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Abstract

From cyanobacteria to human, sustained oscillations coordinate important biological func-
tions. Although much has been learned concerning the sophisticated molecular mecha-
nisms underlying biological oscillators, design principles linking structure and functional
behavior are not yet fully understood. Here we explore design principles of biological oscilla-
tors from a multiobjective optimization perspective, taking into account the trade-offs
between conflicting performance goals or demands. We develop a comprehensive tool for
automated design of oscillators, based on multicriteria global optimization that allows two
modes: (i) the automatic design (forward problem) and (ii) the inference of design principles
(reverse analysis problem). From the perspective of synthetic biology, the forward mode
allows the solution of design problems that mimic some of the desirable properties appear-
ing in natural oscillators. The reverse analysis mode facilitates a systematic exploration of
the design space based on Pareto optimality concepts. The method is illustrated with two
case studies: the automatic design of synthetic oscillators from a library of biological parts,
and the exploration of design principles in 3-gene oscillatory systems.

Introduction

Sustained oscillatory behavior can be generated by a simple negative feedback loop in combi-
nation with a time delay [1]. Biological oscillators, however, usually show a more complex
structure. Mammalian circadian rhythms, for example, include multiple (negative and posi-
tive) feedback and feedforward loops in their underlying transcriptional networks [2]. Other
significant oscillators like the sino-atrial node (mammalian heart’s natural pacemaker) and the
cell cycle oscillator rely on circuits containing both positive and negative feedback loops [3].
The reasons for this complexity are in many cases not fully understood, and many efforts are
devoted to identify design principles underlying the complex architectures selected through
evolution (either organism- or function-specific properties or design principles shared by dif-
ferent organisms and functions).

Quoting Goldbeter [4]: “In view of the large number of variables involved and of the complex-
ity of feedback processes that generate oscillations, mathematical models and numerical
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simulations are needed to fully grasp the molecular mechanisms and functions of biological
rhythms.” In fact, mathematical models and computational approaches have already helped to
build synthetic oscillators [5-8] (we will refer here to this design problem as forward analysis).
Similarly, they have been used to identify underlying design principles [3, 4, 9-18] (we will
refer here to this problem as reverse analysis).

By means of quantitative modeling, Tyson and Novak [14] demonstrated four general
requirements (structural and parametric) in biological oscillators: negative feedback, time
delay, sufficient ‘nonlinearity’ of the reaction kinetics and proper balancing of the timescales
of opposing chemical reactions.

In a computational study, Tsai et al [3] found that, in circuits with both negative and posi-
tive feedbacks, a higher positive feedback strength led to a better capacity to adapt the period
to cell demands. This property, referred to as period tunability, is found advantageous in a
wide range of biological oscillators including the cell cycle.

In this work, we propose a multiobjective optimization-based design approach to the analy-
sis of biological oscillators, suitable for both forward and reverse analysis.

Why optimization-based design? Optimization provides a systematic and efficient manner
to explore the potential selective pressure over a particular feature of a biological oscillator (by
considering the circuit realization as the outcome of an optimization-based design procedure).
In this way, it is possible for example to investigate what environmental conditions drive spe-
cific oscillatory network architectures [19, 20], or to find core oscillatory modules with specific
properties, for example minimal numbers of nonlinearities and components [15, 21]. In a
more broader context, optimization strategies are being successfully applied to gene regulatory
circuit design [22, 23].

Why a multiobjective approach? We assume that certain structural and parametric charac-
teristics of biological oscillators could be explained by the fact that they are subject to trade-
offs between conflicting goals or demands. Rand et al [24] explored the relationships between
various desirable properties of circadian rhythms, postulated as evolutionary aims, and sug-
gested a relation between complexity of the circuit and degree of flexibility (understood as the
number of desirable properties that can be tuned simultaneously). While some of the evolu-
tionary aims for circadian clocks are independent, other properties were found to be in a
trade-off, as it is the case for entrainability to synchronize with external stimuli and regularity
to oscillate with a precise period [1]. Multicriteria (Pareto) optimality concepts are being
increasingly used to analyze/design complex systems in different contexts [25-27], including
RNA design [28], bacterial adaptability [29, 30], metabolic networks [31-35], gene regulation
[23, 36] and biosystems engineering [37].

Following the analysis of Tsai et al [3] of a model of the cell cycle, in which the period tun-
ability (improved by increasing the positive feedback strength) was postulated as an evolution-
ary aim, we try to mimic the evolutionary process by an optimization procedure, in which the
tunability of the period is an objective to maximize. A single optimization problem (without
any further constraint) can lead to unrealistic values of the positive feedback strength. Intui-
tively, the stability of the oscillator appears as a biologically meaningful opposing objective to
take into account. In this work we find that period tunability and stability of the oscillation are
in a trade-off, and considering both as opposing objectives to maximize in a multiobjective
problem gives as a result realistic values of the feedback strength.

Our optimization-based design approach relies on Mixed-Integer Nonlinear Programming
(MINLP) methods, which provide computational efficiency to handle the required levels of
complexity [38, 39]. The approach is described in the Methods section, addressing in detail (i)
how to formulate the design of an (oscillatory) gene regulatory network as a multiobjective
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mixed-integer dynamic optimization problem, including potential objective functions to be
selected, and (ii) how to solve efficiently the multiobjective problem to obtain the Pareto front.

In the Results section, we apply our methodology for both forward and reverse analysis of
oscillators.

Within the above mentioned optimization-based framework, the forward analysis problem
(left branch in the workflow in Fig 1) consists of systematically finding circuits capable of sus-
tained oscillations (and also optimizing additional performance goals) among all the circuits
that can be obtained by combining components of a given database (or library) of biological
parts. Additional design criteria taking into account implementation issues can also be added.

