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Unstructured Abstract

Chemical exposures during pregnancy can have a profound and life-long impact on human health. 

Due to the omnipresence of chemicals in our daily life, there is continuous contact with chemicals 

in food, water, air and consumer products. Consequently, human biomonitoring studies show that 

pregnant women around the globe are exposed to a variety of chemicals. In this review, we provide 

a summary of current data on maternal and fetal exposure as well as health consequences from 

these exposures. We review several chemical classes including polychlorinated biphenyls (PCBs), 

perfluoroalkyl substances (PFAS), polybrominated diphenyl ethers (PBDEs), phenols, phthalates, 

pesticides, and metals. Additionally, we discuss environmental disparities and vulnerable 

populations, and future research directions. We conclude by providing some recommendations for 

prevention of chemical exposure and its adverse reproductive health consequences.
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Introduction

Scientific evidence has shown the adverse impacts of exposure to toxic environmental 

chemicals to human reproduction (1). Chemical exposures, especially during critical and 

sensitive windows of development such as pregnancy, can lead to a myriad of health 

consequences that can manifest across individual’s lifespan and potentially be transmitted to 

future generations (1,2). Chemical exposures that occur during pregnancy can cross the 

placenta and can accumulate in the fetus (3). Accordingly, the next generations are born 

“pre-polluted” (4) due to these pre-conception and pre-birth exposures. Preventing harmful 
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exposures to environmental chemicals is, therefore, a priority for reproductive health 

professionals around the world (5).

Industrial chemicals are present in our daily life and are ubiquitous in food, water, air, and 

consumer products. World chemical manufacturing has grown rapidly over the past few 

decades (6,7), with a projected 3.4% annual rate in production increase until 2030 (7). 

Among the estimated 70,000 to 100,000 commercially available chemicals, almost 5,000 of 

them are produced in volumes exceeding one million tons a year (8). In the US, the total 

reported production volume (domestically manufactured and imported) of industrial 

chemicals in 2012 was 9.5 trillion pounds (4.31 trillion kgs) – equivalent to more than 

30,000 pounds (13,000 kg) for every American (5,9). As of 2016, more than 65,000 

chemical substances are listed for use by the US Environmental Protection Agency (US 

EPA) (10). Around 3,000 of these chemicals have annual production and importation above 

1 million pounds (11). Unlike pharmaceuticals that require extensive in-vitro and in-vivo 

toxicity testing as well as human experimental studies prior to entering marketplace and 

clinic, existing and new synthesized industrial chemicals currently can enter marketplace, 

homes, schools, workplaces, and communities with only limited or even no assessment on 

their reproductive or other related toxic effects (12,13). Further, there are not comprehensive 

data on where chemicals are used, so it is difficult to identify sources of exposures and the 

extent of exposures in the population. There are some data sources that allow 

characterization of certain exposures, such as air pollution monitoring, some monitoring of 

fish, and some portion of water and food supply (14). In the US, there is a national 

biomonitoring program run by the US Center for Disease Control and Prevention (CDC) 

using the National Health and Nutrition Examination Survey (NHANES), which has 

increased the number of chemicals biomonitored over the past 15 years (Figure 1) (15,16).

While we have made great progress in understanding the importance of chemicals in 

reproductive health and understanding exposures to pregnancy, we still have yet to 

comprehensively understand the full scope of the exposures and outcomes that may affect 

reproductive health. Understanding exposures is critical to both identify potential health 

risks and identify opportunities for intervention and prevention of harmful chemical 

exposures. It is being increasingly recognized in numerous initiatives, including the 

Exposome (17), Precision Medicine Initiative (18), Genes, Environment and Health 

Initiative (19), and Children’s Health Exposure Analysis Resource (20). Thus, using 

illustrative examples, this article aims to review the current evidence on environmental 

chemical exposures including synthetic chemicals and metals in pregnant women. We first 

provide an updated view on the relationship between environmental chemical exposure 

during pregnancy and potential adverse health consequences. We then summarize the current 

knowledge on the maternal body burden and fetal exposure to different environmental 

chemicals. After discussion on environmental disparities and future research directions, we 

conclude the article with recommendations for prevention of chemical exposure and its 

adverse health consequences.
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Health consequences of prenatal chemical exposure

Chemical exposures have been linked to a range of adverse reproductive and developmental 

outcomes, including fertility related affects, adverse pregnancy outcomes, and adverse health 

effects in childhood such as neurodevelopmental effects (Table 1). A key adverse health 

impact of concern to human reproduction and development is the endocrine disrupting 

property of many chemicals, particularly affecting hormones that are critical to proper 

development. These chemicals include polychlorinated biphenyls (PCBs), perfluoroalkyl 

substances (PFAS), polybrominated diphenyl ethers (PBDEs), bisphenol A (BPA), some 

current-use pesticides, metals and others (21). Exposure to environmental contaminants, 

especially during “critical” and “sensitive” periods of development such as during 

pregnancy, can heighten their potential impact. For example, prenatal exposure to lead and 

methyl mercury can lead to developmental neurotoxicity of the fetus (Table 1) (22). 

