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Abstract

The average spatial distance between transmission-linked cases is a fundamental property of 

infectious disease dispersal. However, the distance between a case and their infector is rarely 

measurable. Contact-tracing investigations are resource intensive or even impossible, particularly 

when only a subset of cases are detected. Here, we developed an approach that uses onset dates, 

the generation time distribution and location information to estimate the mean transmission 

distance. We tested our method using outbreak simulations. We then applied it to the 2001 foot-

and-mouth outbreak in Cumbria, UK, and compared our results to contact-tracing activities. In 

simulations with a true mean distance of 106m, the average mean distance estimated was 109m 

when cases were fully observed (95% range of 71–142). Estimates remained consistent with the 

true mean distance when only five percent of cases were observed, (average estimate of 128m, 

95% range 87–165). Estimates were robust to spatial heterogeneity in the underlying population. 

We estimated that both the mean and the standard deviation of the transmission distance during the 

2001 foot-and-mouth outbreak was 8.9km (95% CI: 8.4km-9.7km). Contact-tracing activities 

found similar values of 6.3km (5.2km-7.4km) and 11.2km (9.5km-12.8km), respectively. We were 

also able to capture the drop in mean transmission distance over the course of the outbreak. Our 

approach is applicable across diseases, robust to under-reporting and can inform interventions and 

surveillance.
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Background

Characterizing the spatial patterns of disease transmission is crucial to our understanding of 

pathogen dispersal. Public health interventions implicitly target next generations of 

transmission through contact tracing and spatial targeting of quarantine, isolation or other 

control measures, though often with crude information about where pathogens will move in 

space. More information about where cases may arise in relation to identified cases could 

help target resources both for control and enhanced surveillance. Despite its usefulness, the 

geographical mean distances between the locations of cases in relation to the individuals that 

infected them, have been difficult to elucidate. We rarely observe infection pairs (i.e., who 

infected whom) in a transmission network. Where only a minority of cases are observed, 

analyses tend to be restricted to characterizing the spatial and temporal scales at which cases 

tend to occur together but the relationship between spatial clustering and transmission 

distance is complex (Bhoomiboonchoo et al., 2014; Grabowski et al., 2014; Lin et al., 2011; 

Morrison et al., 1998; Salje et al., 2015; 2012). Only where we have been able to observe the 

majority of cases in a transmission network or we have detailed epidemiological data on 

who infected whom, has estimation of mean transmission distances previously been possible 

(Assiri et al., 2013; Ferguson et al., 2001a; Keeling et al., 2004).

It is not surprising that we are rarely able to reconstruct transmission pathways for 

outbreaks. Directly estimating the distance between sequential cases requires both the 

identification of cases and their infectors. Such contact tracing efforts can be expensive and 

time-consuming. In some cases it may be impossible. Usually only a fraction of cases are 

detected. Not everyone infected will develop symptoms severe enough to be detected (e.g., 

most dengue cases are not severe enough to seek care), and even the best surveillance 

systems rarely identify 100% of symptomatic cases. Further, if there exists an intermediary 

vector or reservoir (such as the case of dengue, chikungunya or cholera), sequential cases in 

a transmission chain may never have been in contact with each other. Phylogeographic 

methods have been developed to estimate rates of viral movement across countries or 

continents under these conditions (Faye et al., 2015; Rabaa et al., 2013). However, these 

approaches have not yet been able to reliably capture micro-scale dynamics except in 

isolated settings such as hospital-based outbreaks (Cotten et al., 2013; Iles et al., 2014; 

Pybus et al., 2012; Rabaa et al., 2010), and may be impossible where genome mutation rates 

are particularly low or high relative to the generation time. Even where phylogenetic 

approaches can be used, it is likely to require potentially prohibitive labor-intensive 

sequencing of large numbers of pathogens throughout the course of an outbreak (Stack et al., 

2010). Other fields have attempted to infer movement properties in poorly observed settings. 

Plant biology, for example, has developed methods to describe seed dispersal in situations 

where the source is unknown and thereby understand the relative importance of wind and 

animal movements in seed spread (Nathan and Muller-Landau, 2000). However, these 

methods have not been successfully applied to human disease spread.
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Here, we present an approach to estimate the mean transmission distance in infectious 

disease processes using only the point locations of cases (e.g., place of residence), times at 

which individuals become symptomatic and the generation time distribution of the pathogen. 