Also within the optimization-based framework, the reverse analysis problem (right branch
in the workflow in Fig 1) consists of finding structural/parametric patterns which allow us to
infer design principles of biological oscillators. First we perform an optimization-based search
through the topology-parameter spaces, aiming to find circuits (topology and parameters)
leading to oscillations. Second, we proceed to extract innovative design principles through
analysis of the optimization results, similarly to what have been recently called innovization
procedures in engineering [40]. In other words, reverse analysis allows us to systematically
uncover design principles from sets of optimal trade-off (Pareto) solutions.

Methods
Multiobjective Mixed-Integer Design Framework

Optimization-based design aims to find the design (or designs) with the best overall perfor-
mance (in this case sustained oscillations) among the set of all possible circuits (search space).
In this work we focus on oscillations at the transcriptional-translational level, and our
approach is based on dynamic models of gene regulatory networks.

We employ a Mixed-Integer description of the gene regulatory network dynamics that is
not constrained to a particular kinetics or model granularity. On the contrary, the description
is generic and relies on the following assumptions:

1. A circuit in the search space is completely characterized by a vector of integer (and/or
binary) variables (accounting for the topology or configuration) and a vector of real vari-
ables (accounting for parameter values).

2. the dynamics of the gene regulatory network can be encoded in a system of Ordinary Dif-
ferential Equations (ODEs) of the form:

Z(t) :f(zay7x7k)’ Z(O) =2 (1)
where:

« z € RY is the vector of dynamic state variables coding for the levels of all the species involved
in the circuit (we will denote its time derivative by z);

« x € R is the vector of continuous decision variables containing the tunable parameters;

« y € ZM is the vector of integer (or binary) decision variables determining the circuit model
structure;

« k € R¥ isa vector of fixed parameters.

In what follows N refers to the number of states (levels of the species involved) of the
model, R is the number of tunable continuous parameters, M is the number of integer or
binary variables defining the circuit structure and K is the number of fixed parameters. A
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number of gene regulatory network examples (with different kinetics and levels of detail) are
included in the S1 Appendix.

Within this framework, a design goal can be encoded in an objective function of the form
J(z,z,x,y,k) such that the predefined behavior (design target) is achieved when J reaches its
minimal value. Multiple design criteria are defined through a vector of objective functions
J=Uuls -5 J)

We formulate the automated design of a gene regulatory network as finding a vector x €
R* of continuous variables and a vector y € Z" of integer variables which minimize the vector
J= U]y ---,Js) of objective functions:

n;g’n ]1(57279@)” k>7]2(2.:725x7y7 k)a B Js(i;Z’xJ” k) (Za)

subject to:

1. the circuit dynamics in the form of ODEs or Differential Algebraic Equations (DAEs) with
the state variables z and additional parameters k:

E(2,z,x,9,k) =0, z(t,) = z,, (2b)

2. additional requirements (performance specifications and/or physicochemical limitations)
in the form of equality and inequality constraints:

h(z,x,y,k) =0, (2¢)

g(z,x,y,k) <0, (2d)

3. upper and lower bounds for the real and integer decision variables:

x, < x < xy (2e)

<y <y (2f)

The solution of the Multiobjective Optimization (MOO) problem consists of a set of points
denoted as Pareto optimal [41, 42], and the set of all Pareto optimal solutions is known as
Pareto front. A feasible circuit defined by (x*, y*) is a Pareto optimal solution of the multiob-
jective optimization problem if it is not dominated by other feasible circuits. Given two pairs
(x*, ¥°), (x**, y**), we say that J(x*, y*) dominates J(x**, y**) if J(x*, y*) < J(x**, y**) for all J;
(i=1,...,5) with at least one strict inequality.

For those readers not familiar with multiobjective optimization note that the above is a vec-
tor optimization problem [41]. In a multiobjective optimization problem, the utopia (or ideal)
point is the one that optimizes all objective functions simultaneously as if they were considered
in isolation (see the S1 Appendix). The utopia point is unattainable if at least two objectives are
in contrast with each other, since optimizing one of the objectives will damage the others.

In terms of theoretical optimality all the solutions in the Pareto front are equivalent. In
engineering design, the so called decision maker needs to define posterior preferences and
evaluate them along the Pareto frontier in order to choose the best solution for implementa-
tion. In absence of posterior preferences, a common practice is to select the solution closest to
the utopia point (this compromise solution is usually called the knee point). In this work, we
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adopt this additional selection criterion, and in what follows, we refer to the circuit with mini-
mum distance to the utopia point as the circuit with best performance (in the context of multi-
objective optimization).

Design objectives for sustained oscillations in gene regulation

The single-objective optimization-based design of an oscillator requires to define an objective
function whose minimization results in the desired oscillatory response. We introduce an
objective function based on the autocorrelation of time series, which we prove to be well suited
and effective for the search of sustained oscillators.

For a multiobjective design approach, we consider the sustained oscillatory behavior as
requirement (constraint), and propose the tunability of the period and the stability of the limit
cycle stability as criteria to be optimized. After introducing the autocorrelation function, we
will provide mathematic definitions for both performance objectives and justify their selection
as design targets.

Autocorrelation Function. A number of objective functions for oscillatory behavior can
be found in the literature, based on fits to oscillatory dynamics or Fourier transforms [15].
Here we make use of the autocorrelation function.

Let s; be a time series corresponding to a process which is ergodic and stationary. The auto-
correlation function of s, is defined as:

T
T(£) = (s(£)5(0)) = lim — / ds(t + 7)s(x) (3)
T-0T J

We normalize this function to get I',,,,,,,(f) = T'(£)/T'(0) such that the maximum value is
Loorm(0) = 1.

