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BACKGROUND Angiotensin-(1-9) [Ang-(1-9)] is a novel peptide of the counter-regulatory axis of the renin-

angiotensin-aldosterone system previously demonstrated to have therapeutic potential in hypertensive cardiomyopathy

when administered via osmotic mini-pump. Here, we investigate whether gene transfer of Ang-(1-9) is cardioprotective in

a murine model of myocardial infarction (MI).

OBJECTIVES The authors evaluated effects of Ang-(1-9) gene therapy on myocardial structural and functional

remodeling post-infarction.

METHODS C57BL/6mice underwent permanent left anterior descending coronary artery ligation and cardiac functionwas

assessedusing echocardiography for8weeks followedbya terminalmeasurement of left ventricular pressure volume loops.

Ang-(1-9)was delivered by adeno-associated viral vector via single tail vein injection immediately following induction ofMI.

Direct effects of Ang-(1-9) on cardiomyocyte excitation/contraction coupling and cardiac contraction were evaluated in

isolated mouse and human cardiomyocytes and in an ex vivo Langendorff-perfused whole-heart model.

RESULTS Gene delivery of Ang-(1-9) reduced sudden cardiac death post-MI. Pressure volume measurements revealed

complete restoration of end-systolic pressure, ejection fraction, end-systolic volume, and the end-diastolic pressure

volume relationship by Ang-(1-9) treatment. Stroke volume and cardiac output were significantly increased versus sham.

Histological analysis revealed only mild effects on cardiac hypertrophy and fibrosis, but a significant increase in scar

thickness. Direct assessment of Ang-(1-9) on isolated cardiomyocytes demonstrated a positive inotropic effect via

increasing calcium transient amplitude and contractility. Ang-(1-9) increased contraction in the Langendorff model

through a protein kinase A–dependent mechanism.

CONCLUSIONS Ournovelfindingsshowed thatAng-(1-9) gene therapypreserved left ventricular systolic functionpost-MI,

restoring cardiac function. Furthermore, Ang-(1-9) directly affected cardiomyocyte calcium handling through a protein kinase

A–dependent mechanism. These data emphasized Ang-(1-9) gene therapy as a potential new strategy in the context of MI.

(J Am Coll Cardiol 2016;68:2652–66) © 2016 The Authors. Published by Elsevier on behalf of the American College of Car-

diology Foundation. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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AB BR E V I A T I O N S

AND ACRONYM S

Ang = angiotensin

AT2R = angiotensin type 2

receptor

CO = cardiac output

FS = fractional shortening

LV = left ventricular

MI = myocardial infarction

RAAS = renin-angiotensin-

aldosterone system

SERCA = sarcoplasmic

endoreticulum calcium

adenosine triphosphatase
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A natural counter-regulatory axis of the RAAS ex-
ists, centered on ACE2, an ACE homologue that me-
tabolizes Ang II to angiotensin-(1-7) [Ang-(1-7)] (1,2).
Currently being explored therapeutically in cardio-
vascular diseases including HF and pulmonary hy-
pertension, ACE2 shows promising therapeutic effects
(3). Ang-(1-7) acts via the receptor Mas to block detri-
mental effects of Ang II and mediates direct thera-
peutic effects in cardiovascular disease (4,5). Ang-(1-7)
is in clinical trials to treat diabetic foot ulcers and
cancer (6,7), emphasizing translational approaches
targeting the counter-regulatory RAAS axis.

Less studied than Ang-(1-7), the alternative counter-
regulatory RAAS peptide angiotensin-(1-9) [Ang-(1-9)]
reduces adverse cardiovascular remodeling in rat
models of hypertension and MI following pep-
tide administration via osmotic mini-pump (8–10).
Ang-(1-9) attenuates cardiomyocyte hypertrophy and
cardiac fibrosis in hypertensive models; these effects
are blocked by coadministration of the angiotensin
type 2 receptor (AT2R) antagonist PD123,319, further
supporting independent effects of Ang-(1-9) as a new
counter-regulatory RAAS axis peptide (8,11).
SEE PAGE 2667
Assessment of RAAS peptides as therapeutics
is limited by short circulatory half-life, requiring
osmotic mini-pumps for sustained release in vivo
in experimental models. Accordingly, alternative
delivery strategies are required for clinical transla-
tion. Viral gene therapy is being pursued for HF,
including clinical trials using adeno-associated virus
(AAV) vector-mediated delivery of sarcoplasmic
endoreticulum calcium adenosine triphosphatase 2a
(SERCA2a), emphasizing safety and clinical utility (12).