Sometimes, such negative health impact can be transgenerational and becomes apparent only 

decades after the initial exposure, as in the case of the drug diethylstilbestrol (DES), a potent 

synthetic estrogen (5). The daughters of pregnant women who took DES were found to have 

higher risks of infertility, poor pregnancy outcomes, and breast cancer (23) while the sons of 

these women have increased the risk of hypospadias (24,25). Such exposures during a 

window of vulnerability, even of small quantity, may trigger adverse health consequences 

that can manifest across the lifespan of individuals and generations (5). Despite these 

previous studies and discoveries, there is a paucity of studies on the effects of chemicals and 

reproductive outcomes, especially with regard to the number of chemicals and their potential 

harm.

Maternal chemical body burden

Pregnant women can be exposed to environmental chemicals in food, water, air, consumer 

products as well as soil and dust; such exposure can happen via multiple pathways including 

ingestion, inhalation and dermal contact (Table 1). Biomonitoring of suitable human tissue, 

such as urine and blood, has been widely used for examining the chemical burden and 

provide a measure of the internal doses integrated across different exposure pathways (2,26). 

Starting from 1999/2000, the US Center for Disease Control and Prevention (CDC) has been 

biomonitoring several groups of environmental chemicals using the National Health and 

Nutrition Examination Survey (NHANES), including metals, pesticides, polychlorinated 

biphenyls, polybrominated diphenyl ethers, volatile organic compounds, tobacco smoke, 

polycyclic aromatic hydrocarbon metabolites, perfluoroalkyl substances, phthalate and 

metabolites, and many others (Figure 1) (15,16). The approximately 250 chemicals that we 

have biomonitoring data on over the years only make up a small fraction of the vast number 

of chemicals that we may be exposed to every day. In our own previous work, we have 

evaluated chemical exposures among pregnant women using the NHANES 2003–2004 data 

and found that virtually all pregnant women in the US are exposed to at least 43 different 

chemicals (27).

As illustrations, we have collected information on chemical concentrations measured in 

biomonitoring of pregnant women from more than 30 countries around the world on the 

most commonly measured chemicals or their metabolites (Tables 2–8). We focused on 
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studies that have mothers’ biospecimens taken during pregnancy or at delivery and cord 

blood samples collected at delivery unless otherwise noted, and on studies published in the 

past 5 years for heavy metals as another study has summarized blood cadmium, lead and 

mercury levels from studies published from 2000 onward (28). We focus this review on 

common classes of chemicals and organize the following discussion according to chemical 

properties: persistent and bioaccumulative halogenated chemicals, less persistent and 

bioaccumulative chemicals, pesticides, and metals and organometallic chemicals. For each 

class of chemicals, we first briefly summarize the exposure sources and its health effect and 

then discuss its concentrations from biomonitoring studies.

Persistent and bioaccumulative halogenated chemicals

Many chemicals measured and found prevalently in pregnant women are persistent and 

bioaccumulative halogenated chemicals such as polychlorinated biphenyls (PCBs), 

perfluoroalkyl substances (PFAS), polybrominated diphenyl ethers (PBDEs), and 

organochlorine pesticides such as dichlorodiphenyltrichloroethane (DDT). Because of their 

chemical properties, they persist and can bioaccumulate up the food chain. Thus, they can 

remain in the environment and can be a source of exposure and pose risk to the health of 

humans and wildlife for many years. Even after their production and use are discontinued, it 

may take many years before their concentrations have sufficiently declined to minimal levels 

that are of less concern to human health (29). For example, despite being banned in the US 

after 1979, several PCBs (118, 138 and 158, 153, 180) were still detected in nearly 100% 

pregnant women from the NHANES 2003–2004 study (27). PCBs had once been used as 

industrial insulators and lubricants and have been shown to link to low birth weight (30) and 

poorer neurodevelopment outcomes (31) (Table 1). As they persistent in the aquatic and 

terrestrial food chains, high levels of PCBs were documented among Inuit pregnant women 

living in Nunavik (Arctic Quebec, Canada), due to high consumption of fish and marine 

mammals (32). Fortunately, the maternal concentration of PCB-153, the main contributor of 

the overall PCB level, has been declining over the years, though with some variability across 

countries (Table 2).