For s, being the output of a deterministic simulation with sustained oscillatory behavior, the
autocorrelation function Eq (3) oscillates in a sustained manner, and the first peak in the nor-
malized autocorrelation function, in what follows denoted by P,,,,,r» takes its maximum value
1.

If s, describes a realization of a stochastic oscillatory process, i.e., it corresponds to the num-
ber of molecules Z'(t) of a species i, the autocorrelation I'(f) shows a damped oscillation, due to
the fact that stochastic fluctuations induce the phase diffusion of the oscillator and affect its
periodicity [10]. The height of the first peak of the autocorrelation gives a measure of the preci-
sion of the stochastic oscillator [43]. The precision of the oscillators is usually quantified
through the so-called quality factor, defined as Q = 2my/T where ¥ is the inverse of the damping
rate or characteristic time of the decay of the autocorrelation function [16] and T is the period
of the oscillation [10]. The quality factor Q is an estimation of the number of oscillations over
which the periodicity is maintained [44] (note that higher P,,,,,,r results in better Q). The qual-
ity factor is directly related also to the so called dissipation constant of the oscillator [45].

Therefore, we select —P,,,,.,.r as the objective to minimize in searching for oscillatory cir-
cuits. By minimizing this function we maximize the oscillator’s precision in case of stochastic
time series and ensure a perfect (non damped) oscillation in case of deterministic dynamics
when the objective function reaches its minimum value (-1).

In addition to its efficacy in the search for oscillators, the objective function chosen has
additional advantages in terms of biological insight.

Taking s(f) = Zi(t) in Eq (3), the time average is equal (in stationary processes) to an average
over the stationary probability distribution for the initial molecular number Z(0), and we can
establish a relation with the solution of the Chemical Master Equation (CME) as it has been
derived by [10].
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Fig 2. Leading Floquet Exponent plotted versus (negative) of the Period Tunability for the model of the mitotic
oscillator. There is a trade-off between both properties for the model of the mitotic oscillator in [46] (rdenotes here the
positive feedback strength).

doi:10.1371/journal.pone.0166867.g002

On the other hand, a relation between the dissipation constant of the oscillator (directly
computable from the envelope of the autocorrelation function) and the free energy dissipated
in one cycle of the oscillator has been found in a recent work by [45], leading to the conclusion
that cells consume energy to improve the precision of the oscillator (robustness against intrin-
sic molecular noise). This result supports our selection of the first peak of the autocorrelation
function as a biologically meaningful objective to optimize.

Tunability of the period. A wide range of biological oscillators, from the cell cycle to the
sino-atrial node oscillator, require to adjust their frequency to the organism’s demands with-
out compromising the amplitude of the oscillations. Starting from a model of the mitotic oscil-
lator, Tsai et al [3] found that the tunability of the period (understood as the variability of the
period without compromising the amplitude of the oscillations) increased with the positive
feedback strength, indicating that circuits containing positive feedback might have been
selected through evolution in cases where tunable frequency is desired. The period of the oscil-
lator was changed by varying the rate constant for cyclin B synthesis, .y, (see Fig 2b).

Here, we define the period tunability PTun with respect to an input or manipulable variable
range 0 as follows:

Plun=T,  (0)-T,,(0) (4)

max
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where T,,,,(0) and T,,;,(0) are the maximum and minimum values of the period within the
manipulable variable interval. For convenience, we can normalize the function dividing by a
constant in order to obtain a maximum at PTun = 1. The maximum variation of the amplitude
allowed can be considered through an additional constraint.

Using the improved model for the mitotic oscillator in Xenopus by Tsai et al [46], we evalu-
ate, as in the original work by [3], the tunability of the period with respect to the cyclin B syn-
thesis rate constant k.. If we consider a single-criterion optimization process where the
unique objective is to maximize the period tunability, we obtain unrealistically high values of
the feedback strength. Therefore we introduce (at least) another (potential) evolutionary aim
exerting pressure in the opposing direction to obtain, as an outcome of an optimization pro-
cess, more realistic values of the feedback.

Stability of the limit cycle. In order to test a potentially conflicting design objective we
introduce here the stability of the limit cycle, evaluated through Floquet analysis. The stability
of the limit cycle is here understood as the robustness of the oscillator against perturbations of
the trajectory.

Let us consider the dynamics of an oscillator with period T to be described by Eq (1). The
Jacobian of the system, D f = %, is a continuous T-periodic N x N matrix function. We define
a linear matrix first order initial value problem:

® =D fO, ®0)=1Id

where Id is the N x N identity matrix. The monodromy matrix of the system is computed as:
T
O(T) = / D f®dt, ©(0)=Id.
0

the eigenvalues of the monodromy matrix are the so-called Floquet multipliers:
Flog,, = eig(®(T)).

Floquet multipliers are dimensionless numbers that give the period-to-period increase/
decrease of a small perturbation away from the limit cycle. There is a multiplier equal to 1, cor-
responding to perturbations along the direction of the cycle, and the moduli of the remaining
multipliers determine the stability of the limit cycle. The Floquet exponents:

|Flog,,|
F = 1 —m
log = In T

have rate units time ' and describe the mean contraction/expansion rate per one period of the
orbit.

If any Floquet multiplier has a modulus greater than one (equivalently a Floquet exponent
has a positive real part) the perturbation increases along the corresponding direction and the
limit cycle is unstable.

For stable limit cycles, the leading Floquet exponent (denoted in what follows as LFlog) is
an indication of how fast the system returns to its stable original periodic orbit after a pertur-
bation. This has been found to correlate with the robustness of the oscillator against molecular
noise, in the stochastic version of the model [47].

