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Abstract

Bike-sharing programs, with initiatives to increase bike use and improve accessibility of

urban transit, have received increasing attention in growing number of cities across the

world. The latest generation of bike-sharing systems has employed smart card technology

that produces station-based data or trip-level data. This facilitates the studies of the practical

use of these systems. However, few studies have paid attention to the changes in users and

system usage over the years, as well as the impact of system expansion on its usage. Moni-

toring the changes of system usage over years enables the identification of system perfor-

mance and can serve as an input for improving the location-allocation of stations. The

objective of this study is to explore the impact of the expansion of a bicycle-sharing system

on the usage of the system. This was conducted for a bicycle-sharing system in Zhongshan

(China), using operational usage data of different years following system expansion. To this

end, we performed statistical and spatial analyses to examine the changes in both users

and system usage between before and after the system expansion. The findings show that

there is a big variation in users and aggregate usage following the system expansion. How-

ever, the trend in spatial distribution of demand shows no substantial difference over the

years, i.e. the same high-demand and low-demand areas appear. There are decreases in

demand for some old stations over the years, which can be attributed to either the negative

performance of the system or the competition of nearby new stations. Expanding the system

not only extends the original users’ ability to reach new areas but also attracts new users to

use bike-sharing systems. In the conclusions, we present and discuss the findings, and offer

recommendations for the further expansion of system.

1. Introduction

Cycling is widely associated with benefits in terms of the environment, society, and economy

[1,2]. The combined use of a bicycle and public transport for a trip, which has been regarded

as part of the solution for achieving a more sustainable transport, has grown over the past few

years [3,4]. Recently, bicycle-sharing programs, with initiatives to increase bike use and

improve “the last mile” of urban transit, have received increasing attention in more and more

cities across the world [5,6]. Published studies have shown that for both utilitarian and
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recreational purposes, cycling has increased in some cities that are operating bicycle-sharing

systems [7,8]. Currently, more than 600 such systems are operating around the world, and

many systems are being planned and will start operation in the near future [9].

The latest generation of bicycle-sharing systems has employed smart card technology,

which enables users to monitor the number of available bikes and parking slots via real-time

online maps or mobile apps [6,8]. This technology produces station-based data or trip-level

data, which facilitates studies of the practical use of bicycle-sharing systems [10]. Some studies

have employed data mining techniques [11–14] and visualization techniques [15–17] to

uncover the spatial and temporal patterns of cycle trips. Other studies have explored bike-shar-

ing use, in terms of its impact on other transport [18–20], user demographics [21,22], and the

influence of built environment factors [23–32], weather and calendar events [33,34] on shared

bike demand. Most of the aforementioned studies, except one from Goodman and Cheshire

[21], did not address the changes in usage (i.e. in terms of both users and demand) over the

years, and did not study the impact of the system expansion on its performance. However, sys-

tem usage might not be stationary, and may change over the years. Examining changes in

usage of a system over the years enables the identification of factors that influence the system’s

performance, and can also serve as an input for improving the location-allocation of stations

and planning for new stations.

In this context, the objective of this study is to explore the changes of system usage over the

years and impact of the expansion of a bicycle-sharing system on the usage of the system. This

study was conducted for a bicycle-sharing system in Zhongshan (China), using trip data from

March 2012, March 2013, and March 2014. Such a system gradually expanded the number of

stations equipped with parking slots between March 2012 and March 2013, and again between

March 2013 and March 2014. This study contributes to the understanding of how the system

usage (in terms of both users and demand) changes following the expansion of the system.

Moreover, this study also provides insights into: (1) what information can be extracted from

trip data to evaluate the impact of system expansion on its use; and (2) what can be learnt from

this evaluation to promote the further extension of the system.

The remainder of this paper is organized as follows. The next section provides a literature

review. Section 3 introduces the study area and data preparation, and explains the research

method. Section 4 presents and discusses the results. Finally, Section 5 draws the key conclu-

sions and offers the recommendations for the system expansion and further study.

2. Literature review

With the availability of open data, i.e. station-based data or trip level data, a large number of

studies have been carried out to explore the practical usage of bicycle-sharing systems. In gen-

eral, those studies mainly cover four aspects: Firstly, to explore the spatial and temporal pat-

terns of bike use over the time of day, using data mining [12–14] and visualization [15–17]

techniques. Froehlich et al. [12] grouped stations based on bicycle activity at the stations of

Barcelona’s public bike system, and Kaltenbrunner et al. [13] extended the former analysis by

predicting bicycle activity at Barcelona’s stations over the hours of the day. Vogel et al. [14]

examined activity patterns of bike use at the stations of Vienna’s system. They generally found

that usage during peak hours of weekdays are quite different from that of weekends, and that

differences in peak usage at stations might be associated with the kind of activities in the neigh-

borhood. Beecham et al. [15] analyzed cycling trips by members of London’s bike-sharing sys-

tem. They found that women tend to use public bikes at weekends and within London’s parks,

while men tend to use public bikes for commuting. Moreover, women’s trips are highly spa-

tially structured and mainly occur in areas with cycle routes and/or with slower traffic. Similar
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visual techniques were employed by Zhao et al. [16], who analyzed the cycling trip chains by

gender and day of the week in Nanjing, China. They found that on weekdays, women tend to

make multiple-circle trips and spend more time on cycling than men. Moreover, Zhou [17]

investigated the spatial-temporal pattern of cycling trips of the Chicago bike-sharing system,

and uncovered different travel patterns between weekdays and weekends as well as between

customers and subscribers.