PFAS, especially perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA), were 

used in the manufacture of nonstick cookware products and in food-contact packaging and 

have been linked to reduced birth weight (33,34) and fetal growth (35) (Table 1). They are 

detected in the serum of 90–100% of pregnant women (3). One study examined the temporal 

changes in the levels of PFAS among California women over the past 50 years and found a 

significant drop of PFOS level from the 1960s to 2009, which is consistent with the phase-

out of the perfluorooctyl manufacturing practice in the US in 2002 (36). The median 

concentration of PFOA was found to have increased approximately 10-fold from the 1960s 

to the 1980s but started to decline in 2009 (36). A similar decreasing trend for 

concentrations of PFOS and PFOA over time during the past two decades can be found in 

studies across the globe (Table 3). Other PFAS such as the perfluorononanoic acid (PFNA) 

and perfluorodecanoic acid (PFDA), though at a much lower concentration level compared 

to PFOS, have a high detection frequency (>90%) among pregnant women (37–39), and 

their serum concentrations have increased among California women from the 1960s to 2009 

(36) and among Swedish women from 1996 to 2010 (40). The increasing blood levels of 
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PFNA and PFDA most likely reflect the increased use of their precursors – fluorotelomer 

chemicals – in commercial products after banning PFOS (41). Perfluorobutane sulfonate 

(PFBS) – replacements for PFOS-based chemicals used as stain repellents – is also shown to 

increase in human blood with levels doubling every six years among Swedish women from 

1996 to 2010 (40).

PBDEs are a newer class of persistent chemicals that have been used as flame retardants in 

furniture, textiles, carpeting, electronics and plastics and linked to impaired 

neurodevelopment and poorer motor, cognitive, and behavioral performance at school age 

(42,43) (Table 1). Here we present data for the sum of different PBDE congeners and 2,2′,
4,4′-tetrabromodiphenyl ether (BDE-47), one of the major congeners in the commercial 

mixture as it represents the most often found PBDE (Table 4). PBDEs (e.g. BDE-47) have 

been measured in populations around the globe (Table 4). BDE-47 is the most abundant 

PBDE detected in the serum of pregnant women from North America, Europe, and most 

places around the world, with exceptions in Denmark and China where the most abundant 

PBDE is BDE-209 (44) or BDE-153 (45) respectively. The concentration of BDE-47 and 

sum of PBDEs are also much higher among North American pregnant women compared to 

women from the rest of the world. The highest maternal serum concentration of BDE-47 

was reported among pregnant women from Northern and Central California (46), which was 

in part due to regulatory standards in California requiring use of flame retardant chemicals in 

furniture (47). Levels of PBDEs have been shown to decline as a result of them being 

banned and phased out and the changed regulatory standard for flame retardants (48,49).

Less persistent and bioaccumulative chemicals

Many chemicals are nonpersistent and tend to be rapidly metabolized and eliminated, with 

half-lives in the human body within 24 hours. Two examples of these chemicals that are 

widely reported in biomonitoring studies are phenols, a type of carbolic acid and aromatic 

compounds including BPA, triclosan and parabens (3,50), and phthalates (51). In contrast to 

the persistent chemicals such as PFAS, where maternal concentrations across pregnancy are 

highly correlated (52), only low to moderate correlations were found between multiple 

measurements taken over pregnancy for less persistent chemicals such as BPA (53–55) and 

phthalate metabolites (55,56). Thus, multiple measurements of these chemicals across 

pregnancy, particularly for studies of small sample size, are recommended (55,57).

Phenols are (58) widely found in consumer products, packaging, and cosmetic products and 

also used in foods and drugs (Table 1). BPA is a female reproductive toxicant (59) and has 

been linked to adverse hormonal and behavioral outcome in childhood (Table 1). There is 

sufficient non-human evidence of an association between triclosan exposure and thyroxine 

concentrations decrements and triclosan is possibly toxic to reproductive and developmental 

health (60). Research also suggests that parabens have estrogenic activity (61). Detectable 

levels across multiple populations to these types of chemicals indicate recent and/or 

continuous exposure to the chemicals, and have been shown for BPA (Table 5), triclosan 

(Table 5), and three types of parabens (Table 6). Comparable BPA concentrations were 

found across different studies and geographic locations (Table 5). Fewer studies have 

documented the concentration of triclosan and parabens. There are variabilities in the 
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maternal triclosan concentration across studies (Table 6). Methyl paraben had a much higher 

concentration than butyl paraben and propyl paraben, despite the small number of studies 

(Table 6).

Phthalates are used in a variety of consumer goods such as medical devices, cleaning and 

building materials, personal care products, and cosmetics and have been linked to shortened 

gestational age (62) and impaired neurodevelopment in girls (63) (Table 1). Phthalate 

metabolites are detected in over 90% of the maternal urine samples during pregnancy among 

North American or European populations (3). Yet, there are variations in the MEP levels 

across different studies and populations (Table 7).

Pesticides

Pesticides have been used to control a variety of pests, such as insects, weeds, rats and mice, 

bacteria and mold, and more, and are applied in agricultural, community, and household 

settings. Different pesticides have been associated with a range of reproductive and 

developmental outcomes including poorer birth outcomes, impaired cognitive and 

neurodevelopment, and childhood cancers (Table 1). Among pesticides, organochlorine 

pesticides (OCPs) such as hexachlorobenzene (HCB), dichlorodiphenyltrichloroethane 