Angiotensin peptides are not produced from genes,
but are generated extracellularly in the circulation.
Synthetic expression cassettes for Ang II, Ang-(1-7),
and Ang-(1-9) have been utilized in transgenic models
and in gene transfer approaches (13–15). Here, for the
first time, in vivo AAV-mediated gene transfer of
Ang-(1-9) via a synthetic expression cassette has
been utilized to study cardiac effects in a murine
model of MI.

METHODS

Detailed methods are presented in the Online
Appendix. Briefly, an Ang-(1-9) expression cassette
(13) was sub-cloned into plasmid adeno-associated
virus-multiple cloning site (pAAV-MCS) and AAV9
vectors produced via standard protocols (16). Surgical
procedures were performed in accordance with the
Animals Scientific Procedures Act (1986) and approved
by the University of Glasgow Animal Welfare
and Ethical Review Panel and UKHome Office.
For MI, the left anterior descending artery
(LAD) was ligated. Sham animals had identical
procedures without ligation. AAVAng-(1-9) or
AAV green fluorescent protein (GFP) were
delivered intravenously via tail vein following
MI as described (17). Echocardiography was
performed weekly (Figure 1A) and pressure
volume (PV) loop measurements made.
Fibrosis was assessed by Picrosirius red stain-
ing as described (8). Hypertrophy was
measured by wheat germ agglutinin staining.
Quantitative reverse transcription polymerase
chain reaction was assessed with inventoried

gene expression assays. Ventricular cardiomyocytes
were isolated from adult C57BL/6 mice, loaded with
Fura–4FAM, and the Fura–4FAM fluorescence ratio
(340/380 nm excitation) was measured using a spin-
ning wheel monochromator and converted to [Ca2þ]i
(18). Cardiomyocytes were incubated for 15 min with
1 mmol/l Ang-(1-9), field-stimulated (1.0 Hz), and
perfused with 1.8 mmol/l [Ca2þ]o HEPES superfusate
containing 1 mmol/l Ang-(1-9). Calcium transients and
contractility in human-induced pluripotent stem
cell-derived cardiomyocytes (hiPS-CM; iCell2 car-
diomyocytes, Cellular Dynamics International [Madi-
son, Wisconsin, USA]) were measured in the optical
platform CellOPTIQ (Clyde Biosciences Ltd, Glasgow,
United Kingdom) in cells loaded with 3 mmol/l Fura-
4F-AM. Calcium transients were obtained from the
360/380 ratio and contraction was assessed using a
high-resolution camera coupled to CellOPTIQ. Male
adult Wistar rats were sacrificed, hearts excised, and
Langendorff perfused at 37�C and constant flow
(10 ml/min) (19). A fluid-filled balloon was inserted
into the left ventricle and connected to a solid-state
pressure transducer. Hearts were paced and perfused
with 1 mmol/l Ang-(1-9).

STATISTICAL ANALYSIS. Data are represented as
mean � SE of the mean (SEM). Paired Student t test
for direct comparisons and 1-way analysis of variance
with Tukey’s post-test for multiple comparison were
performed. Echocardiography was analyzed using
repeated measures analysis of variance with Tukey’s
post-test. Statistical significance was demonstrated
with a p < 0.05.

RESULTS

Previously, tail vein delivery of 1 � 1011 viral
genomes (vg) AAV9 demonstrated robust cardiac
transduction (17). To confirm this, AAVGFP-mediated
transduction was assessed at 1, 2, and 8 weeks
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FIGURE 1 AAV Delivery
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(A) Study design. (B) Immunohistochemistry for enhanced GFP at 1, 2, and 8 weeks following intravenous delivery of AAVGFP. (Original

magnification �4 for upper panel and �40 for lower panel; scale ¼ 100 mm.) (C) Quantification of GFP in transduced heart lysates using GFP

assay. Fluorescence normalized to negative control heart tissue basal fluorescence and total protein concentration. (D) Mortality for each

animal group. Group sizes are n ¼ 10, n ¼ 15, n ¼ 15, and n ¼ 11 for sham, MI, MI/AAVGFP, and MI/AAV Ang-(1-9), respectively. (E) Percent

survival and cause of mortality. AAV ¼ adeno-associated virus; Ang-(1-9) ¼ angiotensin-(1-9); GFP ¼ green fluorescence protein;