Using again the improved model for the mitotic oscillator in Xenopus by Tsai et al [46], we
evaluate the Floquet exponents, and we find that performance indices, LFlog and PTun, are in
a trade-off, as it can be deduced from the Pareto front in Fig 2. Importantly, the feedback
strength decreases as we move along the Pareto front (from lower to higher stability of the
limit cycle).
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Therefore, the selection of LFlog and PTun as objective functions is justified based on: i) the
two variables appear to be in a trade-off in the model of the mitotic cell cycle oscillator, ii) the
corresponding multiobjective problem leads to realistic values of the positive feedback strength
(similar to those found in nature).

A direct relation between the leading Floquet exponent and the envelop of the autocorrela-
tion function has been established by [48], showing that the leading Floquet exponent gives a
measure of the robustness of the oscillator with respect to molecular (intrinsic) noise. In this
way, by optimizing the leading Floquet exponent, we are using a deterministic measure (com-
puted from the deterministic ODE description of the oscillator) to optimize robustness against
molecular noise without the need of stochastic simulations.

Computing the Pareto front

Computing the Pareto optimal set is a challenging task in the context of biological circuits
where search spaces can be large and combine real and integer variables, and the expected
Pareto front might be discrete and/or non-convex, due to the high nonlinearity and the pres-
ence of integer variables.

Many methods have been developed to solve MOO problems. A typical classification [41] is
based on the role of the decision maker, and includes (i) no-preference methods, (ii) a posteri-
ori methods, (iii) a priori methods and (iv) interactive methods. We select the £-constraint
method, which belongs to the category of a posteriori methods and it is based on scalarization
techniques, i.e. conversion of the original MOO problem to a set of single-objective optimiza-
tion problems (in our case MINLP problems). In contrast to goal attainment method (which is
an a priori method) the e-constraint method does not require the pre-definition of reference
goals [41], a major advantage in biosystems engineering applications, where in general such
references are unknown.

The proposed optimization process is composed of the following steps, considering two
objective functions J; and J,:

1. Search for the optima of each of the individual objectives:
(7 21)s (5,95)-
2. Compute the individual objective bounds as:

Lo =103, 90)s T = T1(x5,93),

]_2 :]z(x;’y;)’ I :]2(’57’)/?)-

3. Select the objective function to be minimized, denoted in what follows as the primary objec-
tive (without loss of generality let us take J; as the primary objective).
4. For the non-minimized objective J,, generate a vector
e=le,....&...,8,]
suchthate) <J2,&, >Jgande] <e9 < ... < gy,
5. Solve the MINLP:

min ]1(Z.,Z, x7y7 k)
wy
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subject to:
& S ]2(2.'727 XY, k) < 8k+1
fork =1,...,m — 1 by means of a MINLP solver.

6. Evaluate the solutions obtained and construct the Pareto front with the non dominated
optimal ones.

The e-constraint methodology described has two important advantages in the context of
gene regulatory oscillators: all Pareto optimal solutions can be found (even for discrete and
non-convex Pareto fronts) and, in addition, it allows to exploit the advantages of hybrid
MINLP solvers.

Hybrid MINLP solvers combine global optimization metaheuristics with efficient local
search methods, taking elements of both stochastic and deterministic optimization
approaches. In [37], hybrid solvers have been shown to outperform pure evolutionary methods
[49] in a number of Nonlinear Programming problems (real variables), since hybrid solvers
required less function evaluations. In a previous work, we proved the efficiency of hybrid
MINLP approaches for the design of gene regulatory networks [38]. Here we make use of
three MINLP hybrid solvers that combine stochastic global search with the local Mixed-Integer
Sequential Quadratic Programming (MISQP) by [50], namely the Enhanced Scatter Search
algorithm (eSS) by [51], the Mixed-Integer Tabu Search algorithm (MITS) by [52] and the
Mixed-Integer Ant Colony Optimization (ACOmi) by [53].

Results

Forward analysis: automated design of oscillators from a library of
biological parts

In the context of forward analysis the modeling framework needs to ensure modularity and
easy translation of the model into an implementable circuit. The use of standard parts allows
to transfer experimental data to mathematical models and facilitates the design of gene regula-
tory systems [22].

We follow the formalism from the Registry of Standard Biological Parts [54] and consider
the following basic constitutive components of genetic circuits: promoters recruiting the tran-
scriptional machinery which transcribes the downstream DNA sequence, ribosome binding
sites controlling the accuracy and efficiency with which the translation of mRNA begins, pro-
tein coding regions containing the sequence information needed to create a functional protein
chain and terminators signaling the end of transcription.

The abstraction hierarchy proposed by Endy [54] classifies standard parts in three different
layers: parts, defined as sequences with basic biological functions (like for example DNA bind-
ing proteins), devices (combinations of parts with a particular function) and systems (combina-
tions of devices). This is illustrated in Fig 3 through the Repressilator regulatory system [5],
where the different devices and parts are indicated.

We start from a library of biological parts, where each part in the library is endowed with a
set of reactions. The full set of reactions for a given circuit is obtained from the reactions of its
constitutive parts. Regarding the reactions associated with each part type, we adopt the formal-
ism proposed by Pedersen and Phillips [55], where, for a device where the promoter G is
repressed by a protein P, the following reactions are considered:

1. Binding of the repressor G + P — GP,
2. Unbinding of the repressor GP — G + P,

PLOS ONE | DOI:10.1371/journal.pone.0166867 December 15, 2016 10/26
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Fig 3. Repressilator regulatory system [5]. The system consists of three genes connected in a feedback loop. The first gene in the circuit expresses some
protein A which represses the second gene, the second gene expresses a protein 5 which represses the third gene, and protein C expressed by the third
gene closes the feedback loop by repressing the first gene.