Secondly, to study the characteristics of the usage of bicycle-sharing systems, either for a

single system or in a comparison of different systems. Jensen et al. [20] found that public bikes

compete with the car in terms of speed in downtown Lyon by analyzing 11.6 million bicycle-

sharing trips. Based on station data, Jäppinen et al. [19] indicated that integration of public

bikes with traditional public transportation can promote sustainable daily mobility in Helsinki.

Studies on London’s bicycle-sharing systems found that two strikes of the London subway led

to an increase of the number and duration of public bike trips [18], and that easier access to

the system can promote weekday commuting and weekend use [22]. Goodman and Cheshire

[21] found that the introduction of casual access to London’s system encouraged more women

to use the system, and the extension of the system to highly-deprived areas not only attracts

new users but also increases local travel in such areas. O’Brien et al. [8] examined the usage of

38 global bicycle-sharing systems, and indicated that Asian systems have a lower compactness

than European/Middle Eastern systems. They could also group Chinese systems together

based on system attributes (e.g. system size, daily usage, etc.). Zhao et al. [35] compared 69

Chinese bike-sharing systems. Based on the effects of urban population, government expendi-

ture, system size, and operation policy on daily use and daily use per bike, they suggested that

the bike-member ratio could be less than 0.2 and that the adoption of personal credit and uni-

versal cards to access to systems influences the usage in a positive way.

Thirdly, to examine the impact of built environment factors and weather conditions on the

demand at stations. In general, some studies found that population and job density, proximity

to transit stations (metro and public bus stations) and bike lanes, and points of interests (retail

shops, parks, restaurants, etc.) within the service area are positively associated with ridership at

stations [23–32]. Moreover, station size and number of bike stations within the catchment area

also have an impact on the bike-sharing demand at stations [25,26,28]. Severe weather condi-

tions are associated with a negative impact on the system usage [33,34]. Finally, a small num-

ber of studies focuses on proposing a mathematical algorithm to deal with bike-sharing

rebalancing problem [36–38].

Most of aforementioned studies, however, do not look at the dynamics of bike-sharing

systems. Changes over time do not only occur in demand, but possibly also in the (type of)

users. Do users and their demand change over time? This paper explores these questions in

order to better understand the system and its future potential. It also investigates changes in

usage over the years to identify which factors influence the system’s performance. This may

provide useful insight for improving the location-allocation of current stations and for plan-

ning new stations. This study was conducted for a bicycle-sharing system in Zhongshan

(China), using trip data from March 2012, March 2013, and March 2014. The system gradu-

ally expanded the number of stations equipped with parking slots between March 2012 and

March 2013, and again between March 2013 and March 2014. To this end, we examined the

changes in both users (UserID) and the system usage by comparing March 2012 with March

2013, and comparing March 2013 with March 2014. In this study, we consider the changes

in the system as a whole as well as in the spatial distribution of demand before and after the

system expansion.
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3. Context and Methods

3.1. Study area

Zhongshan city is a medium-sized city that is located in the Guangdong province of China,

and directly opposite Hong Kong. The city is a prefecture-level city (Fig 1A) whose govern-

ment directly administers six districts corresponding to the urban area, and eighteen towns

(in China, town is an administrative unit, into which counties and districts are divided).

Among these, four districts—the Xi, Shiqi, Dong, and Nan districts—constitute the “major

urban area” (Fig 1B), which covers an area of 170km2 and was home to a population of

around 530,000 in 2013[39]. This major urban area can be characterized by a high popula-

tion density and a concentration of residence, employment, shopping, entertainment, cul-

ture, and political power. In addition, the eastern and southern urban areas are the Torch

Hi-tech Industrial Development district (90km2) and the Wuguishan district (113km2)

respectively. The former is a national-level hi-tech industrial development zone with a pop-

ulation of 240,000 in 2013, and the latter is mainly intended for tourism and agriculture

with a population of 48,000 in 2013.

According to travel statistics from Zhongshan transport planning department (this was

done before running the bike-sharing program), non-motorized modes account for 46.3% of

total trips, of which 24.3% are walking trips. The shares of motorcycle and private car trips are

39.8% and 8.5% respectively, whereas public bus trips only account for 4.2%. The average trip

lengths in the major urban area are 0.8 km, 2.8 km, and 4.8 km for walking, cycling (bike and

e-bike), and public bus trips respectively. In addition, 94.8% of all trips lasted less than 30

mins. In conclusion, non-motorized (walking and cycling) and motorcycle modes are the

main travel modes in the “major urban area” while public transport is not very attractive to

most residents.

Fig 1. Study area. (A) Location and Divisions of study area; (B) Population density distributed in the study area. (Fig 1A and 1B were created by

the author (Y. Zhang) based on the data, this is the original copyright.)

doi:10.1371/journal.pone.0168604.g001
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3.2. Zhongshan’s bicycle-sharing system and data preparation

Zhongshan’s bicycle-sharing system was launched in October 2011 and is a 24/7 self-service

system. Users can pick up and return public bikes at any station during the day, using a smart

card that has a unique User-ID. Each user can apply for a smart card by registering as a mem-

ber and depositing 200CNY. For each trip, the first hour is free, and any extra hours are

charged at an incremental price (1CNY per hour), which is much cheaper than a trip by local

public bus (2 CNY per trip).