MI ¼ myocardial infarction.
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following LAD ligation (Figure 1A). High enhanced
GFP expression was observed throughout the
myocardium at all time points (Figure 1B). Quantifi-
cation of enhanced GFP expression in cardiac lysates
revealed enhanced GFP expression was detectable at
1 week and increased at 4 and 8 weeks (Figure 1C).
Next, animals were subjected to sham procedure,
MI, MI/AAVGFP, or MI/AAVAng-(1-9) to assess ef-
fects on cardiac function and remodeling. MI in
presence or absence of AAVGFP produced higher
mortality than sham in the acute recovery phase due
to cardiac rupture (sham: 100% survival; MI: 73%
survival; MI/AAVGFP: 67% survival) (Figures 1D
and 1E). Delivery of AAVAng-(1-9) increased sur-
vival to 91% in MI-induced animals.

ASSESSMENT OF CARDIAC FUNCTION. Serial echo-
cardiography was performed (Figure 2A) and a signifi-
cant reduction in fractional shortening (FS) observed 1
week post-MI in MI and MI/AAVGFP, which progres-
sively decreased at 4 and 8 weeks (Figure 2B).
Decreased FS was associated with increased left ven-
tricular end-systolic and end-diastolic dimension
(LVESD and LVEDD) (Figures 2C and 2D). AAVAng-(1-9)
infusion significantly attenuated reduced FS at all time
points. At 8 weeks, FS in MI/AAVAng-(1-9) was signif-
icantly reduced compared to sham (38.5 � 1.9% vs.
49.1 � 1.6%; p < 0.05), although it was significantly
increased compared toMI andMI/AAVGFP (MI¼ 25.8�
2.2%; MI/AAVGFP ¼ 26.6 � 0.7%; p < 0.05). Impor-
tantly, in MI/AAVAng-(1-9), FS remained stable
from 1 week, in contrast to the progressive decline
in other groups (Figure 2B). At 1 week, LVESD in
MI/AAVAng-(1-9) was significantly reduced compared
to MI/AAVGFP (Figure 2C). No significant changes in
posterior left ventricular (LV) wall thickness were
detected at any time point (Figure 2E). Additionally,
ejection fraction (EF) was significantly reduced 1 week
post-MI inMI andMI/AAVGFP and further decreased at
4 and 8 weeks (Figure 2F). AAVAng-(1-9) delivery
significantly attenuated reduced EF at all time points.
E/A wave ratio was not different between groups
(Figure 2G).

Eight-week PV loop measurements in MI/AAVAng-
(1-9) revealed significant attenuation of the decreased
systolic indexes observed in MI and MI/AAVGFP
(Figure 3A). AAVAng-(1-9) significantly increased end-
systolic pressure (Figure 3B) (p < 0.001), EF (Figure 3C)
(p < 0.001), and cardiac output (CO) (Figure 3D)
(p < 0.05). Importantly, EF was normalized to sham
level, whereas CO was significantly increased
compared to sham (p < 0.05). However, maximum
derivative of change in systolic pressure over time
(dP/dtmax) remained significantly reduced to 78.5% of
sham (Figure 3E) (p < 0.001). There were no significant
differences in end-diastolic pressure, dP/dtmin, and
the rate constant of LV pressure decline (Tau)
following AAVAng-(1-9) delivery (Figures 3F to 3H).
The end-diastolic pressure volume relationship
(EDPVR) in MI and MI/AAVGFP was significantly
increased (p < 0.05) to 363.3% and 400% of sham,
respectively (Figure 3I). Following AAVAng-(1-9),
EDPVR was normalized to sham levels (Figure 3I),
while there was no detectable change in end-diastolic
volume (Figure 3J). End-systolic volume was signifi-
cantly increased in MI and MI/AAVGFP (p < 0.01);
however, it was not different between sham and
MI/AAVAng-(1-9) (Figure 3K). Stroke volume was
significantly increased (p < 0.05) in MI/AAVAng-(1-9)
compared to sham and MI/AAVGFP (Figure 3L). Addi-
tionally, the end-systolic pressure volume relation-
ship (ESPVR) was significantly decreased inMI andMI/
AAVGFP but normalized by AAVAng-(1-9) (Figure 3M).