(DDT), chlordane, and hexachlorocyclohexane (HCH) have been more widely studied, due 

to their earlier use and their persistent and bioaccumulative nature, endocrine disrupting 

properties, as well as their adverse health effects (3,64). Despite being banned in the US in 

the 1970s, some OCPs are still detected in US pregnant women (27). DDT is still used in 

some places around the world, most notably for controlling mosquito-borne diseases 

including malaria. As expected, in a study examining the regional difference of DDT 

exposure in South Africa, the authors found that levels of DDT isomers in plasma of 

delivering women were the highest in the endemic malaria sites where indoor residual 

spraying with DDT was taking place, among mining, urban, industrial, Atlantic, and rural 

sites (65). Women living in Latin America and other regions that use OCPs also have 

relatively higher maternal OCP levels (66–68). Current-use pesticides, characterized by 

shorter half-lives and chemical properties that do not promote bioaccumulation in sediments 

or organisms, are used to control a wide range of pests and in a variety of applications. For 

example, 2,4-dichlorophenol (2,4-DCP), 2,5-dichlorophenol (2,5-DCP), and 1-Naphthol 

have been detected in over 50% of the pregnant women from the Salinas Valley in 

California, US (agricultural regions) and with higher median concentrations than that from a 

US nationwide sample (NHANES study) (69).

Metals and organometallic chemicals

Cadmium, lead and mercury are three metals that have been widely used in a variety of 

applications over the past 50 years. They are also among the most well-studied industrial 

pollutants, and have been found collectively to have a number of adverse reproductive and 

developmental effects.

Cadmium are used in batteries, pigments, metal coatings, and plastics and have been found 

to alter epigenetic signatures in the DNA of both the placenta and the newborns (70), reduce 

IQ (71), and increase risk of emotional problems in boys (72) (Table 1). It can accumulate in 
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liver and kidney and has a long half-life of 5–40 years in the body (73) and has been 

detected in both maternal and cord blood (Table 8).

Lead was widely used in gas, paint, water pipes and other applications. Although lead use in 

many applications has been banned for several decades, exposure can still occur in older 

homes where lead-based paints were used, and in or on toys, costume jewelry, and water 

pipes. Lead has been linked to alterations in genomic methylation (74) and impaired 

neurodevelopment (75,76) (Table 1). In human adults, around 94% of the total body burden 

of lead is found in the bones. During pregnancy, the mobilization of bone lead will increase, 

which contributes to 10–88% of the lead in blood in pregnant women(77). Environmental 

policies, including removing lead from gasoline, paint and water pipes, have led to 

significant reductions in blood lead levels in the US. The median level of blood lead level 

among pregnant women from the US tends to be lower than women from the rest of the 

world (Table 8) (28). Similarly, a gradual reduction in blood lead levels over time has been 

reported in pregnant women from the UK, which is in accordance with banning lead in 

petrol and paint, replacing lead water pipes, and reducing cigarette smoking in the UK (28).

Mercury, which comes primarily from coal-burning power plants, combustion of waste and 

industrial processes that use mercury, and from natural sources such as volcanoes (14), 

usually gets into human body through consumption of contaminated seafood or fresh water 

fish and can negatively affect cognitive performance and neurodevelopment (Table 1). 

Maternal blood mercury level can vary across geographic areas and populations (Table 8). 

Populations with high fish consumption tend to have higher maternal blood mercury level 

during pregnancy, for example, pregnant women in Japan (78,79) and Faroe Islands (80), 

and the Inuit population in Nunavik (Arctic Quebec, Canada) (81).

Challenges of biomonitoring studies

Biomonitoring studies, despite their usefulness, have their own challenges. Cautions should 

be taken when trying to compare maternal blood levels across biomonitoring studies due to 

differences in sample size, sample preparation and analytical techniques, study period, and 

gestational ages at which the blood is drawn (28). Additionally, chemical levels measured in 

biomonitoring studies do not provide information about the sources of exposure but are the 

sum of exposures through multiple pathways. Environmental monitoring (e.g. air, water, and 

soil) studies, on the other hand, can provide useful information on exposure sources 

identification, which is critical for prevention.

Placental transfer and fetal burden

Fetal chemical exposures result from maternal body burden of chemicals during pregnancy 

due to placental transfer. However, fetal exposure is difficult to measure directly and thus is 

usually achieved by measuring chemicals in maternal matrices as a surrogate, or by 

measuring chemicals in cord blood, placental tissue, amniotic fluid, or neonatal meconium 

(2,82). The pattern of placental transfer is determined by the specific structure, chemical 

composition, molecular weight, and relative persistence of xenobiotic chemicals (2). Past 

literature has documented that most classes of environmental chemicals can cross into the 
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fetal environment. These chemicals include metals, PCBs, PFAS, PBDEs, pesticides, 

phenols and phthalates.