In the urban area, there were 180 bike stations equipped with 4530 parking slots in March

2012, increasing to 224 stations with 5959 parking slots in March 2013, and then further

expanding to 245 stations equipped with 6547 parking slots in March 2014. The stations are

shown in Fig 2, we use the label—“station12” for stations that were built before March 2012,

label “station13” for stations that were built between March 2012 and March 2013, and label

“station14” for stations built after March 2013. The average number of parking slots per station

is 25, 32, 28 for “”station12”, “station13”, and “station14” respectively. Fig 2(A) shows how the

system gradually expanded from the city center to the outskirts. It also shows that the density

of stations is highest in the central area which has the highest population density and includes

the city government. Fig 2(B) shows the size of the stations. It is worth mentioning that the

majority of newly-built stations have quite a high capacity.

The data were collected from the Transport Department of the Urban Planning and Design

Institute of Zhongshan (China). The provided trip data are from March 2012, March 2013,

and March 2014, and include User-ID, pickup and return stations, and pickup time and return

time. The duration of each trip is calculated by subtracting the pickup time from the return

time. Based on data screening, we excluded two types of inaccurate records from the original

trip database: (1) trips for which pickup or return information was missing; and (2) trips that

lasted less than 1 minute, for which we assume no trip was actually made. As a result, we

acquired data for 473,236 trips in March 2012, 453,846 trips in March 2013 and 398,305 trips

in March 2014.

Weather conditions were considered as one of the potential factors that could have affected

the bike use, but only extreme weather conditions (pouring rain or blistering heat) seem to

Fig 2. The spatial distribution of bike stations and capacities in the study area. (A) spatial distribution of stations that were built before and

after the system expansion. (B) The number of parking slots at each of bike stations.

doi:10.1371/journal.pone.0168604.g002
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really discourage cycling [40]. Zhongshan has a subtropical climate with an average tempera-

ture of 22˚C and, in March, the weather is warm without strong winds. Rainfall was not

extreme either and did not appear to have a significant influence on daily bike use. According

to the statistical correlation between daily amount of rainfall (the whole day, as well as different

time periods) and daily trips, the number of daily trips was not significantly (p<0.05) influ-

enced by daily rainfall. We therefore did not consider weather conditions in the further

analysis.

3.3. Methods

This study aims to explore how the usage of the system changes following system expansion. To

this end, we performed both statistical and spatial analyses to examine the changes in both users
and system usage between March 2012 and March 2013, and between March 2013 and March

2014. The analyses were carried out using SPSS and ArcGIS. We separate travel on weekdays

from weekends and also distinguish between morning peak hours and evening peak hours.

Comparing “User-IDs” before and after the system expansion, users are divided into three

groups: (1) former users who used the system before the system expansion but not at all after

the system expansion; (2) steady users who used the system both before and after the system

expansion; and (3) new users who started to use public bikes only after the system expansion.

The system usage was investigated by: (1) the aggregate use of the system and (2) the spatial

distribution of both users’ demand and the ratio of demand to supply (D/S). We examined the

system usage for both all users and per user group. The aggregate use of the system is based on

daily usage (distinguishing weekdays and weekends) and hourly usage (distinguishing morn-

ing peak hours and evening peak hours). The definition of morning peak hours and evening

peak hours is based on the number of trips generated over the hour of day. Morning peak

hours are 7:00–9:00 on weekdays and 8:00–9:00 on weekends, and evening peak hours are

17:00–19:00 on both weekdays and weekends. Daily and hourly usage were described by the

usage metrics which mainly include the average number of users, average number of trips,

average number of trips per user, average number of demands per station (distinguishing

between “old” stations and newly-built stations), average trip length, and average trip duration.

The number of trips corresponds with the demand for bikes, as one trip means a user picks up

a bike from a station and returns the bike to another or the same station. The demand at each

station was calculated by the sum of departure trips (i.e. picking up bikes) and arrival trips (i.e.

returning bikes) at the station, as the number of pick-ups is comparable to the number of

returns at each station (see S1 Fig).We decided to use the “Median” to calculate the “average”

value of aforementioned usage metrics, which can mitigate the impact of some outliers (e.g.

sharp decrease) on the measure of daily use.

The spatially oriented approach provides operators and researchers with a better under-

standing of usage and user patterns [41]. The spatial distribution of both demand and D/S was

used to uncover the trend in distribution of bike-sharing use across the urban area. Moreover,

the D/S can be an indication of the relationship between users’ demand and system’s supply.

The users’ demand refers to the average number of trips generated by a group of users, which

is a metric of the aggregate use of the system. The system’s supply refers to the number of park-

ing slots, which was not a constant and increased after the system expansion.

The spatial distribution was visualized by a spatial fishnet that divided the urban area into a

bunch of grid cells. The spatial fishnet was created in ArcGIS, with each cell having a size of 50

by 50 meters. Fig 3 shows how we computed the weight of each cell, which determines the rela-

tive importance of each cell, and lays a foundation for smoothing the overall users’ demand

and system’s supply over grid cells.
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Fig 3. A diagram of computing the weight of each cell.

doi:10.1371/journal.pone.0168604.g003
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The Eqs 1and 2 show how we smoothed the demand (left column) and supply (right col-

umn) at stations (discrete locations) over the cells. We first created a catchment area (300m

radius) consisting of six 50-m concentric bands, around each bike station (see P1 in Fig 3).

