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Abstract

Propensity score methods (e.g., matching, weighting, subclassification) provide a statistical 

approach for balancing dissimilar exposure groups on baseline covariates. These methods were 

developed in the context of data with no hierarchical structure or clustering. Yet in many 

applications the data have a clustered structure that is of substantive importance, such as when 

individuals are nested within healthcare providers or within schools. Recent work has extended 

propensity score methods to a multilevel setting, primarily focusing on binary exposures. In this 

paper, we focus on propensity score weighting for a continuous, rather than binary, exposure in a 

multilevel setting. Using simulations, we compare several specifications of the propensity score: a 

random effects model, a fixed effects model, and a single-level model. Additionally, our 

simulations compare the performance of marginal versus cluster-mean stabilized propensity score 

weights. In our results, regression specifications that accounted for the multilevel structure reduced 

bias, particularly when cluster-level confounders were omitted. Furthermore, cluster mean weights 

outperformed marginal weights.
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1. Introduction

Many essential research questions in the fields of behavioral science, public health, and 

health policy research are best answered using observational study designs, as randomization 

is often not feasible. Causal comparisons are often of interest, and statistical methods for 

causal inference have become increasingly well-developed and adopted in health research. 
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These methods strive to generate unbiased estimates of exposure effects by carefully 

accounting for differences across exposure groups in the absence of randomization. 

Propensity score methods, proposed by Rosenbaum and Rubin (1983), have gained 

widespread popularity for balancing dissimilar exposure groups with respect to baseline 

covariates.

Exposure groups may be dissimilar in the absence of randomization, potentially with regard 

to confounders, variables associated with both the exposure and the outcome. Failure to 

account for confounding can result in a biased effect estimate that conflates the true effect 

and baseline group differences. The propensity score is defined as the probability of 

exposure, given the observed covariates. Propensity score methods first estimate propensity 

scores for each individual and then use the scores to statistically balance exposure groups. 

Specifically, the estimated propensity scores are used to match, weight, or stratify 

individuals across exposure groups to create groups that are similar with respect to the 

propensity score distribution. Rosenbaum and Rubin showed that groups with similar 

propensity score distributions have similar distributions with respect to all covariates that 

were used to estimate the propensity score (Rosenbaum and Rubin 1983). Thus, propensity 

score methods can be used to remove the association between covariates and exposure 

group, thereby reducing confounding and facilitating unbiased exposure effect estimates.

Propensity score methods were developed in the context of independence among 

observations (Rosenbaum and Rubin 1983), but in many health research applications the 

data have a clustered or hierarchical structure that is of substantive importance, such as 

individuals clustered within geographic region or within healthcare providers. Recent work 

has extended propensity score methods to a multilevel setting for a binary exposure (Arpino 

and Mealli 2011; Eckardt 2012; Leyrat et al. 2013; Li et al. 2013; McCormick et al. 2013; 

Thoemmes and West 2011; Xiang and Tarasawa 2015). Through simulations, previous 

studies compared estimating the propensity score with a single-level model (SLM) with 

cluster-level covariates, a fixed effects model (FEM), or a random effects model (REM). 

Simulation results consistently showed that both the FEM and REM outperformed the SLM, 

indicating the importance of taking the clustered nature of the data into account when 

estimating the propensity score (Arpino and Mealli 2011).

While existing methodological work on propensity score methods with multilevel data have 

focused on binary exposures, Zhu et al. (2014) highlight that continuous exposures or 

treatments are quite common in health research. Examples include physical or mental health 

conditions assessed by a scale, dosage of a medication, or exposure duration measured in 

continuous time. Recent examples in the medical literature of multisite studies with a 

continuous exposure or treatment include a study examining the effect of systolic blood 

pressure at hospital admission on mortality among individuals with a traumatic brain injury 

(Fuller et al. 2014), and a study of the effect of door-to-needle times for administration of 

tissue plasminogen activator among individuals experiencing an acute ischemic stroke 

(Fonarow et al. 2014). Existing studies of continuous exposures in multilevel data rely on 

regression adjustment to account for individual-level and cluster-level confounders, yet 

propensity score methods offer a less parametric alternative to regression adjustment (Austin 

2011; Stuart 2010). While propensity score weighting methods have been developed for 
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continuous exposures (Imbens 2000; Hirano and Imbens 2004), these methods have not yet 

been extended to the multilevel setting.

This paper provides a methodological framework for propensity score weighting for a 

continuous exposure or treatment in a multilevel setting. Throughout, we use the terms 

exposure and treatment interchangeably. We focus on settings in which both the exposure 

and outcomes are defined at the individual level. Through simulations, we assess the 

performance of various propensity score regression and weighting approaches. Specifically, 

we compare various combinations of regression specifications (SLM, FEM, and REM) for 

the propensity score and outcome models, as well as comparing marginal and cluster-mean 

stabilized weights. Furthermore, we investigated robustness of these regression and 

weighting options to omission of cluster-level confounders. We show that regression 

specifications that account for the multilevel structure reduced bias, particularly when the 

cluster-level confounder was omitted, and that cluster-mean weights outperformed marginal 

weights.