doi:10.1371/journal.pone.0166867.9003

3. Transcription GP — GP + mP,
4. Translation mP — mP + P,
5. Protein degradation P — ().

All the reactions are endowed with mass action kinetics, and the dynamics of the all the spe-
cies (including mRNA) are taken into account (see the S1 Appendix for details). It is important
to remark that within this formalism, the set of reactions associated to each part is easy to
extend in order to consider e.g. hybrid promoters, different degrees of cooperativity, promot-
ers controlling multiple transcription factors, etc). Here we extend the original set of reactions
to incorporate:

6. Degradation of bound repressor GP — G.

To accommodate the dynamics into our Mixed-Integer description, let us denote by G the
number of promoters, B the number of ribosome binding sites, P the number of protein cod-
ing regions and A the number of terminators in the library of biological parts. The number of
possible device configurations (in what follows we refer specifically to protein generator
devices) is M = G x B x P x A. We label every possible device with an integer index i =
1,..., M and build a vector y € Z" of binary variables such that:

y, =1, if the device i is part of the circuit structure,

y; =0, otherwise.

The structure of a gene regulatory circuit is completely defined by the vector y.

Fixed kinetic parameters are collected in a vector k € R¥, whereas manipulable parameters
are contained in the vector x € R*. Importantly, we can select any parameter to be tuned (for
example the strength of the RBS). In some design problems, it might be of interest to select an
external inducer as a decision variable. In this case, the external inducer will be part of the
“tunable parameters” in the problem formulation.
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The dynamics are given by Eq (1), with:
f(z,y,x,k) = N(y)v(x, y, k) (5)

where N(y) is the stoichiometric matrix and v(x, y, k) is the vector of rates of the reaction net-
work (depending nonlinearly on the species in accordance with the mass action law).

A database of biological parts, adapted from Pedersen and Phillips [55] has been coded in
Matlab. The Matlab library contains 4 promoters: G, = P,, G, =P,,,G; =P,.;, G, = P, 1
ribosome binding site, 1 terminator and 11 protein coding regions for the proteins cIR, tetR,
araC, lacl, luxI, luxR, lasR, lasl, ccdB, ccdA, ccdA2. This makes a total of 44 possible devices,
where each device contains a pair promoter-protein coding region, 1 ribosome binding site
and 1 terminator. Labeling each of this devices with a number from 1 to 44, the structure of a
circuit is completely defined by a vector y with 44 binary entries. Note that (without additional
constraints on the number of devices) circuits can contain from 1 to 44 different devices. The
nominal values of the kinetic parameters are taken from [55].

For a given pair (y, x), the model equations of the corresponding gene network are automat-
ically generated.

We can impose a maximum number of devices (D,,,,) in the solution circuit(s) by setting:

M
Zyi S Dmux
i=1

First, we solve a single objective design problem aiming to find endogenous oscillators
among the combinations of devices in the library, minimizing —P,,,,,r. The number of possi-
ble different devices (binary decision variables for the optimization based design) is n = 44 and
we set a maximum of three devices D,,,,, = 3. We use in first instance the original version of
the library (without degradation of bound repressor).

Stochastic regime. The constraints imposed by the dynamics are obtained here by simulation
with the stochastic Gillespie algorithm [56] (the kinetic constants are adjusted accordingly). In
this way, we are taking into account the effect of intrinsic noise [57], i.e. stochastic fluctuations
associated with intracellular reactions. In order to tackle extrinsic sources of noise (due to
unequal partition of cellular material at cell division), mathematical frameworks like Stochastic
Variable Number Monte Carlo by [58] should be used.

The best oscillator found consists of the three devices P;,.-rbs-araC-ter, Py,4-rbs-cIR-ter, P,-
rbs-Lacl-ter following the Repressilator configuration. The circuit is depicted in Fig 4, together
with the dynamics obtained by the Gillespie algorithm for a single realization and the autocor-
relation function for the cIR stochastic dynamics.

Deterministic regime. In the deterministic regime, no circuit was found leading to sustained
oscillatory behavior. We initially employ a multistart strategy (20 runs of 600 seconds from dif-
ferent random initial guesses) using eSS, MITS and ACOm1, and after increasing the number
of runs and computation times arrived to the same result.

We further use the extended library including the degradation of bound repressor. With
the same multistart strategy we found six different circuits, all of them endowed with the
Repressilator topology illustrated in Fig 3 where P, represses G,, P, represses G,, and P
represses G,. We include the solutions in Fig 5.

The six circuits perform optimally with respect to the single objective (sustained oscilla-
tions). Additional criteria are needed in order to select the best circuit for further implementa-
tion. Next, we compute the values of the leading Floquet exponent LFlog (as indicated in Eq
(1)) and the Period tunability PTun (understood here as the variation of the period with
respect to the protein degradation constant) according to Eq (4). The values obtained are
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Fig 4. Stochastic realization and autocorrelation function for the best oscillator found by the algorithm from the library of biological parts (D,;.x =
3).

doi:10.1371/journal.pone.0166867.9004

shown in Table 1. Only three of the circuits (corresponding to structures 1, 4 and 5 in Fig 5)
are found to be Pareto optimal with respect to these two design criteria.

We evaluate now the distance to the utopia point from each of these solutions, which is
found to be minimal for the circuit 4.

In Fig 6, the dynamics of circuit 4 for low and high values of the degradation constant are
depicted.

Importantly, note also that the circuit with highest leading Floquet exponent, i.e. circuit 5,
is the one which was previously found to be more robust with respect to molecular noise in the
stochastic framework (maximizing the first peak of the autocorrelation function).

In summary:

1. Six different structures leading to sustained oscillations where found in the deterministic
regime, taking into account the degradation of the bound repressor. All the oscillatory cir-
cuits found are endowed with a Repressilator-type structure (the original Repressilator is
included among the solutions, corresponding to circuit 3 in Fig 5).