Some xenobiotic chemicals can bioaccumulate in the fetus and result in higher fetal 

exposure than maternal exposure while others are transferred in equal or less proportion 

(2,3). For example, studies have consistently found higher mercury concentration in cord 

blood than in maternal blood across different populations; the former being 1.5 to 3 times 

that of the latter (79,83–87). PCBs are widely detected in cord blood (88,89). Nearly all 

PCBs are found in higher levels in maternal than cord serum (90), with the exception of only 

a few congeners (91). One recent study suggested that lower chlorinated PCB congeners 

have a higher maternal-fetal transfer rate compared to higher chlorinated congeners (92) but 

this pattern is not supported by a systematic review and other studies (90,93,94). As PCB 

congener molecular weight (92,94) or lipophilicity (94) increase, placental transfer 

decreases. However, lipophilicity does not always predict bioaccumulation. PBDEs are 

lipophilic and also frequently detected in cord blood (3). Though the degree of bromination 

was suggested to influence placental transport, no apparent trend in ratios of cord:maternal 

concentration (>1 meaning concentration higher in cord blood than in maternal blood) was 

observed (90). The central estimates of this ratio also varied for the same PBDE congener 

across studies and depended on the measure (i.e., wet-weight basis or lipid-weight basis) 

(90). Organochlorine pesticides, similar to PBDEs, are also lipophilic chemicals and have 

been detected in placenta tissues (95) and cord serum (96–99). The majority of the studies 

included in a recent review reported central estimates of cord:maternal to be near or below 1 

for most organochlorine pesticides, on the basis of both wet weight and lipid-adjusted 

concentrations (90).

Other chemicals tend to more evenly distribute between maternal-fetal compartments. For 

example, phenols, phthalates, and phthalate metabolites can cross the placenta but evidence 

suggests that they do not accumulate in the fetus (3). Studies in both human (100) and rats 

(101) indicated that both active BPA and its inactive form can cross the placenta into the 

fetus where most of the active form remains active and some of the inactive forms can be 

converted to the active form. Moreover, certain forms of the chemicals can distribute 

disproportionally in maternal versus fetal environment, due to immaturity of enzymes that 

conjugate or metabolize these chemicals. For example, levels of BPA and BPA in sulfate 

form were 2–3 times higher than levels of BPA in glucuronide form in cord sera collected 

during mid-gestation, possibly due to immaturity of the glucuronidation conjugation 

enzymes (102). Among the few human studies that have compared concentrations of BPA in 

fetal and maternal blood sera, the reported mean BPA level is lower in fetal serum in some 

studies (103–106) but higher in others (107). Phthalate levels in cord blood or newborns’ 

urine were found to be similar to or lower than that in maternal blood or urine respectively 

(108,109). Except for BPA, evidence is limited on placental transfer characteristics of 

triclosan, parabens, phthalates, and phthalate metabolites and the transfer patterns of these 

chemicals need further investigation.

For some chemicals, the levels found in the fetus are lower compared to maternal 

measurements. For example, lead is generally present in slightly lower levels in the cord 

blood relative to maternal blood (110,111). Lower levels of PFAS are also generally found in 
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cord blood compared to maternal blood (37–39,112). Placental transfer of PFAS depends on 

the length of the carbon chain (2,3): shorter chain PFAS transferred more readily to cord 

blood than longer chain PFAS (113,114). Cadmium is another example, where the placenta 

appears to be a barrier, with much lower concentration in the cord blood being detected 

relative to maternal blood (79,86,115,116).

Studies have reported that PCBs, PFAS, PBDEs, OC pesticides, phenols such as BPA, TCS, 

and PBs, phthalates, and phthalate metabolites are detected in breast milk (3). This indicates 

that pre-birth exposures to the above chemicals and metals can continue to affect the 

offspring in postpartum, via breastfeeding.

Environmental disparities and vulnerable populations

The potential sources and amount of exposure to toxic chemicals are not the same for 

everyone. Women and men of reproductive age can encounter toxic chemicals at home, in 

the community, and in the workplace. Communities and individuals vary in their 

vulnerability and in their risk for exposure (5). The amount, duration and cumulative risk of 

exposure can depend on social, economic, geographic, occupational, medical and genetic 

factors (117).

Exposure to toxic environmental chemicals and related health outcomes are inequitably 

distributed among populations within countries and between countries. In the US, 

researchers and policy-makers have identified a higher frequency and magnitude of 

exposures to environmental stressors in communities of color and low-income communities 

(118,119). In addition, the consequences of exposure to toxic chemicals—including 

morbidity and mortality, loss of family income and productivity, and environmental 

degradation—are disproportionately borne by people with low incomes (120). For example, 

lower-income, ethnically diverse pregnant women in California were shown to have the 

highest level of PBDEs among pregnant women worldwide, mainly due to geography (e.g. 

California’s unique furniture flammability standards) and socioeconomic status (46). This 

combination and potential interaction of elevated environmental hazard exposures, on the 

one hand, and socioeconomic stressors, on the other, have been described as a form of 

“double jeopardy” (118,119).

Occupation can also add additional risk of exposure to toxic chemicals disparities which in 

turn impacts risk. For example, women employed as cosmetologists and manicurists are 

exposed to higher levels of volatile solvents (e.g., formaldehyde, methacrylates, ace- tone, 

and toluene), plasticizers (e.g., dibutyl phthalates), and other toxic substances. Pregnant 

women worked as cashiers had the highest urinary BPA concentrations (56). A recent study 

found that women in the nail and hair care industry were at higher risk of adverse birth 

outcomes (121). Farmworkers and their families are also at higher risk of exposure to 

pesticides with potential adverse reproductive and developmental outcomes (Table 1) (122).