1.1 Propensity score weighting estimators

The basis for propensity score weighting is similar to that of survey weighting: in each 

exposure group, those who are underrepresented in the sample relative to the population of 

interest (with respect to baseline covariates) are up-weighted, and those who are 

overrepresented are down-weighted. Inverse probability weighting (IPW) is one of the most 

commonly used propensity score weighting estimators in the health research literature. 

Consider an exposure T, a vector of individual-level covariates X, and an outcome Y. For a 

binary exposure, the propensity score is defined as  and the weights 

are defined as  for individuals in the exposure group and  for 

individuals in the control group (Lunceford and Davidian 2004; Robins et al. 2000). The 

ATE can then be estimated as follows: . Additionally, 

there are doubly-robust weighting estimators that combine propensity score weighting and 

regression adjustment (Hirano and Imbens 2001; Kang and Schafer 2007; Robins et al. 

2007). One such estimator can be obtained from weighted regression: one fits an outcome 

regression model for , using IPW. The ATE estimate can be 

obtained as , the weighted regression coefficient of T. Under appropriate conditions, this 

estimator is doubly robust in that it will yield unbiased ATE estimates if either the outcome 

regression or the propensity score regression that generated the weights was consistently 

estimated (e.g., correctly specified in the case of parametric regression).

For a continuous exposure, the generalized propensity score is defined as , 

where t ∈ τ for some continuous domain (Hirano and Imbens 2004). One approach to 

propensity score weighting for continuous exposures was introduced by Robins et al. (2000), 

who proposed the use of stabilized weights of the form . In the continuous 

case, unlike in the binary case, the weights must be stabilized with a numerator other than 1 

because unstabilized weights will have infinite variance. If the exposure of interest is 
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continuous (or nearly continuous) and approximately normally distributed, then 

 can be estimated by a linear regression propensity score model of the form 

, where . In the binary exposure case, the propensity score is often 

modeled using logistic regression and thus yields a model-predicted probability estimate 

between 0 and 1 that is directly interpretable as a propensity score. However, in the case of a 

continuous exposure, estimates from the linear regression propensity score model must be 

transformed to the probability scale. As Robins et al. (2000) details, after obtaining 

estimates of  and  from the propensity score model,  can be estimated by the 

normal density, .

Likewise,  can be estimated by first fitting the intercept-only model  and 

then using the corresponding normal density. Note that the propensity score model can 

alternatively be estimated with a non-parametric approach, such as generalized boosted 

modeling (Zhu et al. 2014). Furthermore, a non-parametric approach, such as kernel density 

estimation, could be used to transform estimates from the propensity score model to the 

probability scale (Zhu et al. 2014). For simplicity, in this paper we will estimate the 

propensity score model with linear regression and use the corresponding normal density to 

obtain the propensity score weights.

When calculating the ATE for a continuous exposure, one must specify the desired 

comparison between exposure levels: this is often taken to be an increase of one unit or one 

standard deviation in T. Using propensity score weights, this is estimated from a weighted 

outcome regression of the form , where T is scaled such that  reflects 

the effect of interest. Alternatively, one could use an outcome regression that included 

covariates, , for a doubly robust approach.

In order to interpret the ATE as a causal effect, several assumptions are required. One causal 

assumption, formalized by Rubin, is the stable unit treatment value assumption (SUTVA), 

which states that an individual’s exposure status does not affect the potential outcomes of 

any other individuals and that the exposure level is the same for all individuals who received 

a given exposure level (Rubin 1980, 1986). Additionally, the assumption of no unmeasured 

confounders – namely, that all covariates associated with both the exposure and the outcome 

have been measured – is needed to identify the ATE. This assumption is formalized as 

, namely that the exposure and potential outcomes are independent after 

conditioning on the covariates (both individual-level and cluster-level) (Greenland and 

Robins 1986). Additionally, the positivity assumption states that within strata of X, each 

individual has a nonzero probability of receiving every level of the exposure (Petersen et al. 

2012).

1.2 Propensity score weighting in a multilevel setting

In the multilevel setting, in order to estimate the causal effect of an individual’s treatment on 

his or her outcome, one must adjust for confounding arising at both the individual and 

cluster level. In this paper, our multilevel structure consists of two levels, where level 1 

Schuler et al. Page 4

Health Serv Outcomes Res Methodol. Author manuscript; available in PMC 2016 December 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



represents the individual level and level 2 represents the cluster level. Our sample is 

comprised of n total individuals, each in cluster j, where . for each individual, we 

observe a vector of individual-level covariates  and a vector of cluster-level covariates 

. The outcome of interest is denoted . In the multilevel setting, the propensity score is 

estimated using both individual-level covariates  and cluster-level covariates , and is 

defined as  for a binary treatment. In the multilevel setting, the no 

unmeasured confounders assumption states that the exposure and potential outcomes are 

independent after conditioning on the covariates, both individual-level and cluster-level.

When estimating the propensity score in multilevel data, common approaches include: a 

single level model (SLM), a fixed effect model (FEM), and a random effects model (REM). 