2. No deterministic oscillators were found from combinations of parts in the library, without
taking into account the degradation of the bound repressor.
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Table 1. Values of the period tunability (nhormalized) and leading Floquet exponent for the circuits in Fig 5.

Circuit 1 Circuit 2 Circuit 3 Circuit 4 Circuit 5 Circuit 6
PTun 0.9758 0.9400 0.8147 0.9560 0.9428 0.8147
LFlog -0.0017 -0.0016 -0.0018 -0.0024 -0.0025 -0.0015

doi:10.1371/journal.pone.0166867.t001

3. In the stochastic regime, oscillators are found without taking into account the degradation
of the bound repressor. These results are coherent with [59], where oscillatory behavior is
precluded in absence of cooperativity and without degradation of the bound repressor for
the Repressilator, and it is shown that deterministic and stochastic methods might not
agree about the existence of oscillations.

4. Using as criterion the shortest distance to the utopia point, we selected the Repressilator-
type circuit with the best performance with respect to both stability of the limit cycle and
tunability of the period.

5. The oscillator with highest limit cycle’s stability (highest leading Floquet multiplier) in the
deterministic regime is found to be the most robust with respect to molecular noise in the
stochastic regime.
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Fig 6. Dynamics of circuit 4, for low (a) and high (b) values of the degradation constant kd. It can be observed that the frequency of the oscillator is

higher for the circuit with higher kd.
doi:10.1371/journal.pone.0166867.9006

Reverse analysis: uncovering design principles of oscillatory gene
regulatory networks

In the context of reverse analysis we use a species-based representation, biologically-verified
and extensively employed in the study of developmental gene networks [60, 61], in which a cir-
cuit is defined by the signs and strengths of the interactions. Within this framework, a N-gene
regulatory network is described by a directed graph where the nodes are genes and the edges
indicate their interactions (one arrow from gene .A to gene B indicates the transcriptional reg-
ulation of B by the transcription factor encoded by .A). The regulation from gene g, to gene g,

is characterised by two numbers:
« an integer y; € {~1, 0, 1}, coding for inhibition (~1), no action (0), and activation (1);
« astrictly positive weight x; € Rq.

The gene-gene interaction indices and the weights are contained in two matrices Y € Z"*"
and X € RY ™ respectively (where N is the number of genes in the network). The effective reg-
ulating input to a gene G, is given by:

N
L= Z 0,z + ol (6)
=1

where wj; = yj; x;; and the term o; I reflects the effect of external inputs (in case the gene G, is
only affected by internal gene-gene interactions, the coefficient ¢; = 0). The transcription rate
is proportional to the sigmoidal-filtering of the total contribution, such that the balance for the
protein z; encoded by G, reads:

. 1 _
S T epla b)) 7
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where parameters a and b control the steepness and location of the threshold value of the regu-
lation function, and § is the protein degradation rate constant. The formalism complies with
the requirements A.1 and A.2 in Methods section with a vector x € R containing the weights
(its elements are taken column-wise from X), and a vector of binary variables y € Z" deter-
mining the interactions (its elements are taken column-wise from Y). Note that R = M. Param-
eters a, b, § and other fixed parameters are included in a vector k € R*.

In previous studies, Tyson and Novak [62] reported two different 3-gene motifs with capac-
ity for oscillatory behavior: the negative feedback loop motif, and the amplified negative feed-
back loop motif. Besides, Kim et al [63] found that coupled negative-negative feedback loops
enforce oscillatory behavior. Exploring the dynamics of basic signalling modules, Kholodenko
[64] reported 32 different positive-negative feedback designs with capacity for oscillations (for
some of them, a degree of cooperativity of the feedback regulations is required for oscillatory
behavior).

Here, we are interested in evaluating whether feedforward loops can produce, in combina-
tion with additional connections, sustained oscillations.

We consider the 3-gene network in Fig 7 with genes A, B and C, where the net internal
interaction matrix is given by:

0 0 0
Q= Wup Wpp Dy
Wyc Wpe Dcc

and the gene A is induced by an external input I. The ODE system describing the dynamics of
this network, according to Eqs (6) and (7) reads:

A= 1 s
~ 1+exp(a—b(D)
. 1
B = — 0B
1+ exp(a—b(w,zA + wgeB+ 05C)) (8)
1

= —oC.
1+ exp(a— b(w,cA+ @yeB+ 0.C))
A, Band C denote the levels of species .4, 15 and C. The binary variables y4g, yac and ycp deter-
mine what we denote as underlying feedforward configuration of the circuit, whereas ygg, ¥5c
and ycc define additional interactions of B and C self-activation (or deactivation) and mutual
inhibition-activation from B to C. The values of the input, parameters and initial conditions
are included in the S1 Appendix.

There are eight possible underlying feedforward structures (with active AB, AC and CB con-
nections), corresponding to the four coherent (C) and four incoherent (I) feedforward (FFL)
motifs [65]. In Fig 7 the structures for C4-FFL and I3-FFL motifs are depicted.

First, we formulate a single objective design problem minimizing J; = —P,,,r to find oscil-
latory circuits. There are six integer variables ¥ = yap, ¥2 = ¥gp, ¥3 = YcB> Ya = Yac> V5 = YBC V6 =
ycc describing the sign of the connections and six real variables x; = x4, X, = Xgp, X3 = Xcp, X4
= Xac X5 = xpc and xs = xcc describing the strengths. We follow a multistart strategy similar to
the previous application, finding 35 different circuit structures leading to oscillations, depicted
in Fig 8.