Even after decades of basic science research and public health initiatives, disparities in 

pregnancy outcomes, such as preterm birth, remains relatively unchanged. Factors that 

underpin the disparity are elusive and likely derived in part from complex interactions 
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between social, biologic and environmental factors including social inequality, genetics, 

neighborhood-level exposures, roles of infection and inflammation, and pre-conception 

health differentials. Better characterizing exposures has been recognized as a need in health 

disparities research and will provide important information in understanding the cumulative 

impacts of environmental and social stressors and promoting targeted policies to address 

these impacts (123).

Future directions

Non-targeted screening for novel chemicals

The chemicals discussed in the current review are merely the tip of the iceberg. There are 

tens of thousands of chemicals that we may be in contact with but know little or nothing 

about. Conventional studies used targeted approaches where the list of chemical analytes 

being measured is chosen a priori. There is research need to identify the “unknown” 

chemicals for future biomonitoring that are prevalent in and could potentially pose harm to 

the human body, using novel methods (124) such as non-targeted screening (publication in 

preparation).

Cumulative effects of multiple chemical exposures

Due to the wide application of various environmental chemicals, pregnant women are not 

exposed to a single chemical or a single class of chemicals, but a cocktail of chemicals from 

different classes. Research finds that simultaneous exposure to multiple chemicals can have 

an additive or synergistic effect on health, particularly for the same adverse health outcome 

(125–129). Analysis conducted on one chemical at a time is likely to underestimate its 

potential health effect in the presence of other chemicals. Thus, an increasing number of 

studies have measured cumulative exposures to multiple chemical classes. A recent review 

suggests that among these studies of the North American and European populations that had 

measured multiple chemical classes, few papers have attempted to capture a complete 

picture across classes and biological matrices (3). Certain classes are frequently measured 

simultaneously and in a single matrix (maternal urine or maternal serum): non-persistent 

phenols and phthalates are often measured in urine while persistent chemicals such as PFAS, 

PBDEs, PCBs and organochlorine pesticides are commonly measured in serum (3). 

Epidemiologic studies trying to examine the health effect of joint exposure to different 

chemicals are limited, possibly due to a high cost for multiple measurements and limited 

sample size. Cumulative risk assessment of multiple chemicals and other environmental 

stressors needs to account for the possible compounded effects on the outcomes of concern, 

as the appropriate statistical models become available. Meanwhile, more educational efforts 

are needed to reduce the cumulative chemical exposure load currently experienced by 

pregnant women (3).

Paternal exposure

Although the current review focuses on maternal exposure, paternal exposure to 

environmental chemicals also plays a critical role in the health of next generations. 

Especially for persistent chemicals like PCBs, PBDEs, and lead, fetal exposure can be a 

result of parental exposures prior to conception. Paternal lead exposure was found to affect 

Wang et al. Page 10

Fertil Steril. Author manuscript; available in PMC 2017 September 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the development of newborns (130). Paternal exposures may contribute to fetal risk through 

mutagenic and epigenetic mechanisms involving the sperm; and the chemical could also be 

carried in semen, leading to fetal exposure after intercourse (131–133).

Interactions between gene and environmental chemicals

Humans can vary in their susceptibility to the adverse effects of toxic chemicals due to 

genetic variability (134). For example, one study found that higher maternal blood levels of 

β-hexachlorocyclohexane (HCH), an organochlorine pesticide, is associated with increased 

risk of idiopathic preterm delivery in women with GSTM1 null polymorphisms, because 

they lack activity of the enzymes responsible for detoxification of xenobiotics (135). Some 

genetic variant may also modify placental transfer of chemicals, leading to differential levels 

of fetal exposure. For example, a maternal iron metabolism genotype was found to be a 

modifier of placental lead transfer in the US population: infants born to mothers with HFE 
C282Y gene variant have lower cord blood level concentrations relative to those born to 

mothers who were wild-type (prevailing among individuals in natural conditions) (136).

The relation between genetic profile and the external environment in affecting human health 

is not uni-directional, but bi-directional. Toxic environmental exposure could also induce 

changes in gene regulatory mechanisms that correlate strongly with disease etiology (e.g. 

cancer and infertility) (137). For example, PCBs may cause mutations in p53 and K-ras 
oncogenes and represent risk factors for colorectal and pancreatic cancers (138,139). The 

inclusion of gene-environmental interaction in risk assessment may help identify and thus 

safeguard vulnerable populations.

Recommendation for prevention

In clinical settings, obstetricians and gynecologists can provide authoritative and science-

based guidance on how to avoid potentially adverse exposures (140). They are also uniquely 

poised to intervene to prevent harm before and during pregnancy, which is a critical window 

of human development (141). In 2015, the International Federation of Gynecology and 

Obstetrics (FIGO) released an opinion article on reproductive health impacts of exposure to 

toxic environmental chemicals, where FIGO joins ACOG/ASRM, the Royal College of 

Obstetricians and Gynecologists, the Endocrine Society, and the Society of Obstetricians and 

Gynecologists of Canada in “urging reproductive health professionals including 

obstetricians, gynecologists, midwives, nurses, women’s health nurses practitioners and 

others to take timely action to prevent exposure to toxic environmental chemicals” (5). 