A single level model ignores the clustered structure of the data, whereas both the FEM and 

REM include a cluster-specific intercept for each of the j clusters in order to account for 

unobserved heterogeneity across clusters. A single level propensity score regression includes 

the individual-level covariates, cluster-level covariates, and an overall intercept: 

. A fixed effects propensity score regression includes the 

individual-level covariates, cluster-level covariates, and cluster-specific intercept: 

, where α0j is assumed to be distribution free and is commonly 

estimated through j dummy variables. A random effects propensity score regression 

(specified with only random intercepts) includes the individual-level covariates, cluster-level 

covariates, and cluster-specific intercept: , where 

. Additionally, a REM can be specified to allow random slopes, in which 

the covariate coefficients are allowed to vary across clusters, in addition to the cluster-

specific intercepts. As discussed in the multilevel data literature, a FEM performs poorly 

with regard to statistical inference when there is a large number of small clusters, due to the 

large number of  cluster-specific intercept parameters that must be estimated with 

relatively little information. When the number of clusters is large, the REM has considerable 

advantages over the FEM because specifying a distribution on  reduces the number of 

parameters. A REM may offer greater flexibility because cluster-specific slopes can also be 

included.

In typical multilevel analysis settings, the multilevel regression is used for statistical 

inference, and thus properly accounting for clustering when calculating the standard errors is 

essential. In the context of propensity score estimation, we are interested in the point 

estimate of the propensity score, and thus correct specification with regard to the 

confounders is of primary importance rather than standard error estimation. Past research on 

propensity score estimation for a binary exposure in the context of clustered data has 

examined a SLM with cluster-level covariates, a FEM with cluster-level specific intercepts, 

and random effects models. Some authors preferred a FEM (Arpino and Mealli 2011), and 

others preferred a REM (Kim and Seltzer 2007), which include random intercept-only and 

random-intercept-and-slopes models with and without cluster-level covariates. When REMs 

are used to estimate propensity scores, Thoemmes and West (2011) noted that the propensity 

score estimate may be based on only the fixed effects or on both the fixed and random 

effects.
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A FEM specifies the cluster-specific intercepts as a set of dummy variables and estimates 

each intercept from observations in the given cluster; in contrast, a REM uses partial pooling 

across clusters to estimate cluster intercepts, which may obscure some cluster heterogeneity. 

As Li et al. (2013) discuss, the cluster-specific intercepts in a FEM may better capture both 

observed and unobserved cluster-level variability, making a FEM more robust than a REM to 

misspecification of cluster-level covariates. In contrast, due to cluster shrinkage, a REM 

does not guarantee balance on cluster-level variables, and thus is more sensitive to incorrect 

specification of cluster-level variables (Li et al. 2013).

After estimation of the propensity score, a variety of estimators can be used to calculate 

causal effects in the multilevel setting. If the ATE is the effect of interest, then IPW or 

doubly robust weighting methods may be used (see Li et al. 2013). Li et al. (2013) assessed 

the performance of a doubly robust weighted regression estimator and found that ignoring 

the multilevel structure of the data in the outcome regression results in larger bias than 

ignoring the multilevel structure in the propensity score regression.

In this paper, we focus on the multilevel extension of the generalized propensity score for a 

continuous exposure, which is estimated using both individual-level and cluster-level 

covariates. Let  denote the exposure level of individual  in cluster , where  is defined 

for all , some continuous domain. We denote our propensity score of interest as 

.

1.3 Assessing covariate balance for clustered data

For clustered data structures, balance could be obtained either within or across clusters 

depending on the research question of interest. Balancing individuals across clusters allows 

the estimation of the average effect. Often, the cluster-specific effect is not of substantive 

interest, and the objective is simply to adjust for across-cluster variability. Conversely, 

balancing individuals on covariates within clusters allows estimation of both the average 

effect and the variability of this effect across clusters (Kelcey 2011). Within cluster balance 

is only driven by individual-level covariates, as within-cluster matching guarantees balance 

on cluster-level covariates. However, within-cluster matching is often infeasible for small 

cluster sizes (Arpino and Mealli 2011).

In multilevel data, conventional balance diagnostics can be used to assess either across-

cluster or within-cluster balance (Li et al. 2013). When seeking across-cluster balance, 

covariate balance should be assessed for both individual-level and cluster-level covariates. 

When the exposure is binary, covariate balance is often assessed using standardized mean 

differences (SMD) between exposure groups (Austin 2011). A standardized mean difference 

less than |0.2| is often taken to indicate sufficient covariate balance; this SMD corresponds to 

a small effect size (Cohen 1988). Zhu et al. (2014) proposed using the exposure–covariate 

correlation to assess balance for continuous exposures and proposed, on the basis of 

simulations, that a correlation less than |0.1| is a reasonable rule-of-thumb for achieving 

balance in the context of continuous exposures and non-clustered data. A correlation of 0.1 

in the continuous exposure setting is analogous to a standardized mean difference of 0.2 in 

the binary exposure setting (Zhu et al. 2014). As with binary exposures and clustered data 
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structures, balance for continuous exposures may be obtained either within or across 

clusters. In this paper, we will focus on across cluster balance, as our primary interest is 

estimating the ATE rather than cluster-specific effects.