We can classify the obtained oscillatory topologies in ten different groups, according to the
values of the integer variables y; = yp, ¥3 = ycp and y, = y4c which define the feedforward
loop type. Ten different underlying topologies (denoted by US1 to US10 in Fig 8) are found.
Among them, we find three coherent feedforward motifs: C1-FFL, C2-FFL and C4-FFL
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o @
@ : PLOS | ONE Design Principles of Biological Oscillators through Optimization

C4-FFL I3-FFL

Fig 7. Superstructure for the 3-gene feedforward motif with additional connections (adapted from [61]). Middle
and right structures correspond to the coherent feedforward motif C4-FFL and the incoherent feedforward motif 13-FFL.

doi:10.1371/journal.pone.0166867.g007

(corresponding to US10, US2 and US7 in Fig 8), three incoherent feedforward motifs: I1-FFL,
I2-FFL and I3-FFL (corresponding to US9, USI and US4 in Fig 8) and four degenerated struc-
tures (lacking one of the principal connections), corresponding to US3, US4, US6 and US8 in
Fig 8.

In order to look for recurrent additional-connection patterns among the circuits found we
use the diagram in Fig 9a, in which the connections are represented by colors.

It can be observed that no oscillatory circuit is found without any active additional connec-
tion (y2 = ¥ps, ¥s = Yo Vs = Vo) (feedforward loops alone have not the capacity to create oscil-
lations). Actually, two additional connections are necessarily active (negative or positive) in all
oscillators. Importantly, we find recurrent patterns in connections (¥, = ygp, ¥s = Y80 ¥s = Ycc)
leading to oscillators. The three combinations depicted in Fig 9b (green) appear always in
oscillatory circuits with a negative value of y; = ycp in its underlying FFL structure, while the
combinations in Fig 9b (yellow) appear always in oscillatory circuits with a positive value of y;
= ycp in its underlying FFL structure. According to these results, a negative feedback between
Band C genes is needed for an oscillation showing that activation-repression cores embedded
within feedforward loops produce oscillations. Most of the feedforward structures require also
of B self-activation (in case of negative y; = y¢3), or C self-activation (in case of positive y; =
ycp), except for C4-FFL and I3-FFL where oscillations appear also without this additional
requirement.

Importantly, all the structures found include a regulated feedback motif as defined by [65],
since an activation-repression negative feedback between C and B (in which the activator is
amplified by self-activation or by the upstream transcription factor) is always present. Note
that this core feedback leads to symmetries between circuits with core topologies US1-US2,
US3-US5, US4-US7, US6-US8 and US9-US10.

Next we formulate a multiobjective problem setting as design objectives the leading Floquet
exponent LFloq (as indicated in Methods section) and the Period tunability PTun (understood
here as the variation of the period with respect to the input) according to Eq (4). Here, the con-
dition for oscillations is set as an additional inequality constraint where the first peak of the
autocorrelation function is greater than a predefined threshold P,,,ur > Prormrin-
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Fig 8. 3-gene topologies (all of them correspond to regulated feedback motifs) leading to oscillatory behavior (structures s; to s35), grouped in
terms of the corresponding underlying feedforward loop type. Underlying feedforward topologies (US1 to US10) are defined by the values of the integer
variables y4, yz and y,. Red, blue and white entries represent positive (+1), negative (-1) and absence of regulation (0), respectively. All of them include a

regulated feedback motif, as defined by [65].

doi:10.1371/journal.pone.0166867.9008
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Fig 9. 3-gene topologies leading to oscillatory behaviour. a) Schemes for the 3-gene topologies producing sustained oscillations. Red, blue and white
entries represent positive (+1), negative (-1) and absence of regulation (0), respectively. b) Recurrent sets of additional interactions are enclosed by yellow

and green rectangles.

doi:10.1371/journal.pone.0166867.9g009

Using the £-constraint strategy described in Methods section, we obtain a set of non-domi-
nated points depicted in Fig 10, where it can be observed that only two different underlying
feedforward structures appear in the Pareto front: the coherent feedforward motif 4 (C4-FFL)
and the incoherent feedforward motif (I3-FFL). The first point in the Pareto Front (maximum
value of the period tunability) corresponds to a C4-FFL circuit. There is an intermediate point
(P2) with no effect of gene .4 on gene C. As the value of the tunability decreases, the topology
changes to I3-FFL. We observe that the strength of the y ¢ connection increases as we move

along the Pareto front.
In summary:

1. Ten different (proper or degenerate) feedforward structures (all of them with an embedded
enhanced negative feedback caused by an activation-repression core) are found leading to
oscillatory behavior. Importantly, all the oscillatory structures contain a regulated negative
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Fig 10. Pareto Front of 3-gene motifs with underlying feed-forward structure showing a trade-off between period tunability and stability of the limit
cycle. The structure and parameters for each circuit indicated, together with the dynamics of the oscillator for the lower and upper values of the input /. Circuit
P1 exhibit a significantly greater period tunability (oscillations at lower and upper values of the input have very different periods) than the other circuits in the
Pareto Front.

doi:10.1371/journal.pone.0166867.9010

feedback motif (as defined by [65] and no feedforward circuit alone (without additional
connections) is found to be capable of sustained oscillations.

2. Activation-repression cores embedded within feedforward loops produce sustained oscilla-
tions (we find that negative feedback between B and C genes is necessary for oscillatory
behavior). Most feedforward structures require also of B self-activation (in case of negative
¥3 = Ycp), or C self-activation (in case of positive y; = ycp), except for C4-FFL and I3-FFL.
Recurrent additional-connection patterns are summarized in Fig 9.

3. A set of non-dominated circuits are found to show an optimal trade-off between period
tunability and stability of the limit cycle.

4. Activation-repression cores embedded within feedforward loops C4-FFL and I3-FFL pro-
duce optimal oscillators in terms of robustness and period tunability.