The size of the catchment area was chosen such that it is approximately equal to 344 m average

distance between neighboring stations. This catchment area also corresponds with a suitable

walking distance. The catchment areas were generated based on network distances (the shape

of each catchment area is regular or irregular polygon depending on the road network), which

are considered for walking to transit facilities. We then redistributed the station’s demand and

supply (i.e. slots) to each band based on distance decay (Eq 1), that is, SDb and SSb. This decay

actually represents the distribution of the users’ actual origins or destinations around each sta-

tion. In other words, users are more likely to use stations when they are very nearby, but they

can still use a station if they have to walk some distance. Afterwards we carried out a spatial

analysis to intersect catchment area (bands) with spatial fishnet (grid cells) to distribute the

bands’ demand (SDb) and supply (SSb) to each grid cell (Eq 2). Further, Eq 3 shows how we

assigned a weight of demand (WDC) and a weight of supply (WSC) to each grid cell and the

sum of each cell’s WDC (and WSC) is 1.

The Eq 4, Dc and Sc, represent the number of users’demand and system’s supply respec-

tively, which is given to each cell. For example, the spatial distribution of demand and the spa-

tial distribution of D/S (the ratio of Dc to Sc) over the cells, are shown in figures of section

4.2.1.

In the results section, we describe the trends in spatial distribution of users’ demand and D/

S, and employ Hot Spot analysis (spatial statistics in ArcGIS) to identify statistically significant

hot spots and cold spots for users’ demand using Getis-Ord Gi� statistic. This may uncover

whether there are significant differences in the spatial distribution of users’ demands following

the system expansion. We also examine the differences in number of demands between user

groups over the grid cells. However, there is a considerable difference in total demand between

the different groups. To take this difference into account, we normalized the demand of user

groups. As an example, Eq 5 shows how we calculated the difference in spatial demand (i.e. Dc)

between U12 and U13, which is users in 2012 and users in 2013. In Eq 5, the factor α is the

ratio of overall demand between U12 and U13. The function of NDc(U12) is used to normalize

the cells’ demand of U12, and consequently the sum of NDc(U12) is equal to the sum of Dc (U13).

The function of ND(13vs12) calculates the normalized difference in each cell’s demand between

U12 and U13. As a result, the values of ND(13vs12) of all cells are normally distributed with a

mean 0 and a sum 0; we therefore use standard deviation as a unit to visualize the difference in

demand over grid cells, as shown in figures of section 4.2.2.

SDb ¼ Di;j ¼ D2

i =ðdj �
P

jDi=djÞ SSb ¼ Si;j ¼ S2

i =ðdj �
P

jSi=djÞ Eq: 1

SDC ¼
Pn

b¼1
SDb � apb SSc ¼

Pn
b¼1

SSb � apb Eq: 2

WDC ¼ SDc=
Pn

c SDc WSC ¼ SSc=
Pn

c SSc Eq: 3

Dc ¼WDc � Duser Sc ¼WDs � Ssystem Eq: 4

NDð13vs12Þ ¼ Dc ðU13Þ � NDcðU12Þ NDcðU12Þ ¼ DcðU12Þ=a a ¼ DU12=DU13 Eq: 5

Where:

• b is the ID of each band (b = 1,. . .n), and i is the ID of each bike station;

Expanding Bicycle-Sharing Systems: Lessons Learnt from an Analysis of Usage

PLOS ONE | DOI:10.1371/journal.pone.0168604 December 15, 2016 8 / 25



• dj is the distance of the band, dj = 50m,100m,150m,200m,250m,300m, in which j = 1,2,3. . .6

respectively;

• Di is the number of demands at station i; Si is the number of parking slots at station i;

• apb is the area proportion of each cell that spatially overlaid with distance band b;

• Duser is the average daily trips generated by a user group;

• Ssystem indicates the amount of parking slots.

4. Results and Discussions

In this section, we present and discuss the results of two aspects. Section 4.1 presents the aggre-

gate use of the system by different user groups before and after the system expansion. Section

4.2 presents the trends and the changes in spatial demand by users between before and after

the system expansion. Travel on weekdays was analyzed separately from travel on weekends

and we also distinguish between morning peak hours and evening peak hours.

4.1. Aggregate use of the system before and after system expansion

Table 1 describes the aggregate daily and hourly use of the system by all users, on weekdays

and weekends of March 2012, March 2013, and March 2014. It reveals there is an overall

decrease in daily use between 2012 and 2014, despite the expansion of the system. This

decrease is most distinct in weekends. Not only does the number of users decrease, the average

number of trips per user is also declining. The expansion of the system has resulted in extra

usage at new stations (shown in the rows “daily demand per station13” and “daily demand per

Table 1. The aggregate use of the system by all users in March 2012, March2013, and March 2014.