2. Simulation study design

Our simulation design is similar to that of Arpino and Mealli (2011) and Li et al. (2013). We 

simulated data with a clustered structure to represent individuals (denoted ) nested within 

clusters (denoted ). Each simulation consisted of 4,000 individuals, nested within  equally 

sized clusters of size ; we varied  and  across replications, considering 

. Our data comprised a continuous exposure , 

three individual-level confounders , one cluster-level confounder , and a 

continuous outcome .

Two individual-level covariates,  and , were generated to be independent of cluster 

membership, and were generated as  and . One 

individual-level covariate, , was generated to be dependent on cluster membership, and 

was generated as , where . One cluster-level variable, , was 

generated as , such that all individuals in the same cluster have identical values 

for .  and  are uncorrelated. The continuous exposure, , was generated as a linear 

combination of an individual’s covariates  and  as follows: 

, where  and 

. We considered two different specifications for the 

continuous outcome, , which was generated as a linear combination of an individual’s 

covariates  and  and the exposure, . First, we specified  as a function of 

main effect terms only (No differential confounding): 

, where  and 

. Additionally, we specified Y as a function of both 

main effect and interaction terms (Differential confounding): 

, 

where  and . We 

specified the true exposure effect in terms of ; for all simulations . Across-cluster 

variability was specified as .

We considered three different regression models for estimating the propensity score: a SLM 

in which the clustered structure of the data are ignored, a FEM, which includes a cluster-

specific intercept  for each of the  clusters; and a random effects model (REM), which 

includes a cluster-specific intercept arising from the distribution . We 

estimated the ATE using a weighted outcome regression, and considered three different 

outcome models: SLM, a FEM, and REM. In total, we implemented five combinations of 

propensity score and outcome models: SLM-SLM, SLM-REM, FEM-FEM, FEM-REM, and 
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REM-REM (Table 1). Simulations investigated the effect of (1) misspecification of cluster-

level confounder (2) the form of the propensity score weights, and (3) cluster size.

In order to assess robustness to misspecification of the cluster-level confounder, we 

considered three conditions: (1) generating  with no differential confounding; inclusion of 

cluster-level covariate  in the propensity score regression, (2) generating  with no 

differential confounding; omission of the cluster-level covariate  in the propensity score 

regression, and (3) generating  with differential confounding; omission of the cluster-level 

covariate  in the propensity score regression. For all conditions, all individual-level 

confounders  were included in the propensity score regression. Additionally, the covariates 

included in the outcome model for each condition were the same as those included in the 

propensity model: either all covariates (X and W), or only the individual-level covariates X.

Additionally, when the propensity score was estimated with a FEM or REM, we assessed 

two different forms for the propensity score weight. These weights differed in terms of the 

propensity score weight numerators: (1) the cluster-specific exposure mean (“cluster-mean 

weight”) and (2) the overall exposure mean (“marginal weight”). The cluster-specific 

exposure mean was estimated with a regression of the form . When using 

cluster-specific means, the numerator was estimated using the same model type as the 

denominator (e.g., both were FEMs or both were REMs). The overall exposure mean was 

estimated with a regression of the form , yielding the observed mean of the 

exposure. For both, the denominator of an individual’s weight was the estimated propensity 

score. When the propensity score was estimated with a SLM, the numerator was the overall 

mean. Table 1 summarizes the eight different regression/weighting combinations we 

assessed.

Our primary interest was estimation of the exposure effect, , as obtained from a weighted 

outcome regression. We assessed performance of the various combinations of regression and 

weight specifications in terms of average absolute bias, root mean squared error (RMSE), 

and 95% confidence interval coverage rates. Coverage rates were calculated empirically 

using the bootstrap method, which resampled at the cluster level (e.g., resampling J clusters 

with replacement, using all individuals within each resampled cluster), as recommended by 

Li et al. (2013). Covariate balance was assessed before and after weighting by the following 

procedure. First, within each simulated dataset we resampled individuals with replacement 

with probability equal to their estimated propensity scores. Second, within each bootstrap 

sample we calculated the Pearson correlation between the continuous exposure and each 

covariate. Finally, this procedure was repeated 500 times; the balance metric was calculated 

as the average across 500 correlations for each covariate. All data were simulated and 

analyzed in R (R Core Team 2015). Random effects models for the propensity score and 

outcome were estimated using the lme4 package in R (Bates et al. 2015). Simulation code is 

provided in Appendix 1.

2.1 Simulation study results

Table 2 presents the covariate balance, both before and after propensity score weighting, 

across our three simulation conditions. Covariate balance was assessed for the three 
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individual-level confounders (X1–X3) and the cluster-level confounder  by calculating the 

Pearson correlation between each confounder and the exposure variable . Prior to 

propensity score weighting (i.e., unadjusted), each confounder was associated with the 

exposure, with Pearson correlations ranging in magnitude from 0.13 to 0.60. When  was 

included in the propensity score regression (Table 1, column 1), propensity score weights 

estimated with SLM, FEM and REM all significantly improved balance on all confounders. 