EFFECTS ON HYPERTROPHY AND FIBROSIS. Heart
weight/tibia length (HW:TL) ratios were significantly
increased in all MI groups to 121%, 118%, and 125%
of sham for MI, MI/AAVGFP (p < 0.05), and MI/
AAVAng-(1-9) (p < 0.01), respectively (Figures 4A
and B). Cardiomyocyte diameter was significantly
increased compared to sham in all MI groups (sham:
15.1�0.3 mm;MI: 20.9�0.5 mm;MI/AAVGFP: 19.4�0.4
mm; MI/AAVAng-(1-9) ¼ 20.2 � 0.4 mm; p <0.001)
(Figures 4C and D). No significant differences in cell
length were observed (Figures 4E and F). LV and right
ventricular fibrosiswas significantly increased in allMI
groups (p < 0.01) (Figures 5A and B). Septal fibrosis in
MI and MI/AAVGFP was significantly increased
compared to sham, but significantly reduced in
MI/AAVAng-(1-9) (MI: 10 � 2.4; MI/AAVGFP: 6.3 � 0.4;
MI/AAVAng-(1-9): 3.4 � 0.6%; p < 0.01). Perivascular
fibrosis was significantly elevated in MI and
MI/AAVGFP; however, delivery of AAVAng-(1-9)
normalized this (Online Figure 1). Scar size was
consistent among all MI groups (MI: 35.9 �
2.8%; MI/AAVGFP: 35.2 � 2.1%; MI/AAVAng-(1-9):
36.9 � 2.5%) (data not shown). However, in MI
and MI/AAVGFP, scar thickness was 329 � 25 mm
and 276 � 3.9 mm, respectively, whereas in MI/
AAVAng-(1-9), scar thickness was significantly
increased versus MI/AAVGFP to 383 � 14 mm (p < 0.05)
(Figure 5C).

Quantitative polymerase chain reaction of levels
of RAAS genes in cardiac complementary DNA
revealed significantly increased ACE in all MI groups
compared to sham, whereas ACE2 expression
remained unchanged (Online Figures 2A and 2B).
Furthermore, significantly increased AT2R expression
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FIGURE 2 Cardiac Function
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FIGURE 3 Hemodynamic Indexes
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FIGURE 4 Cardiomyocyte Hypertrophy

***25
20
15
10

5
0Ce

ll 
Di

am
et

er
 (m

m
)

Sham MI

MI+AAVGFP

MI+AAVAng-(1
-9

)

D

100

75

50

25

0

Ce
ll 

Le
ng

th
 (m

m
)

Sham MI

MI+AAVGFP

MI+AAVAng-(1
-9

)

F

* **
12.5
10.0

7.5
5.0
2.5
0.0

Ra
tio

 H
W

:T
L

Sham MI

MI+AAVGFP

MI+AAVAng-(1
-9

)

B
Sham MI AAVGFP AAVAng-(1-9)

MIA

Sham MI MI+AAVGFPC

Sham MI MI+AAVGFP MI+AAVAng-(1-9)E

MI+AAVAng-(1-9)

(A) Heart images at 8 weeks (scale bar ¼ 5 mm). (B) Ratio of HW to TL. *p <0.05, **p <0.01 versus sham. n ¼ 10, 10, 9, and 8 for, sham, MI, MI/AAVGFP,

and MI/AAVAng-(1-9), respectively. Data presented as mean � SEM. (C) Cardiac cross sections in transverse axis (original main image magnification �25;

scale ¼ 50 mm; inset zoom image scale ¼ 12.5 mm). (D) LV cardiomyocyte diameter in hearts. ***p <0.001 versus sham. n ¼ 10, 10, 9, and 8 for

sham, MI, MI/AAVGFP, and MI/AAVAng-(1-9), respectively. (E) Cardiac cross sections in longitudinal axis (original main image magnification ¼ �25;

scale ¼ 50 mm; inset zoom image scale ¼ 50 mm). (F) LV cardiomyocyte length. n ¼ 10, 10, 9, and 8 for sham, MI, MI/AAVGFP, and MI/AAVAng-(1-9),

respectively. Data presented as mean � SEM with average cell size taken as average of a group of cells evenly distributed across LV. HW ¼ heart weight;

TL ¼ tibia length; other abbreviations as in Figures 1 and 2.