The method is applicable in situations with full data as well as those where only a small 

proportion of infections are observed. We demonstrate the robustness of our approach using 

simulated data and then apply it to data from an outbreak of foot-and-mouth disease in the 

UK in 2001.

Methods

Distribution of distances between cases

In outbreaks originating from a single introduction into a community, a pair of cases 

occurring at time points t1 and t2 can be separated by a variable number of transmission 

events (denoted by θ, the number of infection events required to link a pair of cases) (Box 1 

and Figure 1). For example, two cases occurring at the same time may have been infected by 

the same infectious individual (in which case θ =2) or alternatively, their most recent 

common ancestor (MRCA) may be two or more generations back (θ >2). The distance 

between sequential cases in a transmission chain (i.e. θ =1) can be characterized by a 

transmission kernel, which we define here as the probability density function of all 

transmission distances during an epidemic. If we assume a constant isotropic transmission 

kernel (i.e. one with no directional preference), that transmission events are independent of 

each other and each infected individual has a single infector (i.e., co-infections do not 

occur), the distance between pairs of cases will depend on the number of transmission events 

that separate them. However, without detailed genetic information on the infecting pathogen 

or contact tracing information, we are unlikely to be able to directly identify the number of 

transmission events that separate any two cases. We can, however, calculate the mean 

distance between all observed pairs of cases that occur at two time points ( , the 

mean of the distribution represented by the solid black line in Figure 1).

If we know the proportion of case-pairs at two time points that are separated by each 

possible θ, we can estimate the mean distance between all case pairs as the weighted sum:

[1]

where μt(t1, t2, μk, σk) is the mean distance separating all pairs of cases where one occurs at 

t1 and the other at t2; μa (θ,μk, σk) is the mean distance between pairs of cases separated by θ 
transmission events where the transmission kernel has mean and μk standard deviation σk; 

and w (θ, t1, t2) are the weights representing the proportion of case pairs occurring at t1 and 

t2, respectively that are separated by θ transmission events. The variance of the distance 

between all case pairs can be similarly estimated (see Text S1).

We do not need to assume that the number of transmission events that separate a pair of 

cases infected at the same time is even (as would be the case if the generation time was of a 
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fixed duration) or that individuals infected at the same time are from the same generation. 

Instead we can use information on the generation time distribution to calculate w (θ, t1, t2).

Estimation of weights

To estimate w (θ, t1, t2), we extended a method developed by Wallinga and Teunis that 

calculates the probability that a case occurring at time t1 was infected by a case at time t2 

based on a known generation time distribution, g(x) and the number of cases occurring at 

each time point (Wallinga and Teunis, 2004). We produce an n × n matrix, where cell [i, j] 
represents the probability that a case i was infected by a case with the same time of disease 

onset as case j (the Wallinga-Teunis matrix) and n is the total number of cases. For each pair 

of cases, we can use the Wallinga-Teunis matrix to estimate the probability that they are 

separated by θ transmission events by multiplying together the cells of each unique chain 

(see Figure 2 for a worked example). This assumes that the generation times for all 

infections were independent of each other and that only the day of symptom onset affected 

the probability of case i infecting case j. We could compute the probability of every possible 

path linking two cells, however, this quickly becomes computationally intractable. Instead 

we sampled transmission trees by randomly choosing the infector for each case. To do this 

we take each case in turn and randomly drew its infector out of all the other cases, with the 

probability of any other case being the infector coming from the Wallinga-Teunis matrix (i.e. 

determined by the time between the cases and the generation time distribution). Note that we 

are not inferring that any of the other cases in the dataset is the true infector, instead, by 

assuming that the observed cases are a temporally representative subsample of all cases, we 

are drawing the time point of the infector (whether it was observed or not), rather than the 

infector itself. By re-estimating the tree for each simulation, we adjust for the probability of 

each transmission tree. Once we estimate a transmission tree we compute the number of 

transmission events required to link each pair of cases. Our estimate of w (θ, t1, t2) is the 

proportion of simulations in which a case occurring at time t1 and a case occurring at t2 are 

separated by θ transmission events:

[2]

where Nsim is the number of resamples; I1 and I2 are indicator functions and Θij is the 

number of transmission events separating i and j in simulation k.