Balance improved as cluster size increased: for J=20 and J=5, all confounders yielded 

Pearson correlations less than |0.05| after weighting. Propensity score weights estimated 

with the SLM achieved the best balance for J=200 and J=20, while all weights achieved 

similar very good balance for the largest cluster size, . Given that the SLM 

is correctly specified when  is included, we would expect the SLM to perform well under 

this condition.

When W was omitted from the propensity score regression (Table 2, columns 2 and 3), 

propensity score weights estimated with the SLM no longer balanced on W (post-weighting 

correlation ranged in magnitude from 0.31 to 0.41), as this variable was not included in the 

propensity score model. In contrast, propensity score weights estimated with either a FEM 

or REM did achieve balance on W, despite the fact that it was not included in the propensity 

score regression. The use of a multilevel model (FEM or REM) for the propensity score 

regression accounts for cluster-level variability, even when not directly measured, through 

the estimation of cluster-specific intercepts. For the REM and FEM, balance on W improved 

as cluster size increased: post-weighting correlation with T for REM was −0.10 when 

 and −0.01 when . Note that our simulation design 

considered two forms of propensity score weights when the propensity score was estimated 

with either a FEM or REM: (1) weights stabilized by the marginal exposure mean and (2) 

weights stabilized by the cluster-specific exposure mean. Table 1 presents balance 

diagnostics using the marginal weight. Balance diagnostics using the cluster mean weights 

were similar (results not shown), except that these weights did not balance on the cluster-

level variable as it appears in both the numerator and denominator of the weight, an issue 

highlighted in the marginal structural model literature (Almirall et al. 2014). Appendix 2 

presents boxplots of the Pearson correlation.

The ATE estimation results from our simulation study are presented in Table 3 and Figures 

1–3. Our simulations assessed the performance of each propensity score/outcome regression 

combination under the three simulation conditions: (1) no differential confounding, W 
included, (2) no differential confounding, W omitted, and (3) differential confounding, W 
omitted. When W was included, the propensity score regression included all confounders, 

fulfilling the assumption of no unmeasured confounding. Under this condition, the FEM-

FEM, FEM-REM, REM-REM combinations performed very well across the three different 

clustering designs considered (J=5, J=20, J=200). Specifically, for J=20, the FEM-FEM, 

FEM-REM, and REM-REM combinations had nearly identical results, with mean bias of 

0.019 and 92% coverage (for cluster-mean weights). The SLM-SLM combination 

consistently yielded the largest bias, while SLM-REM performed relatively similarly to the 

multilevel combinations. When W was included, cluster size minimally impacted 

performance of a given regression combination (except for SLM-SLM): for each regression 
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combination, the absolute bias, RMSE and coverage were very similar across J=5, J=20, and 

J=200. Note that SLM-SLM yielded markedly lower coverage (64%) for J=5.

We also assessed robustness to omission of W in both the absence and presence of 

differential confounding. For both conditions, the SLM-SLM combination performed worst, 

as the cluster-level confounder was not being adjusted for in either the propensity score or 

outcome regression. Compared to when W was included, the SLM-SLM bias was 

approximately 2.5 times larger, on average, in the absence of differential confounding and 

approximately 3.5 times larger, on average, in the presence of differential confounding. 

SLM-SLM coverage was quite low, ranging from 24–57% under no differential confounding 

and from 10–27% under differential confounding. In general, only the SLM-SLM 

combination showed worse performance under differential confounding; the remaining 

combinations performed quite similarly in the presence and absence of differential 

confounding for a given cluster size. The SLM-REM combination performed consistently 

better than the SLM-SLM combination —even though W was omitted from the regressions, 

the use of a REM for the outcome regression accounted for cluster-level differences and 

yielded ATE estimates with little bias. Indeed, the SLM-REM combination was able to 

account for non-linear, differential confounding by W. Furthermore, the FEM-FEM, FEM-

REM, and REM-REM combinations performed very well, also significantly outperforming 

the SLM-SLM combination. Even though the propensity score and outcome models were 

misspecified due to omission of W, these combinations yielded estimates with small 

absolute bias, even in the presence of differential confounding, because the cluster 

variability was accounted for through the use of a FEM or REM. Note that, across all 

combinations, the performance of the FEM-FEM, FEM-REM, and REM-REM 

combinations were the most similar across the three simulation, indicating that these 

combinations were the most robust to omission of cluster-level confounders. Comparison of 

the results across all three simulation conditions indicates that the omission of W did not 

notably impact the bias or RMSE for the FEM-FEM, FEM-REM, and REM-REM 

combinations, even in the presence of differential confounding. Omission of W did 

somewhat reduce the coverage for the FEM-REM and REM-REM combinations when 

cluster size was the smallest, .