Fattah et al. J A C C V O L . 6 8 , N O . 2 4 , 2 0 1 6

Ang-(1-9) Cardiac Gene Therapy D E C E M B E R 2 0 , 2 0 1 6 : 2 6 5 2 – 6 6

2658



FIGURE 5 Cardiac Fibrosis
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in MI/AAVAng-(1-9) was observed, while the angio-
tensin type 1 receptors were significantly decreased in
all MI groups (Online Figures 2C and 2D). Mas
expression was significantly downregulated in
MI/AAVAng-(1-9) (Online Figure 2E). There were no
significant changes in gene expression of the
inflammatory markers tumor necrosis factor alpha;
interleukin (IL) 1b, IL6, or IL12a; or interferon g

(Online Figure 3). Additionally, gene expression of
matrix metalloproteinase (MMP)-2 and -12 and tissue
inhibitor of metalloproteinase-1 were significantly
increased in MI groups compared to sham, whereas
MMP-9 and -14 were not changed (Online Figure 4).
MMP-2 was significantly reduced in MI/AAVGFP and
MI/AAVAng-(1-9) and MMP-12 was significantly
reduced in MI/AAVAng-(1-9). SERCA2a was signifi-
cantly reduced in all MI groups (Online Figure 5).

EFFECTS IN CARDIOMYOCYTES AND WHOLE

HEARTS. Calcium (Ca2þ) handling, in particular
sarcoplasmic reticulum (SR)–mediated Ca2þ release, is
the major determinant of cardiomyocyte contractility.
Therefore, characteristics of SR-mediated Ca2þ release
and uptake (Ca2þ transients) were determined in

http://dx.doi.org/10.1016/j.jacc.2016.09.946
http://dx.doi.org/10.1016/j.jacc.2016.09.946
http://dx.doi.org/10.1016/j.jacc.2016.09.946
http://dx.doi.org/10.1016/j.jacc.2016.09.946
http://dx.doi.org/10.1016/j.jacc.2016.09.946
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murine cardiomyocytes acutely exposed to soluble
Ang-(1-9) peptide. Ang-(1-9) significantly increased
Ca2þ transient amplitude (control: 561.0� 86.5 nmol/l;
Ang-(1-9): 933.7 � 107.0 nmol/l; p <0.05) (Figures 6A
and 6B); an observation also observed in car-
diomyocytes isolated fromMI hearts (Online Figure 6).
In parallel, Ang-(1-9) significantly increased cell
shortening compared to control cardiomyocytes
[control: 6.8 � 0.9%; Ang-(1-9): 10.2 � 1.1%; p < 0.05]
(Figures 6C and 6D). The rate of decline of the Ca2þ

transient was not significantly altered by Ang-(1-9)
(data not shown), suggesting no change in rate of Ca2þ

removal from the cytosol through SR uptake via
SERCA or the sodium calcium exchanger. To deter-
mine SR Ca2þ content, a major determinant of Ca2þ

transient amplitude (20), a rapid bolus of 10 mmol/l
caffeine was applied at the end of the protocol to
release all SR Ca2þ into the cytosol. The caffeine-
induced Ca2þ-transient amplitude in Ang-(1-9)–
incubated cardiomyocytes was significantly
increased compared to control, indicating an in-
creased SR Ca2þ content (control: 987.5� 101.4 nmol/l;
Ang-(1-9): 1,535.2 � 188.8 nmol/l; p < 0.05) (Figure 6E).
SERCA-mediated Ca2þ uptake is bypassed during
application of 10 mmol/l caffeine and cytosolic Ca2þ