Estimation of distance separating cases of known θ

For a transmission kernel with mean μk and standard deviation σk, we can approximate the 

mean squared dispersal distance between pairs of cases that are separated by θ transmission 

events (Bovet and Benhamou, 1988; Codling et al., 2008; Kareiva and Shigesada, 1983) as:

[3]
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where ER2(θ, μk, σk) is the mean squared dispersal distance and represents the average 

squared distance between pairs of cases separated by θ transmission events. As 

transmissions occur in two-dimensional space, we cannot simply square root the mean 

squared dispersal distance to obtain the mean dispersal distance. Instead, under a condition 

of isotropic transmission, we use the central limit theorem to assume that cases separated by 

θ transmission events are approximately normally distributed with mean μα (θ, μk, σk) 

(Bovet and Benhamou, 1988; Codling et al., 2008; Kareiva and Shigesada, 1983).

[4]

Under a simplifying assumption that the mean and the standard deviation of the transmission 

kernel are the same, μa (θ, μk, σk) becomes:

[5]

These approximations work well across a wide range of θs (see Figure S1 for testing of θs 

between one and 25).

Using these estimates, we derived approximations for the mean of the distances separating 

all pairs of cases at two time points:

[6]

An approximation for the variance of the distances separating all pairs of cases at two time 

points is set out in Text S1 of the supplementary materials.

Estimation of mean transmission distance

We can rearrange Equation 6 to give us a direct estimate of μk.

[7]

where  is the observed mean distance between cases occurring at the two time 

points. A weighted average estimate across all combinations of t1 and t2 is then:

[8]

where nij is the number of case pairs where one case occurs at time i and one at time j.
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Violation of σk = μk assumption

Assuming equal mean and standard deviation of the transmission kernel can be limiting. 

However, our approach provides estimates of the bounds of the mean transmission distance 

when they are not the same. When the standard deviation is greater than the mean, the lower 

bound of the mean transmission distance occurs when μk → 0 and σk ≫ μk. At this point 

 and the standard deviation of the transmission kernel is:

[9]

When the mean is greater than the standard deviation, the upper bound of the mean 

transmission distance is when μk ≫ σk and σk → 0. At this point 

 and the mean of the transmission kernel is:

[10]

which is equivalent to  times the value obtained under the assumption of equal mean and 

standard deviation of the transmission kernel. Thus we can use these formulations to place 

bounds on the transmission distance when the relationship of the mean and standard 

deviation are unknown. The behavior of our approach at different combinations of the mean 

and standard deviation of the transmission kernel is set out in Figure 3.

Violation of the central limit theorem

This approach relies on the central limit theorem, such that the form of the transmission 

kernel does not matter as long as it has a defined mean and standard deviation. Transmission 

kernel distributions that have long tails, such as particular power law distributions, violate 

this assumption. Occasional long-distance transmission events will bias the estimate of μk 

upwards. This can be problematic where occasional long-distance transmissions result in 

several foci of ongoing transmission. However, given that most outbreak investigations are 

bounded by some geographical area, the cases in the long tail of the transmission kernel may 

be unobserved. The estimated mean transmission distance in these circumstances would 

represent an estimate from transmission events within the study area.

Impact of population immunity and heterogeneous population structure

The spatial spread of a pathogen may be impacted by local immunity. As a greater 

proportion of the local population becomes infected and develops resistance, the pathogen 

will spread preferentially to susceptible populations, thereby potentially violating our 

assumption of isotropic transmission. Similarly, substantial spatial structure in the 

underlying population may result in violations in the assumption of isotropic transmission. 

In such settings transmissions may preferentially occur in areas of increased population 

where more susceptible individuals reside. The impact of local immunity and heterogeneous 
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population structure on estimates of mean transmission distance is explored in a simulation 

study (see below).

Confidence intervals

We can use a bootstrapping approach to obtain uncertainty in the mean transmission distance 

estimate. In each bootstrap iteration, all the observed cases are resampled with replacement, 

and the mean transmission distance recalculated. This is then repeated many times (we 

conducted 500 iterations). Ninety-five percent confidence intervals can then be generated 

from the 2.5% and 97.5% quantiles from the resultant distribution. This would account for 

uncertainty in the observation process effectively accounting for the possibility that we are 

seeing only a sample of all cases.