Additionally, when either a FEM or REM was specified for the propensity score regression, 

we compared the performance of two forms of the numerator for stabilizing the propensity 

score weights: the marginal mean and the cluster-specific mean. Note that this choice of the 

numerator is not applicable when a SLM is specified for the propensity score regression, as 

either a FEM or REM is required to estimate cluster-specific means. Across the three 

simulation conditions, the cluster-mean weights almost always yielded lower mean bias and 

RMSE than the marginal weights. The only exception was for J=200 with no differential 

confounding and W omitted, when the FEM-REM and REM-REM combinations with 

cluster-mean weights and marginal weights had similar or identical bias. The larger bias for 

the marginal weights relative to the cluster-mean weights reflects both poorer covariate 

balance arising from these weights and greater variability of the marginal weights relative to 

the cluster-mean weights. Coverage also varied across the cluster-mean and marginal 

weights. Specifically, for J=200 with no differential confounding and W omitted, the FEM-
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REM combinations using the marginal and the cluster-mean weights both had mean bias of 

0.021, yet the coverage was 86% with the cluster-mean weights and 94% with the marginal 

weights. The lower coverage arising from the cluster-mean weights indicates lower 

variability of the weights (range=0.05–25.37, SD=0.79) compared to the marginal weights 

(range = 0.01–161.12, SD=3.23). Finally, Figures 1–3 highlight that cluster-mean weights 

yield ATE estimates with smaller variance than marginal weights. Overall, in the context of a 

continuous exposure and a multilevel data structure, we recommend stabilizing propensity 

score weights by the cluster-specific mean.

Finally, our simulations assessed the impact of cluster size by considering three different 

clustering designs (J=5, J=20, J=200). When W is included and all regressions are correctly 

specified, cluster size did not notably impact performance with the exception of reduced 

coverage for SLM-SLM for the largest cluster size. Yet, cluster size had a greater impact for 

the two simulation conditions for which W is omitted. In the absence of W, the SLM-SLM 

combination had relatively similar bias across cluster sizes, but coverage rates varied across 

cluster size. When cluster size was large, FEM-FEM, FEM-REM, REM-REM combinations 

with cluster-mean weights and SLM-REM generally performed similarly. Indeed, for both 

J=20 and J=5, the FEM-FEM, FEM-REM, REM-REM combinations yielded identical or 

very similar results for a given simulation condition. In contrast, for the smallest cluster size 

(J=200), the FEM-FEM combination with cluster-mean weights yielded smaller bias, lower 

RMSE, and higher coverage than either FEM-REM or REM-REM with cluster-mean 

weights. Furthermore, the multilevel combinations with cluster-mean weights outperformed 

SLM-REM for the smallest cluster size.

3. Discussion

In general, accounting for the clustered nature of the data in both the propensity score and 

outcome regressions yielded the best performance with respect to bias, RMSE, and 95% 

confidence interval coverage. The SLM-SLM combination, which did not account for the 

clustered nature of the data in either the propensity score or outcome regression, consistently 

performed the worst, yielding larger bias and poor coverage. The SLM-REM combination 

yielded lower bias and higher coverage than the SLM-SLM combination, as it was able to 

adjust for cluster-level confounders omitted in the propensity score through the REM 

outcome model. Yet this approach generally provided lower coverage than the FEM-FEM, 

FEM-REM, and REM-REM combinations, particularly when the cluster-level confounder 

was omitted and cluster size was small.

Overall, multilevel regression combinations (FEM-FEM, FEM-REM, REM-REM) using 

cluster-mean weights performed the best across all simulation settings. These combinations 

consistently yielded the lowest absolute bias and had coverage rates near nominal levels for 

all conditions. For large cluster sizes, the SLM-REM combination also performed quite well. 

Regression specification was most important when cluster size was small (i.e., 20 

individuals). For the smallest cluster size, our results indicate that FEM-FEM with cluster-

mean weights was optimal, and that SLM-REM showed suboptimal performance relative to 

the multilevel regression combinations.
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Unobserved confounders are a primary concern in the context of propensity score estimation 

because unbiased causal estimation relies on the fundamental assumption of no unmeasured 

confounders. Our covariate balance results indicate that a key advantage of using a 

multilevel model (i.e., FEM or REM) for propensity score estimation is that these models 

account for cluster heterogeneity through the use of cluster-specific intercepts. Our 

simulation results examine robustness to omission of the cluster-level confounder both in the 

absence and presence of differential confounding (namely, the true relationship between Y 

and W differs across individual-level confounders  and ). Our results suggest that under 

certain conditions (e.g., when the underlying data structure is linear in the parametric sense), 

these models can achieve good balance with regard to cluster-level covariates, whether or 
not these covariates are included in the propensity score model. This robustness to omission 

of cluster-level confounders helps to satisfy the underlying causal inference assumption of 

no unmeasured confounders, and may be particularly advantageous in cases in which 

cluster-level characteristics have not been measured or are not available to the researcher. 

While our results indicated robustness when differential confounding is present, this 

robustness may not hold in the case of more complex data structures, including complex 

correlations across covariates or violations of normality. Additionally, multilevel models are 

not robust to omission of individual-level confounders. Therefore, while the use of 

multilevel modeling for propensity score estimation may provide some protection against 

unmeasured or omitted cluster-level confounders, unbiased estimation of the ATE still 

requires that there are no unmeasured or omitted individual-level confounders.

In general, the multilevel modeling literature recommends that random effects models are 

preferable to fixed-effects models when the data structure includes a large number of small 

clusters, as the data are too sparse to estimate a large number of fixed-effect terms. Partial 

pooling across small clusters helps REMs achieve more precise standard error estimates. 