removal occurs predominately via the sodium calcium
exchanger. The rate constant of decline of the
caffeine-induced Ca2þ-transient (Tau) was unaltered
by Ang-(1-9), supporting the conclusion that Ang-(1-9)
does not alter cardiomyocyte Ca2þ extrusion (Online
Figure 7). One possible route through which the SR
Ca2þ content and transient could be elevated is
through increased influx of Ca2þ (e.g., via L-type Ca2þ

channels). To assess this, cardiomyocytes were
continuously perfused with Ang-(1-9) and a 10 mmol/l
bolus of caffeine applied for 10 s after 15 min followed
by 2 min of steady state measurements while cells
were stimulated. The amplitude of the first Ca2þ

transient after caffeine was taken as an index of Ca2þ

influx via the L-type Ca2þ channel (21–23). Ang-(1-9)
significantly increased the L-type Ca2þ-transient
amplitude versus controls (191.8 � 28.4 nmol/l vs.
74.6 � 17.3 nmol/l; p < 0.05) (Figures 6F and 6G).

To assess whether the positive inotropy observed
in isolated cardiomyocytes translated to whole heart
contractile function, hearts isolated according to the
Langendorff model were perfused with Ang-(1-9).
After 4 min of perfusion, Ang-(1-9) induced a signifi-
cant increase in developed pressure with a concomi-
tant elevation in dP/dtmax, confirming a positive
inotropic response to Ang-(1-9) (Figure 7). Since pro-
tein kinase A (PKA) has been previously reported to
modulate calcium flux via the L type Ca2þ channel
following application of Ang-(1-7) (24), we used the
inhibitor H-89, which did indeed abolish the response
to Ang-(1-9), thus supporting a role for PKA in the
positive inotropic effect of Ang-(1-9).

To extrapolate the findings in murine car-
diomyocytes and rat hearts to a human model,
hiPSC-CMs were used (25), and intracellular Ca2þ and
contraction were measured before (baseline) and
after 15 min incubation with different Ang-(1-9)
concentrations. A dose-dependent increase in Ca2þ

transient and contraction amplitudes was observed
within concentrations 0.5 mmol/l to 2 mmol/l (data
not shown) with no effect on parameters such as
calcium transient upstroke, rate of decline, or
contraction/relaxation times. Ca2þ transient ampli-
tude and contraction following incubation with
1 mmol/l Ang-(1-9) compared to control cells was
measured and a 210 � 10% change from baseline in
Ca2þ transient amplitude for cells incubated with
1 mmol/l Ang-(1-9) was observed, an effect signifi-
cantly different from control cells (98 � 13% change
from baseline) (Figures 8A and B). A parallel effect
was observed for contraction in terms of increased
amplitude (160 � 13% vs. 93 � 12%) (Figures 8C
and D).

DISCUSSION

Our study focused on an innovative gene therapy
approach to deliver Ang-(1-9) directly to the heart to
assess therapeutic effects and mechanisms of action
in a murine MI model. AAV9-mediated delivery of
Ang-(1-9) reduced acute rupture and mildly affected
cardiac hypertrophy and fibrosis, but preserved LV
systolic function, even at 8 weeks post-MI (Central
Illustration). The effects of Ang-(1-9) were mediated
via a direct positive inotropic effect. In isolated car-
diomyocytes, Ang-(1-9) enhanced Ca2þ handling by
increasing SR Ca2þ content and Ca2þ transient
amplitude (Central Illustration).

While rupture rates in MI and MI/AAVGFP groups
were consistent with previous studies (26,27),
AAVAng-(1-9) reduced acute rupture. Although the
reasons for this are not entirely clear, because
Ang-(1-9) delivery increased scar thickness, the
mechanism underlying this effect might entail stabi-
lization of cardiac architecture in the acute phase post-
MI. This is a potentially beneficial finding because
overall incidence of cardiac rupture in acute ST-
elevation MI patients is 6.4% (28). At 8 weeks, there
were no detectable differences in gene expression of
tumor necrosis factor alpha, IL1b, IL6, IL12a, and
interferon-g associated with inflammation; this is not
unexpected because these cytokines are upregulated
acutely following MI (29). We also measured

http://dx.doi.org/10.1016/j.jacc.2016.09.946
http://dx.doi.org/10.1016/j.jacc.2016.09.946
http://dx.doi.org/10.1016/j.jacc.2016.09.946