Usage metrics Weekdays Weekend

2012 (22 days) 2013 (21 days) 2014 (21 days) 2012 (9 days) 2013 (10 days) 2014 (10days)

Daily usersa 9075 9429 8374 8803 8328 6789

Daily trips 16292 16481 14562 15570 14703 11398

Daily trips/user 1.79 1.75 1.71 1.77 1.74 1.68

Daily demand per station12 182 167 139 174 147 109

Daily demand per station13 - 71 81 - 69 65

Daily demand per station14 - - 25 - - 23

Hourly trips (MP)b 1460.75 1664.5 1523 1080 1165 1106

Hourly demand per station 12 (MP) 13.5 13.83 11.50 9.67 8.1 7.40

Hourly demand per station 13 (MP) - 6.67 6.93 - 3.7 4.30

Hourly demand per station 14 (MP) - - 1.43 - - 1.30

Hourly trips (EP)c 1886.5 1878 1628 1552 1362.5 1122.25

Hourly demand per station 12 (EP) 15.94 13.71 11.93 12.36 9.15 7.15

Hourly trips per station 13 (EP) - 5.76 7.74 - 4.05 4.50

Hourly trips per station 14 (EP) - - 1.59 - - 1.15

Trip length (m) 1356 1334 1346 1334 1299 1321

Travel time (minutes) 11 10 10 12 11 11

a One user represents a User-ID that belongs to a specific person.
b “MP” is the abbreviation for “morning peak hours”.
c “ËP” is the abbreviation for “evening peak hours”.

doi:10.1371/journal.pone.0168604.t001
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station14” for the station added in 2013 and 2014 respectively). In 2013, this was quite a sub-

stantial part of the total, actually resulting in an overall increase in usage for workdays between

2012 and 2013. However, after the second expansion the number of new trips per added sta-

tion decreased (81 for stations added in 2013 and only 25 for stations added in 2014). This

shows that stations added in 2014 have less demand than stations added in 2013, which can be

attributed to the fact that the majority of “station14” is on the outskirts. The fact that newly-

built stations have not led to an overall increase in demand can be attributed to a significant

decline in usage at the original stations (from 182 per station 12 in 2012 to 139 per station 12

in 2014). Partly, this can be explained by the fact that new stations might compete with older

stations, but the rate of decline is somewhat surprising. To provide a better interpretation of

this result, we need to consider different user types, which will be done in Tables 2 and 3..

In addition, the change in hourly usage during morning peak and evening peak hours is

comparable with the change of daily usage following the system expansion. Regarding the

Table 2. The aggregate use of the system by steady users, former users, and new users on weekdays.

Usage metrics (Median) Mar 12 vs Mar 13 Mar 13 vs Mar 14

2012 2013 2013 2014

Steady users Daily users 4864 4127 4888 4044

Daily trips 8842 7024 8793 6756

Daily trips/user 1.8 1.69 1.78 1.66

Daily demand per station12 99 73 89 66

Daily demand per station13 - 24 36 36

Daily demand per station14 - - - 12

Hourly trips (MP) 838.25 743.5 939 750

Hourly demand per station 12 (MP) 7.99 6.36 7.45 5.83

Hourly demand per station 13 (MP) - 2.18 3.62 3.5

Hourly demand per station 14 (MP) - - - 0.48

Hourly trips (EP) 1010.25 797 992 751

Hourly demand per station 12 (EP) 9.03 6.19 7.36 5.69

Hourly trips per station 13 (EP) - 2.10 3.12 2.64

Hourly trips per station 14 (EP) - - - 0.33

Trip length (m) 1337 1268 1337 1314

Travel time (minutes) 10 10 10 10

Former Users Vs New Users Daily users 4193 5252 3939 4311

Daily trips 7419 9401 6786 7749

Daily trips/user 1.76 1.78 1.70 1.75

Daily demand per station12 83 93 68 74

Daily demand per station13 - 46 30 46

Daily demand per station14 - - - 17

Hourly trips (MP) 617.5 950 653 796

Hourly demand per station 12 (MP) 5.82 7.05 5.06 5.57

Hourly demand per station 13 (MP) - 3.76 2.40 3.38

Hourly demand per station 14 (MP) - - - 1.36

Hourly trips (EP) 865.5 1085.5 775 883

Hourly demand per station 12 (EP) 7.15 7.33 5.48 6.31

Hourly trips per station 13 (EP) - 3.93 2.19 4.12

Hourly trips per station 14 (EP) - - - 1.43

Trip length (m) 1375 1379 1337 1384

Travel time (minutes) 11 11 10 10

doi:10.1371/journal.pone.0168604.t002
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comparisons of hourly usage during morning peak hours and evening peak hours, the users’

demand (the average number of hourly trips) during evening peak hours is slightly larger than

during morning peak hours. This might be attributed to more people use the system (or users

generated more trips) during evening peak hours, because people have more leisure activities

(or spare time) in the evening (after work) than in the morning. When we look at the demand

at stations, there is no considerable difference in hourly demand per station between morning

peak hours and evening peak hours, especially after the system expansion. Moreover, Fig 4

describes the comparison of the number of hourly demands at each station between morning

peak hours (Y axis) and evening peak hours (X axis). This indicates that the number of hourly

demands at each station during morning peak is comparable with that during evening peak,

especially in March 2013 and March 2014. Fig 4 also indicates that bike stations that have high

demand during morning peak hours also generate a high demand during evening peak hours.

This implies that the spatial distribution of demand during morning peak hours is similar to

Table 3. The aggregate use of the system by steady users, former users, and new users on weekends.