However, achieving covariate balance across treatment groups is the primary objective in 

propensity score estimation, and accurate standard error estimation is of less concern than in 

the typical inferential application. Consistent with previous results regarding propensity 

score weighting for a binary exposure in multilevel data (Li et al. 2013), in our simulation, 

the FEM-FEM combination outperformed both the FEM-REM and REM-REM 

combinations for the condition with the smallest clusters. A FEM specifies the cluster-

specific intercepts as a set of dummy variables and estimates each intercept from 

observations in the given cluster; in contrast, a REM uses partial pooling across clusters to 

estimate cluster intercepts, smoothing over cluster heterogeneity. As Li et al. (2013) discuss, 

the cluster-specific intercepts in a FEM may better capture both observed and unobserved 

cluster-level variability, making a FEM more robust than a REM to misspecification of 

cluster-level covariates. In contrast, due to cluster shrinkage, a REM does not guarantee 

balance on cluster-level variables, and thus is more sensitive to incorrect specification of 

cluster-level variables (Li et al. 2013). In the context of propensity score estimation, the 

ability of the FEM to achieve better balance on cluster-level variables is particularly 

advantageous. It should be noted that in our simulation study, the smallest clusters were 

comprised of 20 individuals, which may be sufficiently large so as not to compromise the 

performance of the FEM. Furthermore, a FEM is typically preferred when the observed 

clusters represent the total population of interest, whereas a REM is more appropriate when 
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the clusters represent a random sample from the population. In propensity score 

applications, balance within the observed sample is of primary importance; in that sense, the 

observed clusters represent the totality of the population of interest. While a general 

advantage of REM is generalization beyond the observed data, in the context of propensity 

score weighting, optimizing within sample balance is the objective.

The existing literature regarding propensity score weighting for a continuous exposure 

indicates that unstabilized inverse probability of exposure weights (which have a numerator 

of 1) must be stabilized with an alternative numerator in order to reduce weight variability. 

When extending to the multilevel setting, one could stabilize the weights with either the 

cluster means or the marginal mean. Our simulation results indicated that across conditions, 

the cluster-mean weights almost always yielded lower mean bias and RMSE than the 

marginal weights. This is consistent with findings (Li et al. 2013) that indicated that cluster-

mean weights outperformed marginal weights in the context of a binary exposure in the 

multilevel setting. In our simulations, we also considered unstabilized weights (numerator of 

1; results not presented); both the unstabilized weights and the resulting post-weighting 

exposure-covariate correlations had large variance, in keeping with previous findings 

(Robins et al. 2000). It is likely that the cluster-mean stabilized weights work well for the 

same reason that subgroup-mean stabilized weights work well when estimating moderating 

effects of a treatment; that is, the weights are stabilized to a group rather than overall mean. 

In summary, use of the cluster-mean stabilized weights is recommended.

Our simulation study was not exhaustive. In particular, our simulations only assessed 

performance when either the regression models were correctly specified or when the cluster-

level confounder was omitted (a scenario unique to multilevel structured data). There are a 

variety of data structures of greater complexity for which our results may not fully 

generalize. Specifically, we did not examine performance of these methods under conditions 

of correlated covariates, or treatment heterogeneity (interactions between T and W). Also, 

we did not consider misspecified or omitted individual-level confounders; misspecification 

of individual-level confounders in the propensity score model would be expected to bias the 

effect estimate. We examined a total sample size of 4,000, with cluster size ranging from 20 

to 800; performance may be impacted by either a smaller total sample size or smaller cluster 

sizes. Finally, an important consideration in the multilevel setting is the implications of 

SUTVA, particularly with regard to interference between units. This assumption requires 

that an individual’s potential outcomes are not affected by the exposure assignment of any 

other individual. In some multilevel applications, this assumption may prove untenable, 

given concerns regarding contamination (spill-over) effects among individuals within the 

same cluster (Arpino and Mealli 2011). Interference across clusters essentially induces a 

cluster-level effect that is not measured with any of the covariates. In keeping with our 

simulation results and as highlighted by Li et al. (2013), the use of either a FEM or REM for 

the propensity score regression can help account for cluster-level interference, as these 

multilevel models account for cluster-level similarity arising from both measured and 

unmeasured variables. Of greater concern is interference with respect to some higher level 

clustering (e.g., individuals nested within doctors nested within hospitals; Li et al. 2013). If 

higher-level clustering is present but not accounted for in the propensity score regression and 

outcome analyses, then interference may still be present.
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4. Guidance for the applied practitioner

In summary, we discuss some practical advice for implementation of propensity score 

weighting in a multilevel setting with a continuous treatment. The first objective is to 

carefully define the ATE of interest and identify potential confounders at both the individual 

and cluster level. The methods discussed in this paper are appropriate when both the 

treatment and outcome are measured at the individual level. Treatment assignment may 

occur at either the individual level (i.e., individuals within a cluster vary on treatment level) 

or at the cluster level (i.e., individuals within a cluster have the same treatment level). When 

assignment occurs at the individual level, both individual and cluster characteristics may 

influence treatment – for example, the level of pain medication prescribed to an individual 

may relate to both her individual characteristics (e.g., pain severity) as well as cluster 

characteristics (e.g., hospital prescribing trends). When interventions or policy changes are 

implemented at the cluster level (i.e., schools, hospitals), individual-level factors do not 

influence treatment assignment, yet clusters may still vary with regard to individual 

characteristics. Understanding the treatment assignment mechanism will help inform which 

variables (both individual-level and cluster-level) may be potential confounders. No special 

consideration regarding the structure of the data is necessary when both the exposure and 

outcome are measured at the cluster level, since there is no higher level clustering of the data 

(see (Stuart 2007)).