Simulation study application

To assess the performance of our approach we simulated transmission chains on a 

population of 100,000 individuals. In each simulation we used a transmission kernel with a 

mean and standard deviation of 100m and generation time distribution with mean one week 

and standard deviation of 2 days. We ran different scenarios varying the functional form of 

the transmission kernel (either an exponential distribution or a log-normal distribution). In 

addition we explored the sensitivity of our results to large misspecification of the mean 

generation time: we estimated the mean transmission distance where we assumed a mean 

time of half a week between sequential infections (representing a 50% underestimate) and 

where we assumed a mean time of three weeks between sequential infections (representing a 

50% overestimate). In each scenario, we assessed our ability to correctly identify the true 

mean transmission distance under conditions of partially observed data: for each simulation, 

we randomly deleted between 0% and 98% of cases before estimating the transmission 

distance (2000 simulations in all). We then fit a loess curve to compare the error in our 

estimate by the proportion of cases observed (Cleveland et al., 1992).

Where infection results in subsequent immunity of the host, pathogen spread may violate 

our assumption of isotropic movement as pathogens go in search of susceptible hosts. To 

explore the impact of immunity on our approach, we simulated epidemics where individuals 

became immune following infection. To allow appropriate comparison to situations without 

immunity, we also simulated epidemics without immunity but used a seasonally adjusted 

effective reproductive number to produce similar epidemic curves. In both the simulations 

with and without immunity, we estimated the mean transmission distance for all cases 

occurring up to the end of each epidemic week and compared it to the true mean distance.

The underlying spatial structure of the population may also impact our ability to estimate the 

mean transmission distance. We used the same simulation framework to explore the impact 

of having either moderate or high spatial structure in the underlying population. To simulate 

clustered populations we used a Matérn cluster process (Matérn, 1986). A Matérn cluster 

process works by initially placing a number of parent points at random throughout the study 

area (representing the center of each ‘community’). Daughter points (representing the 

location of each individual) are then placed at random within a set radius of each parent 

point. We used a constant population size of 316 individuals per community in each of 316 
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different communities spread across an area of 100km2, resulting in a total population of 

10,000. We used a community radius of 1000m for moderate spatial structure and a 

community radius of 100m for scenarios of high spatial structure (See Figure S2).

Occasional long-distance transmission events will result in long-tailed kernels that will 

violate our assumption of equal mean and standard deviation of the transmission kernel. To 

explore the impact of such transmission events we simulated epidemics where a proportion 

of transmission events occurred at random across the whole study area, irrespective of 

location. The remainder of transmission events following a base exponentially distributed 

kernel with a mean of 100m. We performed 1,000 simulations of outbreaks in unstructured 

populations as well as moderate and highly structured populations. The proportion of non-

spatial transmission events for a particular simulation was drawn from a uniform distribution 

ranging from 0% to 10%. At the end of each simulation we compared the true mean 

transmission distance with the distance estimated using our approach.

Further details on the simulations can be found in the Text S2 of the supplementary 

materials

Application to 2001 outbreak of foot-and-mouth disease in Cumbria and Dumfriesshire, UK

Foot-and-mouth disease is a caused by a virus that is transmitted to livestock through contact 

of humans or other infected livestock. In 2001, a large outbreak of foot-and-mouth disease 

occurred in the UK (Ferguson et al., 2001a; Haydon et al., 2003). Foot-and-mouth disease 

causes large-scale economic loss for both farmers and the wider economy. The 2001 

epidemic resulted in the culling of over four million animals and cost the UK national 

treasury 2.7 billion British Pounds (Davies, 2002). In particular, Cumbria and neighboring 

Dumfriesshire bore the brunt of the epidemic with 1,070 infected livestock (Figure 5). 

Intensive contact tracing was performed upon the discovery of any infected case and the 

location of the infector was identified where possible. The dates when infected animal were 

identified and the latitude and location of the infected farms were made available from the 

UK Food and Environment Research Agency. Where the source of the infection was known, 

its location was also provided.

We estimated the mean distance between sequential infected farms in this outbreak using 

initially only the cases where the location of the infector was known. We assumed that the 

generation time of foot-and-mouth disease was normally distributed with a mean of 6.1 days 

and a standard deviation of 4.6 days (Haydon et al., 2003). In addition, we estimated the 

mean transmission distance using all cases, including those where the location of the 

infector was unknown.