Usage metrics (Median) Mar 12 vs Mar 13 Mar 13 vs Mar 14

2012 2013 2013 2014

Steady users Daily users 4555 3449 4206 3228

Daily trips 8127 5961 7569 5304

Daily trips/user 1.79 1.69 1.77 1.64

Daily demand per station12 91 61 76 52

Daily demand per station13 - 23 35 29

Daily demand per station14 - - - 9

Hourly trips (MP) 895 492.5 636 531.5

Hourly demand per station 12 (MP) 5.11 3.5 4.4 3.5

Hourly demand per station 13 (MP) - 1 1.8 2.05

Hourly demand per station 14 (MP) - - - 0.4

Hourly trips (EP) 801.5 530.5 690 473

Hourly demand per station 12 (EP) 6.56 3.75 4.6 3.2

Hourly demand per station 13 (EP) - 1.55 2.25 2.0

Hourly demand per station 14 (EP) - - - 0.18

Trip length (m) 1318 1238 1295 1266

Travel time (minutes) 11 10 11 10

Former Users Vs New Users Daily users 4125 4823 3631 3545

Daily trips 7189 8591 6295 6073

Daily trips/user 1.74 1.78 1.71 1.71

Daily demand per station12 80 85 63 58

Daily demand per station13 - 46 29 36

Daily demand per station14 - - - 15

Hourly trips (MP) 484 671.5 468.5 571.5

Hourly demand per station 12 (MP) 3.89 4.4 3.1 4.2

Hourly demand per station 13 (MP) - 2.3 1.3 2.3

Hourly demand per station 14 (MP) - - - 1.2

Hourly trips (EP) 746 830 598.5 639.5

Hourly demand per station 12 (EP) 5.56 5.1 3.85 3.9

Hourly trips per station 13 (EP) - 3 1.7 2.5

Hourly trips per station 14 (EP) - - - 1.07

Trip length (m) 1350 1337 1316 1362

Travel time (minutes) 12 11 11 11

doi:10.1371/journal.pone.0168604.t003
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that during evening peak hours. Finally, there is no significant difference in trip characteristics

between, before and after the system expansion: generally the average trip length and average

trip duration are both quite short.

Users are divided into three groups–former users, steady users, and new users–based on the

comparison of User-IDs between, before and after the system expansion. Table 2 and Table 3

describe the division of user groups and the aggregate use of the system by each user-group on

weekdays and weekends respectively. For each user group, the number of users on weekdays is

higher than that on weekends, demonstrating that some users only used the system on

weekdays.

Table 2 describes the aggregate daily and hourly use of the system by each user group, on

weekdays and weekends of March 2012, March 2013, and March 2014. It shows that there is a

great variation in users. About only half of the users are steady users (when comparing

between successive years), while the rest are former or new users. This indicates that the sys-

tem is quite dynamic and has not (yet) found some form of equilibrium. The system is also

quite new and still expanding. Interestingly, there are more new users than former users. They

use the system more frequently and also make more trips than former users. However, as we

have seen, the overall demand has declined over time. This can be attributed to the steady

users. These users have used the system less frequently over time (resulting in a decrease of the

number of users per day), and also made fewer trips (resulting in a decrease in the number of

trips per user per day). These trends are both visible for workdays and weekends. It is not clear

why there is a decline in usage among steady users, especially in the light of an expanding sys-

tem. To provide better interpretation of these results, we investigated the spatial distribution of

demand before and after system expansion, which will be presented in the next subsection.

4.2. Spatial distribution of demand before and after the system

expansion

4.2.1. Trends in the spatial distribution of demand and D/S. In this subsection, we

explore the spatial distribution of demand and demand over supply (D/S) before and after the

system expansion. As mentioned before, the spatial distribution of hourly demand at stations

during morning peak hours is comparable with that during evening peak hours (i.e. high and

low demand at stations), we therefore only use daily usage to describe and compare the spatial

distribution of demand and D/S between before and after system the system expansion.

Fig 5 shows the spatial distribution of demand (i.e. trips/day) by all users on weekdays in

March 2012, March 2013, and March 2014. As expected, the demand is the highest in the cen-

tral part of the city and drops towards the outskirts. Similar trends can also be observed for

each user group–former users, steady users, and new users. Fig 6 displays the comparison of

the number of daily demands at each station between different user groups on weekdays in

March 2012, March 2013, and March 2014. This indicates that stations, which generate a high

(and low) demand by one user group, also generate a high demand (and low) demand by

another user group. It implies that there is no considerable difference in spatial distribution of

demand between different user groups. Moreover, Fig 7 shows the spatial distribution of statis-

tically hot spots of demand (i.e. trips/day) by each user group on weekdays in March 2012,

March 2013, and March 2014. This further confirms that there are no substantial differences

in the pattern of spatial distribution of demand between different user groups. The statistically

Fig 4. Comparisons of hourly demand during morning peak and evening peak hours at stations. (1)

the points represent each of bike stations. (2)Y axis represents the average number of hourly demand during

morning peak hours, and X axis represents the average number of hourly demand during evening peak hours.

doi:10.1371/journal.pone.0168604.g004
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significant hot spots are generally the same among different user groups (i.e. following the sys-

tem expansion). This suggests that the spatial distribution of demand before the system expan-

sion is comparable with that after the system expansion, as well as between different user

groups. In all cases, high-demand areas concentrate in the center, whereas the low-demand

Fig 5. The spatial distribution of demand by all users on weekdays. Demand represents the number of trips per day. The upper panel

represents the result of March 2014. The lower panel represents the results of March 2012 (left) and March 2013 (right).

doi:10.1371/journal.pone.0168604.g005
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areas are on the outskirts. This might be attributed to the fact that the central area has the high-

est density of population, bike stations, and mixed land use patterns.

