimulation of human APP (or 

insect APPL) by endogenous ligands activates the heterotrimeric G protein Goα (Goα*), 

which in turn induces Goα-dependent effectors (including Ca2+ influx) that alter 

cytoskeletal dynamics required for filopodial retraction. During normal development, this 

signaling pathway helps restrict inappropriate neuronal migration and outgrowth, and might 

also regulate synaptic pruning. In neurodegenerative conditions like Alzheimer’s Disease, 

multiple factors (including Aβ) might induce the misregulation of APP signaling, provoking 

Goα hyperactivation and Ca2+ overload that results in neuronal dysfunction and death. (B), 

Within the developing ENS of Manduca, APPL acts as a Goα-coupled receptor (B1) for 

ligands encountered by the migratory EP cells when they extend filopodia off their normal 

band pathways. Stimulation of APPL induces the local activation of Goα within filopodia 

(B2), resulting in Goα-dependent Ca2+ influx (via a voltage-independent Ca2+ current). In 

turn, Ca2-dependent modulation of the actin cytoskeleton results in filopodial retraction, 

helping to keep the neurons on their correct band pathways. A variety of potential ligands 

associated with the ensheathing glial cells and interband musculature might trigger APPL-

Goα signaling, including insect Contactin (B4). However, in other neurons (and in other 

regions), ligands associated with permissive regions might activate different APP/L-linked 

signaling pathways that promote growth. For example APP interactions with the adapter 

protein Disabled (DAB) can induce the activation of Abl kinase [71], which might enhance 

actin remodeling to promote outgrowth (B3). In this manner, APP family proteins can 
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function as “molecular hubs”, capable of regulating different types of motile responses in a 

context-dependent manner.
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