Results

Simulation study results

In simulations using an exponentially distributed transmission kernel, when all cases were 

observed our method estimated an average mean distance of 109m (95% range of estimates 

of 71m-142m) versus a true mean distance of 106m (resulting in a mean difference between 

the estimated and true transmission distance of 3m, 95% range of difference in estimates of 
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(-)37m-36m) (Figure 4). Further, it recovered the true mean transmission distance when only 

subsets of cases were observed (Figure 4). Even when just five per cent of cases were 

observed, the method produced only a small over-estimate (mean difference of 22m, 95% 

range of (-)18m–59m). The results were virtually identical for a lognormal transmission 

kernel (mean difference of 6m, 95% range of (-)33m–42m). Misspecification of the true 

mean generation time resulted in small errors in the mean transmission distance estimates: a 

50% overestimate of the time between infections resulted in a mean error of 30m ((-)18m–

74m) whereas a 50% underestimate resulted in a mean error of -22m ((-)51m 6m). 

Simulations performed on clustered populations had similar performance to simulations in 

unclustered populations (mean error of 6m [(-)32m-46m] for moderate spatial structure and 

-14m [(-)31m-17m] for high spatial structure).

The introduction of immunity into the simulations had an important impact on our ability to 

estimate the mean transmission distance (Figure S3). At the start of the simulated epidemics, 

when no immunity was present, our approach was able to correctly estimate the true mean 

transmission distance. However, as individuals became immune, successful infection events 

preferentially occurred away from the site of the source of the outbreak, violating our 

assumption of isotropic transmission. This resulted in a significantly biased estimate of the 

mean transmission distance. When 50% of the population was immune, we estimated a 

mean transmission distance of 410m versus a true mean transmission distance of 106m. This 

suggests that where immunity is driving the spatial spread of an outbreak, our approach 

would over-estimate the true mean transmission distance.

The introduction of occasional long-distance events resulted in an over estimate of the mean 

transmission distance due to the violation of the equal mean and standard deviation of the 

transmission kernel. In scenarios of outbreaks in unstructured populations where 2% of 

transmission events did not follow the base kernel and instead occurred in individuals drawn 

at random across the whole study population (irrespective of where they lived), resulted in 

an over-estimate of 193m ((-)77m-475m) (Figure S4). Scenarios with occasional long-

distance events run in either moderately or highly clustered populations resulted in similar 

errors.

Application to 2001 outbreak of foot-and-mouth disease in Cumbria and Dumfriesshire, UK

Contact tracing activities identified the source of infection in 438 farms (41% of all infected 

farms in the region). From these activities, the mean distance between the infector farm and 

the infectee farm was measured at 6.3km (95% confidence interval of 5.2km-7.4km). These 

calculations exclude seven farms where the source was traced to outside the study area. The 

standard deviation of distances was 11.2km (95% confidence interval of 9.5km-12.8km).

We used our approach to estimate the mean distance between transmission related farms 

(without using contact tracing information). Using only farms where the infector was known 

(but excluding the seven farms where the source was known to be outside the study area) 

gave a mean transmission distance of 9.1km (95% confidence intervals of 8.4km-9.7km). 

Including the seven farms where the source was outside the study area gave a mean 

transmission distance of 9.2km. Using all case farms (irrespective if the infector had been 

identified or not) gave a mean transmission distance of 8.9km (95% confidence interval of 
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8.6km-9.3 km). These estimates are slightly greater than the 6.3km obtained from contact-

tracing activities. This is consistent with the standard deviation of the transmission distance 

(estimated as 11.2km from contact-tracing) being greater than the mean and therefore in 

violation of the equal mean and standard deviation assumption. Importantly, the mean-

squared dispersal distance was the same in both our estimate and the estimate from contact-

tracing efforts (Figure 6). Note that the mean-squared dispersal distance is the same, even 

when the mean and the standard deviation of the kernel are different (see Equation 3). In 

addition, both the mean and the standard deviation of the transmission distance fall within 

the upper bounds for those values (12.6 km for both, see Figure 6A).

Following the start of the outbreak, the UK government imposed restrictions on the 

movement of cattle and the culling of animals within 3km of infected farms (Ferguson et al., 

2001b). We explored the evolution of the mean transmission distance over the course of the 

epidemic. We estimated the mean transmission distance of all cases that had occurred up to 

each week of the epidemic and compared that to the estimates from the contact tracing 

activities. We found that both the contact tracing activities and our approach showed a sharp 

reduction in the mean transmission distance over the course of the outbreak (Figure 5D). 