FIGURE 6 Excitation Contraction Coupling in Isolated Cardiomyocytes
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FIGURE 7 Inotropic Effects of Ang-(1-9)
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expression of genes involved in tissue remodeling in
MI, includingMMP-2, -9, -12, -14 and tissue inhibitor of
metalloproteinase-1 (30). Differences inMMP-2 and -12
could be detected at 8 weeks following AAVAng-(1-9)
delivery, suggesting one possiblemechanism bywhich
Ang-(1-9) can modulate remodeling during scar evo-
lution. Understanding how AAVAng-(1-9) delivery
contributes to healing post-MI and scar thickening will
be important to investigate by assessing a range of
acute time points within the first few days post-
delivery, when inflammation is high and the scar is
rapidly remodeling and evolving. Since AAV-mediated
delivery has been detectable as early as 2 days post-
delivery and is accelerated in damaged tissue (31–33),
future studies may reveal other mechanisms of
AAVAng-(1-9) action.

AAVAng-(1-9) delivery significantly reduced
fibrosis, although not specifically in the LV, suggest-
ing this did not significantly contribute to Ang-(1-9)’s
inotropic effect. The reduced fibrosis (albeit regional)
aligned with previous studies where osmotic mini-
pump delivery attenuated cardiac fibrosis (8). This
supports a general antifibrotic effect for the counter-
regulatory RAAS axis, given the ACE2/Ang-(1-7)/Mas
system’s well-established antifibrotic effects on the
myocardium (34,35). Ang-(1-9) did not mediate any
antihypertrophic effect, contrary to previous reports
(9,11), possibly because the previous work only
assessed hypertrophy at 2 weeks compared to at 8
weeks here. Therefore, early acute effects of Ang-(1-9)
on limiting hypertrophy might not be maintained
once significant structural remodeling has taken
place at 8 weeks.

AAVAng-(1-9)–transduced hearts consistently had
greater contraction and blood ejection, evidenced by
dramatically increased CO and stroke volume and
normalized EF, showing that regardless of MI-
induced dilation, function was maintained. This
contrasted with a previous study assessing osmotic
mini-pump-mediated Ang-(1-9) delivery on cardiac
function in rats post-MI that showed significantly
reduced LV dimensions and volumes and reported
reduced wall thickness, but no change in LV systolic
function (9). Therefore, while certain parameters
were consistent (e.g., alterations in LVESD), this
current study clearly demonstrated markedly
improved systolic function with AAVAng-(1-9),
corroborated via echocardiography and PV loop
measurements. A major reason for the difference may
be method of peptide delivery: Direct gene transfer in
the heart via AAV9 utilized here (vs. osmotic mini-
pump) achieved high local cardiac concentrations
(17,36). Local tissue-specific effects of the RAAS
might differ from systemic effects; for instance, local
Ang II production in the heart does not produce
acute cardiac remodeling, whereas systemic infusion
does (37). Tissue-specific effects were also reported
for Ang-(1-7) in MI in transgenic mice (38), and
lentiviral delivery of Ang-(1-7) in rat MI improved car-
diac function (39), supporting the concept that local
cardiac Ang-(1-7) and Ang-(1-9) produce beneficial
effects.



FIGURE 8 Excitation Contraction Coupling in hiPSC-CMs

Control

1 (secs)
Stim.

1µM Ang-(1-9)

Ra
tio

 3
60

/3
80

0.005

0.004

0.003

0.002

0.001

0.000

A

Control

1 (secs)
Stim.

1µM Ang-(1-9)

Am
pl

itu
de

 (a
.u

.)

800

700

600

500

400

300

200

100

0

C
Contro

l

Ang(1-
9)

*

*

Ca
t A

m
pl

itu
de

(%
 C

ha
ng

e 
of

 B
as

el
in

e)

250

200

150

100

50

0

B

Contro
l

Ang(1-
9)

Co
nt

ra
ct

io
n 

Am
pl

itu
de

(%
 C

ha
ng

e 
of

 B
as

el
in

e)
250

200

150

100

50

0

D

(A) Representative Ca2þ-transient traces from Ang-(1-9)-treated cells. (B) Average Ca2þ-transient amplitude for iCell2 hiPSC-CM (Cellular

Dynamics International, Madison, Wisconsin). (C) Contractility traces. (D) Average contraction amplitude for iCell2 hiPSC-CMs. *p <0.05 versus

control. Data presented as mean � SEM (n ¼ 5). Red trace ¼ 1 Hz stimulation. hiPSC-CM ¼ human-induced pluripotent stem cell-derived

cardiomyocytes; other abbreviation as in Figure 1.