While the stabilized form of weights used for continuous treatments are designed to limit 

weight variability, in practice, one should examine the range of weights. When particularly 

large weights are observed, weight trimming may be used to reduce variability (Cole and 

Hernan, 2008; Lee et al., 2011; Potter, 1993; Scharfstein et al., 1999). In addition, balance 

should always be assessed in practice by assessing the Pearson correlation between each 

covariate and the exposure. After weighting, these correlations should be close to 0; Pearson 

correlation of 0.10 is equivalent to a standardized mean difference of 0.20. See Zhu et al. 

(2014) for more details.

In general, using a multilevel model (FEM or REM) for the outcome regression is strongly 

recommended. When deciding between a SLM and multilevel model for the propensity 

score regression, cluster size should be considered. When clusters are of sufficient size (e.g., 

200+ individuals), weights estimated from a SLM regression perform very similarly to 

cluster-mean weights estimated from a FEM or REM regression. Thus, the applied 

practitioner may choose to use a SLM for propensity score estimation. Note that when using 

a SLM regression to estimate the propensity score, it is strongly recommended to use a 

multilevel outcome regression in order to provide robustness to misspecified or omitted 

cluster-level confounders, as this was not provided in the propensity score regression. When 

clusters are small (e.g., 20 individuals), cluster-mean weights estimated from a FEM or 

REM regression can reduce bias and improve coverage relative to weights estimated from a 

SLM, in the likely setting that important cluster-level confounders are measured with error 

or unmeasured. Furthermore, in this case, propensity score estimation with FEM 

outperforms propensity score estimation with REM, and FEM-FEM appears to be the 

optimal combination. Thus, when cluster-size is small, the specification of both the 

propensity score and outcome models is of greater importance.
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While multilevel regression can provide some protection against misspecified or omitted 

cluster-level confounders, bias may still arise if individual-level confounders are 

misspecified or omitted. As correct parametric specification of both the propensity score and 

outcome regressions is unlikely in the context of complex observational data, use of 

nonparametric machine learning algorithms can be advantageous. These methods (e.g., 

generalized boosted regression, random forests, classification and regression trees, super 

learning) use data-driven algorithms to identify nonlinear or higher-order relationships 

among variables, which may reduce model misspecification. Machine learning methods have 

been shown to outperform parametric propensity score estimation in some contexts (Lee et 

al., 2009; McCaffrey et al., 2004; Piracchio et al., 2015; Setoguchi et al., 2004). In the 

multilevel setting, use of nonparametric machine learning methods for the propensity score 

regression may also be advantageous.

5. Conclusion

Propensity score methods are powerful statistical methods for balancing exposure or 

exposure groups with respect to covariates. Propensity score methodology was developed in 

the context of data with no hierarchical structure, and there is limited literature regarding 

propensity scores in the context of multilevel data. Yet, in many applications in health 

research, the data have a clustered structure that is of substantive importance, such as when 

individuals are clustered within healthcare providers or geographic region. When estimating 

the ATE in a multilevel setting, accounting for both individual-level and cluster-level 

confounders is imperative for unbiased effect estimates.
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Figure 1. 
Boxplots of bias for the ATE estimate for simulation condition with no differential 

confounding and W included in both the propensity score and outcome regression (i.e., both 

regressions correctly specified).

Abbreviations: SLM = single level model, FEM = fixed effects model, REM = random 

effects model
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Figure 2. 
Boxplots of bias for the ATE estimate for simulation condition with no differential 

confounding and W omitted from both the propensity score and outcome regression.

Abbreviations: SLM = single level model, FEM = fixed effects model, REM = random 

effects model
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Figure 3. 
Boxplots of bias for the ATE estimate for simulation condition with differential confounding 

and W omitted from both the propensity score and outcome regression.

Abbreviations: SLM = single level model, FEM = fixed effects model, REM = random 

effects model
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Table 1

Simulation overview: Combinations of propensity score regression, outcome regression, and propensity score 

weight implemented in our simulations.

Propensity score regression Outcome regression PS weight form

Single level (SLM) Single level (SLM) Marginal weight

Single level (SLM) Random effects (REM) Marginal weight

Fixed effects (FEM) Fixed effects (FEM) Cluster-mean weight

Fixed effects (FEM) Fixed effects (FEM) Marginal weight

Fixed effects (FEM) Random effects (REM) Cluster-mean weight

Fixed effects (FEM) Random effects (REM) Marginal weight

Random effects (REM) Random effects (REM) Cluster-mean weight

Random effects (REM) Random effects (REM) Marginal weight
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