Cases up to week 3 had an estimated mean transmission distance of 15.5km (95% CI: 

10.8-20.2km) from contact tracing activities and an estimated mean transmission distance of 

14.5km (13.7-15.9km) using our approach. By week 10, this fell to 8.3km (7.0-9.5km) using 

contact tracing and 9.6km (9.2-10.1km) using our approach.

Discussion

Understanding the distance between sequential cases in a transmission chain is key to 

elucidating dispersal mechanisms and designing efficient intervention measures. However, 

characterizing transmission distances has been limited to date to cases where active 

investigation has identified putative transmissions using epidemiologic evidence or where a 

sufficient proportion of cases have been detected to allow inference of potential transmission 

pathways using mathematical modelling approaches (Ferguson et al., 2001b; Keeling et al., 

2001; Neri et al., 2014; Ster and Ferguson, 2007). In cases where active investigations are 

not done and only a small proportion of cases are detected, estimating the mean transmission 

distance has not previously been possible. Through simulation, we demonstrated the 

robustness of our approach when only a minority of cases in an outbreak was observed. We 

then applied it to an outbreak of foot-and-mouth disease in Cumbria, one of the few 

occasions where intensive contact tracing was performed. We found our approach only 

slightly over-estimated the measured mean distance between transmission pairs. Importantly, 

the measured mean and standard deviation of the transmission distance were within our 

estimates of the upper bound of those values.

For the foot-and-mouth disease example, we were able to generate mean transmission 

distances that were consistent with the estimates from the contact tracing activities right 

from the start of the outbreak. Our approach also captured the subsequent reduction in the 

transmission distance during the course of the epidemic, presumably resulting from the 

restrictions placed on the movement of livestock. In addition, the government introduced the 

culling of animals, 3km around infected farms (Ferguson et al., 2001b). We could expect 
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that this latter activity would act as an extreme form of herd immunity, which we found had 

the potential to substantially bias our estimates. Our ability to generate mean transmission 

distance estimates that were broadly consistent with that from contact tracing is therefore 

somewhat surprising. The 3km culling radius is far smaller than the mean transmission 

distance and was potentially too small to act as an effective herd immunity. In addition, it 

has been suggested that many cattle farms did not follow the culling strategy (Ferguson et 

al., 2001b). Our simulations incorporating immunity may also represent an extreme 

example, where infection events are continuously forced outwards through spatially 

dependent exhaustion of susceptibles. The approach may be less biased in scenarios where 

substantial pockets of susceptible individuals remain in all directions (i.e. the assumption of 

isotropy is not violated).

We are unable to differentiate between different functional forms of the transmission kernel, 

however, understanding the mean transmission distance provides a useful indicator of 

disease spread. In addition, we can identify a set of distributions with equal mean-squared 

dispersal distances within which the true transmission kernel may fall. For example, 

assuming the transmission kernel for the foot-and-mouth outbreak was Weibull distributed 

identifies a range of possible distributions, one of which is close to the one calculated from 

contact tracing (Figure 6B, see also Figure S5 of the supplementary materials for an example 

with a log-normal distribution).

We have found that our approach is robust to a number of departures from ideal conditions 

for our estimator. However, there are potential challenges that we have not addressed in this 

manuscript. Foot-and-mouth disease has a relatively short generation time. It is unclear how 

this approach would perform with diseases with much longer or highly variable generation 

times. Similarly, the generation time distribution may change during the course of an 

epidemic (Nishiura, 2010). However, we have shown through simulation that our approach is 

largely robust to such changes. Long-tailed transmission kernel distributions that result in 

occasional transmission events over very long distances would bias our results upwards. For 

example, occasional long-distance transmissions are known to have played an important role 

in the spread of foot-and-mouth disease across the UK. These epidemiologically-important 

events would not be captured using our approach. Finally, our method requires that all cases 

in an outbreak are part of the same transmission tree (even if the MRCA is several 

generations back). Where more than one transmission chain exists and we have no ability to 

differentiate between the different chains (such as in settings of sustained endemic 

transmission) we would not be able to use this approach. While we have applied our 

approach to the specific setting of infectious disease outbreaks, there may applications 

outside this field, where point patterns are generated through branching processes. There 

may also be extensions that allow the estimation of mean distances in three-dimensional 

space or where there exists a bias in the direction of movement.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Box 1