Fig 8 shows the spatial distribution of D/S (i.e. the ratio of trips/day to slots) on weekdays in

March 2012, March 2013, and March 2014. Not surprisingly, it somewhat follows the trend in

demand with high D/S in the central area and low D/S on the outskirts. The figure however

shows an overall decrease in D/S following the system expansion, especially in the central area,

the color changes from upper class to lower class (such as from 7.1–12 to 6.1–7). This might be

attributed to the overall decrease in demand by all users following the system expansion. In

addition, some of areas, which showed a high D/S before system expansion, decreased after

Fig 6. Comparisons of daily demand by one group and another group at stations (weekdays). (1) The points represent each of bike stations. (2)

Blue, red, and yellow symbols denote “stations 12”, “stations 13”, and “stations 14” respectively. (3) Figures A describe the user groups of Mar 2012 versus

Mar 2013, and figures B describe user groups of Mar 2013 versus Mar 2014.

doi:10.1371/journal.pone.0168604.g006
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building a new station nearby, such as marked in the areas A, B, and C shown in in Fig 8. The

overall demand in those areas has increased after system expansion, due to the demand for

new stations. This suggests that new stations might compete with nearby older stations,

Fig 7. Getis-Ord Gi* statistic of the spatial distribution of demand by each user group (weekdays). Figures A describe the

user groups of Mar 2012 versus Mar 2013, and figures B describe user groups of Mar 2013 versus Mar 2014.

doi:10.1371/journal.pone.0168604.g007

Fig 8. The spatial distribution of D/S by all users on weekdays. The D/S represents the ratio of trips/day to the number of parking

slots. The upper panel represents the result of March 2014. The lower panel represents the results of March 2012 (left) and March

2013 (right).

doi:10.1371/journal.pone.0168604.g008
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resulting in mitigating the excess demand (finding available bikes or empty slots) in areas that

had a high D/S before the system expansion.

In the previous subsection, we found that the overall use of the system has decreased more

on the weekends than on weekdays. Therefore, we examined the spatial difference in demand

between weekdays and weekends. The results are shown in Fig 9. Although the overall spatial

distribution looks quite similar for weekends and weekdays, Fig 9 shows there are differences

in the number of demands. The red areas show a relatively higher demand on weekdays, while

the blue areas show relatively higher demand on weekends. The figure shows that these areas

are more or less the same in the three years.

This result suggests that differences between weekdays and weekends are not related to the

expansion of system, but probably to the surrounding built environment. Blue areas are mainly

Fig 9. Differences in spatial demand by all users between weekdays and weekends. The “NDemand” represents

the difference in normalized demand between weekdays and weekends. The upper panel represents the result of March

2014. The lower panel represents the results of March 2012 (left) and March 2013 (right).

doi:10.1371/journal.pone.0168604.g009
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occupied by shopping malls or parks, distributed far from the city center, marked as areas A,

B, and C in Fig 9. The significant red areas are mainly located in the city center, with relatively

many offices and residential communities. This implies that commuting is more dominant on

weekdays, and shopping and recreation are more important purposes in the weekends. These

results suggest that the demand in an area is influenced by the nearby dominant land use type.

4.2.2. Differences in spatial demand by user groups. In this section, we focus on two

aspects. The differences in spatial demand between the three years are shown in Fig 10. This is

done for all users (upper panel), new versus former users (center panel), and for steady users

(lower panel). The differences in spatial demand between new users and steady users after the

system expansion are shown in Fig 11.

The red areas in Fig 10 show that the demand after system expansion is higher than before

the system expansion (higher in 2013 than in 2012, left panel; and higher in 2014 than 2013,

right panel). The blue areas are areas in which demand has decreased. Note that the most sig-

nificant increases (illustrated by deep red colors) are in areas with newly-built stations.

According to Fig 10, decreases in demand are mainly observed in central areas. We highlight

areas with the most significant decrease (i.e. more than 4 times the standard deviations below

the average normalized difference of 0) in each figure. These areas are not necessarily the same

when comparing the second expansion with the first one, or when comparing new users (vs.

former users) with steady users.

Area A is a specific case. The strong decrease in 2013 (compared to 2012) is due to the

removal of a station. The other stations show real decreases in demand. Area B, C, and E show

a significant decrease throughout all years, and area B for all groups but area C and E for steady

users. However, these areas are constantly high-demand areas throughout three years, area B

and E are occupied by a shopping mall and area C is occupied by a mix of offices and residen-

tial communities. The continuous decline of demand in these areas might be attributed to the

negative performance of the system, such as the quality of bikes is not as good as the beginning,

and unavailability of bikes or parking slots.

Additionally, decreases in other areas area only significant in one of the two expansions.

However, we observe a decrease in all cases. It should be noted that demand–by both new

users (vs. former users) and steady users–has decreased in areas where (many) new stations

were added nearby. This is in particular the case for area D, F and J that are occupied by the

mix of offices and residential communities. The case for area G that is a commercial area con-

sisting of hotels, shopping malls, and entertainment venues, where a new station was added

nearby in the first expansion, decreased demand in 2013 (left panel) and shows a significant

decrease of demand after the second expansion (right panel). However, the demand in newly-

built areas increased after second expansion (right panel). This implies that there might be

competition between nearby stations, where newly-built stations are more attractive than the

older stations. Two specific areas H and I–that are occupied by residential communities (area

H) and the mix of colleges, residential communities and a park (area I)–only show a significant

decrease in demand by new users (vs. former users) after system expansion. This might be due

to fewer new users have demand for stations in these areas, such as people living, studying or

working in this location.