5. The oscillator topology evolves in a structured manner along the Pareto Front, changing
from (activation-repression) cores embedded within a C4-FFL loop to cores embedded
within a I3-FFL structure as tunability decreases and robustness (limit cycle stability)

increases.
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Conclusions

We developed a global mixed-integer optimization approach for the analysis of biological
oscillators. This approach is valid for deterministic and stochastic description of the dynamics,
makes use of the autocorrelation function to detect sustained oscillatory behavior, and allows
the incorporation of multiple design criteria. We illustrated how this approach is useful for
both forward engineering and reverse analysis of biological oscillators.

We propose the first peak of the autocorrelation function as an objective to maximize in
stochastic oscillators, which allows for effective search of oscillators with optimal robustness
with respect to molecular (intrinsic) noise. Oscillator robustness with respect to parameters
has been analyzed in a recent paper by [66]. In the deterministic regime, we propose the lead-
ing Floquet multiplier as an objective to optimize, in order to find oscillators with optimal
attractivity of the limit cycle. We have also shown through an example that, in accordance with
relations previously established between autocorrelation and Floquet multipliers [48], optimiz-
ing the leading Floquet in the deterministic regime provides optimal robustness with respect
to intrinsic noise in the stochastic regime. A recent work by [45] shows a relation between the
phase diffusion constant of an stochastic oscillator and the free-energy dissipation per cycle,
indicating that cells may consume energy (ATP) in order to maintain the coherence of oscilla-
tions. This supports the selection of both objectives (first peak of the autocorrelation in sto-
chastic regime and Floquet in deterministic regime) as meaningful potential evolutionary aims
in the context of biological oscillators. The opposing objective chosen in this work (tunability
of the period), has been already postulated as an evolutionary aim by [3] for a wide range of
oscillators including the cell cycle. We found that tunability of the oscillator and stability of the
limit cycle are in trade-off for the mitotic cell cycle oscillator [3], in which the existence of
more than one design objective was needed to obtain, as the outcome of an optimization pro-
cedure, realistic values of the feedback strength.

Forward engineering of biological oscillators (automated design): single objective design
problems can have several (possibly infinite) solutions with similar performance, where no
extra information is obtained to select the best circuit for implementation. On the contrary,
introducing multiple opposing objectives lead to well-defined design problems, where the
solution is a Pareto front of non-dominated points, ordered by increasing/decreasing values of
each of the objective functions (this aspect has been illustrated in [38]). We propose the dis-
tance to the so-called utopia point as a criterion to select the best oscillator for
implementation.

Starting from a library of biological parts, we searched for circuits capable of endogenous
sustained oscillations. Without taking into account degradation of bound repressors, oscilla-
tors where found only in the stochastic regime. After extending the library to introduce degra-
dation of the bound repressor, we found circuits capable of sustained oscillations in both
stochastic and deterministic regimes. Using the extended library, we found six different struc-
tures (of the Repressilator type) leading to sustained oscillators. Taking into account as addi-
tional design criteria the period tunability and the stability of the limit cycle, the original
Repressilator is not recovered as an optimal one in the Pareto Front. This is not strange, as the
original Repressilator design is not based on optimization (in particular, it has not been
designed to optimize any of the criteria we are taking into account). By means of a multiobjec-
tive optimization formulation, we found other Repressilator-type structures performing better
than the original Repressilator in terms of period tunability and limit cycle stability.

The multiobjective approach can be useful to implement circuits with the ability to mimic
some of the desirable properties appearing in natural oscillators. For example, in the design of
synthetic circadian clocks [67], where the oscillator needs to satisfy at least: persistence under
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constant conditions (precise period), entrainability by light/dark signals and temperature com-
pensation of the period [68].

Reverse analysis of biological oscillators (exploring design principles): the existence of trade-
offs among opposing performance goals might be important to explain the circuit complexity
found in natural oscillators.

We searched for circuits (topology and parameters) giving rise to sustained oscillators in a
3-gene feedforward superstructure, leading to interesting observations. First, all the structures
found to oscillate include a regulated negative feedback consisting in an activation-repression
core embedded within the feedforward loop. Regulated feedbacks (a two node feedback is reg-
ulated by an upstream transcription factor) are, according to [65] a family of motifs or patterns
of interconnections occur in natural transcriptional networks at frequencies much higher than
those found in randomized networks. In particular, regulated feedbacks are found to be over-
represented in developmental transcription networks.

Performing a multiobjective (tunability vs stability) design we observed that activation-
repression cores embedded within feedforward loops C4-FFL and I3-FFL produce optimal
oscillators (fulfill the trade-off relationship between period tunability and stability of the limit
cycle). Moreover, the oscillator topology evolves in a structured manner along the Pareto
Front, changing from an activator-repressor core embedded into a C4-FFL to an activator-
repressor core embedded into a I3-FFL, as tunability decreases and limit cycle stability
increases.

We propose a multiobjective iterative procedure to systematically explore design principles
of biological oscillators: starting from a vector of design objectives, compute the set of non-
dominated solutions and infer a set of patterns or design principles from the Pareto front.
Then, compare the obtained patterns with the architectures found in natural oscillators. In
case of divergence, a new set of objective functions is considered, and the Pareto front of solu-
tions updated, in an iterative process. Any property of interest in the design of oscillators, and/
or postulated as a potential evolutionary aim can be encoded as an objective in the design
problem, including protein production cost, robustness against variability in the protein levels,
period entrainability with an external signal. For the case of stochastic oscillators, the mean
period and the precision have been also suggested as evolutionary aims [16]. The selection of
the design objectives depends on a priori advantageous properties for the case under study.
These advantageous properties can be radically different, for example, between the cell cycle
oscillators and a circadian clock [1, 69, 70].
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