Overview of key terms

Transmission linkage (θ) - The number of transmission events that link two cases (see 

example in Figure 1)

Transmission kernel - The probability distribution function of the distance between 

sequential cases in a transmission chain

Most recent common ancestor (MRCA) - The most recent infector that can link a pair 

of cases

Mean transmission distance (μk) - The mean of the transmission kernel

Standard deviation of transmission distance (σk) - The standard deviation of the 

transmission kernel

Mean distance between θ transmission-linked pairs (μa(θ,μk,σk)) - The mean distance 

between cases separated by θ transmission events where the transmission kernel has 

mean μk and standard deviation σk

Transmission-linkage weights (w(θ, t1, t2)) - The proportion of case pairs where one 

occurs at t1 and the other at t2 that are separated by θ transmission events

Mean distance between all pairs (μt(t1, t2, μk, σk)) - The mean distance separating all 

pairs of cases where one occurs at t1 and the other at t2 and the transmission kernel has 

mean μk and standard deviation σk

Observed mean distance between case-pairs (μt
obs(t1 , t2)) - The observed mean 

distance separating all pairs of cases where one occurs at t1 and the other at t2
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Highlights

• Knowing mean transmission distances in outbreaks can help target 

interventions

• We propose a method to estimate it that only uses data on where and 

when cases occur

• Simulations show its robustness to when only a small proportion of 

cases are observed

• The method captures the mean transmission distance in the 2001 UK 

foot and mouth outbreak
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Figure 1. 
(A) Example transmission tree with (B) the cumulative distribution function for pairs of 

cases separated by different numbers of transmission events assuming a constant 

exponentially distributed transmission kernel with a mean of 100m.
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Figure 2. 
Example calculation of the weights from the Wallinga-Teunis matrix. Assume five cases 

occur over three days as set out in (A) and we know the generation time distribution (B) so 

that two thirds of sequential infections are a day apart and one third are two days apart. We 

can build a Wallinga-Teunis matrix (C) that sets out for each case the probability that a case 

occurring at each time point was its infector. The columns of the matrix have been 

normalized so that they add to one. (D) Sets out all possible pathways connecting a case at 

time 2 with a case at time 3, with the associated number of transmission events (θ) for that 

chain and the probability of that chain calculated from the Wallinga-Teunis matrix (chains 

with zero probability such as 4-5-2 have been excluded). (E) sets out the average probability 

for each θ from (D), which represents the weights used in the calculation of the transmission 

kernel.
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Figure 3. 
Transmission kernels with different means and standard deviations can produce point 

patterns with the same mean squared dispersal distance (ER2) and therefore are not 

distinguishable from each other in the presented approach. (A) Combinations of values with 

the same ER2. (B) Cumulative distribution function of transmission kernels with exponential 

distribution with μk = σk =100m (red line in (B, C) and red dot in (A)), uniform distribution 

between 0 and 246m (green), gamma distribution with μk =80m and σk =117m (purple), 

Gaussian distribution with μk =140m and σk=20m (orange) and log-normal distribution with 

μk =200m and σk =500m (grey). Kernels with equivalent ER2 in (A) generated points that 

had indistinguishable cumulative distribution functions after ten generations, whereas the 

kernel with an inconsistent ER2 (in grey) had a different cumulative distribution function.
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Figure 4. 
Estimates of mean transmission distance from simulated transmission chains where only a 

subset of cases are observed. The blue dots represent estimates from individual simulations 

with an exponential distributed transmission kernel. The lines represent loess curves from 

2000 simulations.
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Figure 5. 
Outbreak of Foot and Mouth Disease in Cumbria, UK in 2001. (A) Location of Cumbria and 

Dumfriesshire in the UK. (B) Location of cases. (C) Epidemic curve by week. (D) Measured 

mean transmission distance from contact tracing activities (green) and estimated through our 

approach (red) for all cases up to each epidemic week with 95% confidence intervals.
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Figure 6. 
(A) Estimate of the mean transmission distance for foot-and-mouth disease in Cumbria in 

2001 compared to estimates from contact tracing activities. (B) Weibull distributions with 

equivalent ER2 from Equation 3 (black line in panel A).
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