Fig 11 shows the differences in spatial demand between new users and steady users after

system expansion, i.e. comparing new users with steady users in March 2013 (left panel), and

in March 2014 (right panel). March 2013 and March 2014 show similar patterns. In the blue

areas the demand is relatively high for steady users, while in the red areas the demand is rela-

tively high for new users. For the majority of areas, the difference in demand between steady

users and new users is not very high. Fig 11 illustrates that steady users show the higher

demand for both old stations and new stations that are located in the city center, such as the
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newly-built areas M and N. This can be attributed to the fact that the activities of steady users

were mainly concentrated in the central area before the system expansion; users have more

Fig 10. Differences in spatial demand between user groups of before and after the system expansion (weekdays). The “NDemand” represents

the difference in normalized demand between user groups. The left panel represents the comparison between March 2012 and March 2013, and right

panel represents the comparison between March 2013 and March 2014.

doi:10.1371/journal.pone.0168604.g010
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desires for newly-built stations in this area rather than the new stations that are far away. New

users generated a higher demand at the majority of new stations as well as at some old stations

nearby shopping malls–as areas E and K. This implies that adding new stations in the areas

where demand or density of stations is high, both new users and original users can be

attracted. On the other hand, adding new stations in areas further away from the city center,

with a lower density of stations, is mainly useful for new users rather than steady users. In gen-

eral, expanding the original system not only extends the original users’ ability to reach new

areas but also attracts new users to use bike-sharing systems.

5. Conclusions

This study has investigated how the system usage has changed over the years and how the sys-

tem expansion affects the usage of the system. It was performed to evaluate Zhongshan’s bicy-

cle-sharing system, using trip data from March 2012, March 2013, and March 2014. The

system gradually expanded the number of stations equipped with parking slots from March

2012 to March 2013 and then again from March 2013 to March 2014. We conducted both a

statistical and a spatial analysis to examine the changes in both users and system usage between

before and after the system expansion, namely March 2012 versus March 2013 as well as

March 2013 versus March 2014. The system usage was measured by: (1) the aggregate use of

the system; and (2) the spatial distribution of users’ demands and the ratio of demand to sup-

ply (D/S). In addition, travel on weekdays was analyzed separately from travel on weekends.

There has been a great variation in the number of users over the years, with only 45%-46%

of all users–steady users–continuing to use the system after the system expansion. Many

users–former users–stopped using the system, and many new users started to use the system

after the system expansion. Moreover, there are overall decreases in the system usage by all

users after the system expansion compared to before the system expansion, due to the overall

decreases in the system usage by steady users after the system expansion, although new users

used the system more frequently than former users.

There is no significant difference of the trend in spatial distribution of both demand and D/

S between, before and after the system expansion. The high-demand areas concentrate in the

Fig 11. Differences in spatial demand between new users and steady users after system expansion (weekdays). The “NDemand” represents the

difference in normalized demand between new users and steady users. The left panel represents the comparison between new users and steady users in

March 2013. The right panel represents the comparison between new users and steady users in March 2014.

doi:10.1371/journal.pone.0168604.g011
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center and are occupied by old stations, and the low-demand areas are on the outskirts. This is

attributed to the fact that the center area has the highest density of population, bike stations,

and mixed land use patterns. However, there were decreases in demand in most high-demand

areas over the years, due to a reduced demand by both steady users and new users (versus for-

mer users). This implies that stations in these high-demand areas did not work well after the

system expansion compared to before the system expansion, which is not attributed to the sys-

tem expansion, but might be caused by the fact that the novelty was gone for some steady users

or the negative performance of the system, such as the quality of bikes not being as good as in

the beginning, and unavailability of bikes or parking slots.

In some areas which are occupied by both old and new stations after the system expansion,

less demand by both new users and steady users was generated at these old stations after the

system expansion, compared with the demand by former users and steady users before the sys-

tem expansion. Moreover, the spatial distribution of D/S reveals that these areas showed a high

D/S before the system expansion, but decreased the D/S after building a new station. This sug-

gests that nearby stations might be competing with each other, and building new stations in

former high D/S areas can contribute to easing the excess demand in these areas. In addition,

the difference in demand over the urban area between weekdays and weekends reveals that

users might cycle mainly for commuting on weekdays, but for shopping and recreation on

weekends.

In general, expanding the original system not only extended the original users’ ability to

reach new areas but also attracted new users to use the bike-sharing system. Adding new sta-

tions in the areas where demand or density of stations is high can attract both new users and

original users. On the other hand, adding new stations in areas further away from the city cen-

ter with a lower density of stations is mainly useful for new users rather than steady users.

With the development of a bike-sharing system, to improve the system and make it more

sustainable rather than a short-lived project, this study is aligned with a tendency for operators

and researchers to investigate the system usage and travel behaviors of bike-sharing users by

the trip data that discloses more information than the station-based data. That was also the

motivation for us to conduct this study. To be sure, this study is not without limitation. Due to

the data limitation, we only compared the one-moth system usage between three years. It

would be better to collect and analyze the trip data over the long term, which may make the

results of analysis more conclusive. This is an avenue for future work.

For further expansion of bike-sharing systems, we suggest that it would be better to first

investigate the spatial patterns of users’ demands and system’s supply to uncover the high and

low level of demand as well as the ratio of demand to supply across the urban area. Next, we sug-

gest building new stations in the area that has an excessive ratio of demand to supply rather

than expand the system to new areas unless there is a clear necessity for serving new areas.

Building new stations in the areas with high ratio of demand to supply not only extends the ser-

vice area of the system but also mitigates the difficulty of finding a public bike or a parking slot.
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hours.
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