Clinicians can adopt several tactics to incorporate environmental health into their patient-

centered care, including (i) becoming knowledgeable about toxic environmental agents that 

are endemic to their specific geographic area, (ii) intervening as early as possible 

(preconception and during pregnancy), (iii) taking an exposure history (especially 

occupational exposures), (iv) providing anticipatory guidance on how to make healthier 

choices and avoid toxic exposures at home, in the community, and at work, and (v) reporting 

identified hazards. Detailed strategies and useful resources have been summarized elsewhere 

(1,140,141).
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The role of reproductive health professionals in preventing harmful environmental exposures 

extends beyond the clinical setting. Advancing society-wide and prevention-oriented policy 

actions are essential for reducing toxic exposures to pregnant women and other vulnerable 

populations because many exposures are beyond individual’s control (i.e., from air and 

water) (140). To this end, clinicians play a crucial role in, for instance, initiating 

institutional-level interventions in support of a healthy food system and engaging in 

reducing pesticide use in institutional pest-control policies (140) and many more policy 

settings, including through their own professional organizations.

Understanding the sources and extent of exposures to environmental chemicals is a critical 

element in the efforts of reproductive health professionals to identify and prevent harmful 

chemical exposures to their patients and the population. In conclusion, to translate science 

into healthier pregnancy, healthier children, and healthy future generations, efforts are 

needed in advancing scientific research on characterizing chemical exposure in pregnant 

women and its health impact, synthesizing evidence to develop recommendations for 

prevention using systematic methods (142), and promoting policy change.
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Figure 1. 
Chemicals that are biomonitored by the US National Health and Nutrition Examination 

Survey (NHANES) from 1999 to 2012 based on the CDC 4th National Report on Human 

Exposure to Environmental Chemicals (Updated Tables, February 2015) and CDC 

NHANES website (http://www.cdc.gov/nchs/nhanes.htm) as of April 2016. Note: There will 

be more chemicals added for some biannual cycles in the future, especially later cycles, due 

to delay in data analyses and releasing. Not all the chemicals currently biomonitored by 

NHANES are high production volume chemicals.
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Table 1

Examples of exposure sources and pathways, and selected health impacts of prenatal exposure to 

environmental contaminants

Chemical Exposure sources and pathways Selected health impact (reproduction, poor birth 
outcome, neurodevelopment, and cancer)

Polychlorinated biphenyls (PCBs) Used as industrial insulators and 
lubricants; banned in the 1970s, but 
persistent in the aquatic and terrestrial 
food chains, which results in exposure by 
ingestion.

• Decreased semen quality (143)

• Low birth weight (30)

• Development of attention deficit–
hyperactivity disorder–associated 
behavior (31)

• Reduced IQ (144)

Perfluoroalkyl substances (PFAS) Widely used man-made organofluorine 
compounds with many diverse industrial 
and consumer product applications; 
examples are perfluorooctane sulfonate 
(PFOS) and perfluorooctanoate (PFOA), 
which are used in the manufacture of 
nonstick Teflon and other trademark 
cookware products and in food-contact 
packaging to provide grease, oil, and 
water resistance to plates, food 
containers, bags, and wraps that come 
into contact with food; persist in the 
environment; occupational exposure to 
workers and general population exposure 
by inhalation, ingestion, and dermal 
contact.

• Pregnancy-induced hypertension 
and preeclampsia (145)

• Reduced birthweight (33,34)

• Reduced fetal growth (35)

• Increased risk for thyroid disease in 
children (146)

Polybrominated diphenyl ethers 
(PBDEs)

Flame retardants that persist and 
bioaccumulate in the environment; found 
in furniture, textiles, carpeting, 
electronics and plastics that are mixed 
into, but not bound to, foam or plastic.

• Impaired neurodevelopment (42)

• Reduction in sustained attention and 
fine manipulative abilities (43)

Phenols Examples are bisphenol A (BPA), 
triclosan, and parabens.

• Female reproductive toxicity (59) 
(e.g., recurrent miscarriage (147))

• Aggression and hyperactivity in 
female children (148)

• Impaired behavioral regulation 
(anxious, depressive, and 
hyperactive behaviors) in girls aged 
3 years (149)

• Reduced neonatal thyroid-
stimulating hormone (TSH) in boys 
(150)

BPA: Chemical intermediate for 
polycarbonate plastic and resins; found in 
consumer products and packaging; 
exposure through inhalation, ingestion, 
and dermal absorption.

Triclosan:
Synthetic chlorinated aromatic compound 
with antibacterial properties; used in 
many consumer products such as 
antibacterial soaps, deodorants, 
toothpastes, cosmetics, fabrics, plastics, 
and other products; exposure through 
ingestion, dermal contact, and 
consumption of contaminated food and 
drinking water.