J A C C V O L . 6 8 , N O . 2 4 , 2 0 1 6 Fattah et al.
D E C E M B E R 2 0 , 2 0 1 6 : 2 6 5 2 – 6 6 Ang-(1-9) Cardiac Gene Therapy

2663
Additionally, AAVAng-(1-9) delivery significantly
increased myocardial AT2R gene expression. AT2R
expression is reported to increase acutely following
MI (40). Given that AT2R is associated with car-
dioprotective effects (41), including reduced remod-
eling and improved function post-MI, this might
underlie some therapeutic effects of AAVAng-(1-9). A
small but significant change in Mas expression was
also observed in the MI/AAVAng-(1-9) group. The
reason for this is not clear because Mas is upregulated
in dysfunctional hearts 4 weeks post-MI in rats (42);
however, since in our studies, cardiac function was
preserved in AAVAng-(1-9)-infused mice, Mas down-
regulation might be compensatory. This requires
confirmation.

To gain further insight into potential mechanisms
underlying the positive inotropic effects of Ang-(1-9),
excitation contraction coupling was studied
in isolated murine cardiomyocytes (normal and
after MI) and the whole rat heart and hiPSC-CMs.
We demonstrated a direct inotropic effect of
Ang-(1-9), mediated through increasing Ca2þ transient
amplitude leading to increased contraction, and
possibly explained via increased L-type Ca2þ influx
paralleled by increased SR Ca2þ content. Although a
direct inotropic effect of Ang-(1-9) has not been
reported previously, when Ang-(1-7) is applied intra-
cellularly to cardiomyocytes, PKA is activated, leading
to increased L-type Ca2þ channel activity (24). Ang II is
reported to increase Ca2þ transient amplitude and
intracellular Ang II is reported to increase Ca2þ tran-
sient amplitude via modulating L-type Ca2þ current
and releasing SR Ca2þ (43,44). Several cardiomyocyte
Ca2þ handling proteins, including the L-type Ca2þ



CENTRAL ILLUSTRATION Post-MI Gene Therapy With Ang-(1-9)
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Adeno-associated virus serotype 9–mediated delivery of Ang-(1-9) via tail vein in a murine model of MI following coronary artery ligation produced significantly
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PERSPECTIVES

COMPETENCY IN MEDICAL KNOWLEDGE: In a

preclinical model of MI, gene therapy with Ang-(1-9)

preserved systolic function by mediating a direct

positive inotropic effect on cardiomyocytes.

TRANSLATIONAL OUTLOOK: Further work is

needed to assess whether Ang-(1-9) gene delivery in

other large animal models of myocardial infarction

preserves systolic function and prevents heart failure.
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channel, are regulated by PKA-mediated pathways
(45). The increased contractility in the isolated hearts
perfused with Ang-(1-9) in this study and the effect of
PKA inhibition suggest that Ang-(1-7) and Ang-(1-9)
may act by similar mechanisms leading to PKA
activation.

STUDY LIMITATIONS. Our studies were performed in
a murine model of permanent LAD ligation and future
studies in larger animal models following ischemic
reperfusion would be helpful to inform translation of
the gene therapy. Furthermore, the inotropic effects
studied in isolated cardiomyocytes were performed
via peptide perfusion and further work to isolate
cardiomyocytes from hearts infused in vivo with the
gene therapy combined with use of patch clamping
would enable full dissection of the inotropic effects of
Ang-(1-9). Nonetheless, the current studies strongly
support a beneficial effect of cardiac Ang-(1-9) gene
therapy in the setting of MI.

CONCLUSIONS

This study suggested that gene therapy to
augment Ang-(1-9) levels in the heart produces clear
benefit in a murine MI model. Our data supported the
notion that administration of the counter-regulatory
RAAS peptide Ang-(1-9) via translational gene
therapy is a novel and promising approach in heart
disease that preserves cardiac systolic function post-
MI and is maintained in a sustained manner.
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