• Decreased thyroxine 

concentrations* (60,151)

Parabens:
Most commonly used preservatives in 
cosmetic products, including makeup, 
moisturizers, hair care products, and 
shaving products; also used in foods and 
drugs; exposure through dermal 
absorption and ingestion.

• Found to have estrogenic activity in 
vitro (61) but further studies needed 
for their reproductive and 
developmental health impacts
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Chemical Exposure sources and pathways Selected health impact (reproduction, poor birth 
outcome, neurodevelopment, and cancer)

Phthalates Synthetically derived; used in a variety of 
consumer goods such as medical devices, 
cleaning and building materials, personal 
care products, cosmetics, 
pharmaceuticals, food processing, and 
toys; exposure occurs through ingestion, 
inhalation, and dermal absorption.

• Shortened gestational age (62)

• Male reproductive tract 
development (reduced anogenital 
distance) (152)

• Impaired neurodevelopment (152)

• Reduction in executive function at 
age 4–9 years (153)

Heavy metals Cadmium: used in batteries, pigments, 
metal coatings, and plastics; for non-
smoking public, exposures mainly occur 
through diet (shellfish, organ meats, 
grains such as rice and wheat, leafy 
vegetables, and some root crops such as 
potato, carrot, and celeriac) (154,155); for 
smokers, exposure mainly occur through 
tobacco smoke.

• Alterations of epigenetic signatures 
in the DNA (DNA methylation) of 
the placenta and of the newborns 
(70)

• Reduced IQ (71)

• Increased risk of emotional 
problems in 7-to 8-year-old boys 
(72)

Lead:
Occupational exposure occurs in battery 
manufacturing/recycling, smelting, car 
repair, welding, soldering, firearm 
cleaning/shooting, stained-glass 
ornament/jewelry making; 
nonoccupational exposure occurs in older 
homes where lead based paints were used, 
in or on some toys/children’s jewelry, 
water pipes, imported ceramics/pottery, 
herbal remedies, traditional cosmetics, 
hair dyes, contaminated soil, toys, 
costume jewelry.

• Alterations in genomic methylation 
(74)

• Impaired neurodevelopment 
(decrease in cognitive function, 
decreased IQ, increased incidence 
of attention-related behaviors and 
antisocial behavior problems, and 
decreased hearing measured in 
children, reduced intellectual 
development) (75,76)

Mercury:
Coal-fired power plants are largest source 
in the United States; primary human 
exposure by consumption of 
contaminated seafood.

• Reduced cognitive performance 
(156,157)

• Impaired neurodevelopment 
(158,159)

• Reduced psychomotor outcomes 
(160)

• Neurobehavioral deficits (161)

Perchlorate Used to produce rocket fuel, fireworks, 
flares, and explosives and can also be 
present in bleach and in some fertilizers; 
primary pathway for exposure is through 
drinking water caused by contaminated 
runoff.

• Altered thyroid function in 
newborns (162)

Pesticides Applied in large quantities in agricultural, 
community, and household settings; in 
2007, >1.1 billion pounds of active 
ingredients were used in the United States 
(163); can be ingested, inhaled, and 
absorbed by the skin; pathways of 
exposure include food, water, air, dust, 
and soil.

• Impaired fetal growth (164)

• Impaired cognitive development 
(165,166)

• Impaired neurodevelopment: 
increased risk of pervasive 
developmental disorder at age 2 
years (167), increase in attention 
problems and attention deficit 
hyperactivity disorder behaviors at 
age 3 years (168) and reduction in 
working memory capabilities and 
IQ at age 7 years (165,169)

• Increased susceptibility to testicular 
cancer (170)

Fertil Steril. Author manuscript; available in PMC 2017 September 15.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Wang et al. Page 33

Chemical Exposure sources and pathways Selected health impact (reproduction, poor birth 
outcome, neurodevelopment, and cancer)

• Childhood cancers (leukemia (171–
173) & brain tumor (174))

Solvents Liquids or gases that can dissolve or 
extract other substances; used in 
manufacturing, service industries such as 
dry cleaning and printing, and consumer 
products including stain removers, paint 
thinners, nail polish removers, and hobby/
craft products; examples are: benzene, 
gasoline, ethyl alcohol, methanol, phenol, 
styrene, toluene, trichloroethylene, and 
xylene; exposure occurs through 
inhalation, dermal absorption, and 
ingestion.

• Spontaneous abortion and fetal loss 
(175–180)

• Decreased fetal and birthweight 
(181,182)

• Congenital malformations 
(180,182–186)

Modified from American Journal of Obstetrics and Gynecology, volume 207, number 3, Sutton P, Woodruff TJ, Perron J, Stotland N, Conry JA, 
Miller MD, et al., Toxic environmental chemicals: the role of reproductive health professionals in preventing harmful exposures, Pages 164–73, 
Copyright 2012, with permission from Elsevier.

*
Based on animal studies
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