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of pathogenicity for compensated
variants
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Understanding the functional sequelae of amino-acid replacements is of

fundamental importance in medical genetics. Perhaps, the most intuitive way to

assess the potential pathogenicity of a given human missense variant is by

measuring the degree of evolutionary conservation of the substituted amino-acid

residue, a feature that generally serves as a good proxy metric for the functional/

structural importance of that residue. However, the presence of putatively

compensated variants as the wild-type alleles in orthologous proteins of other

mammalian species not only challenges this classical view of amino-acid essentiality

but also precludes the accurate evaluation of the functional impact of this type of

missense variant using currently available bioinformatic prediction tools.

Compensated variants constitute at least 4% of all known missense variants causing

human-inherited disease and hence represent an important potential source of error

in that they are likely to be disproportionately misclassified as benign variants.

The consequent under-reporting of compensated variants is exacerbated in the

context of next-generation sequencing where their inappropriate exclusion constitutes

an unfortunate natural consequence of the filtering and prioritization of the very

large number of variants generated. Here we demonstrate the reduced performance

of currently available pathogenicity prediction tools when applied to compensated

variants and propose an alternative machine-learning approach to assess likely

pathogenicity for this particular type of variant.
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It is almost a truism that the degree of
evolutionary conservation of an amino-

acid residue reflects the structural and/or
functional importance of that residue.
Human disease-causing variants tend to occur
disproportionately in those residues of struc-
tural and/or functional importance, and for
this reason are subject to negative selection. It
is therefore not unreasonable to expect that
missense variants, which are disease-causing
in human, would also be deleterious in

evolutionarily closely related species. How-
ever, this expectation has been challenged by
the realization that there are numerous
examples where human mutant alleles corre-
spond to the wild-type alleles in other mam-
malian species.1–7 Such variants have become
known as compensated pathogenic deviations
(CPDs) following their original designation5

because it is assumed that the apparently
benign nature of these missense variants in
non-human species is due to the coexistence

of other amino-acid substitutions (AASs) that
compensate for their otherwise dysfunctional
consequences. Among those human mutant
residues corresponding to the wild-type resi-
due in mouse5 are an p.(Ala53Thr)
(NM_000345.3:c.157G4A) substitution at
the α-synuclein (SNCA) locus reported to
be associated with familial Parkinson disease;8

the ADA-p.(Arg142Gln) (NM_000022.2:
c.425G4A) causing severe combined immu-
nodeficiency;9 and the CFTR-p.(Phe87Leu)
(NM_000492.3:c.259T4C) in the cystic
fibrosis transmembrane conductance regula-
tor gene underlying cystic fibrosis.10 Another
interesting CPD is EIF2B5-p.(Arg113His)
(NM_003907.2:c.338G4A), the most com-
mon lesion associated with leukoencephalo-
pathy with vanishing white matter,11 which
corresponds to the wild-type allele in the
genomes of both rat and mouse.4

When the genome sequence of the rhesus
macaque was released,3 further examples of
CPDs were identified. Among them was the
p.(Ile164Thr) (NM_000277.1:c.491T4C) at
the phenylalanine hydroxylase12 responsible
for the most common human inborn error
of metabolism (phenylketonuria) and p.
Arg40His (NM_000531.5:c.119G4A) at the
X-linked ornithine transcarbamylase (OTC)
locus. Although the OTC-p.(Arg40His) repla-
cement leads to the cytosolic degradation of
the human enzyme precursor,13 abnormal
levels of ammonia were not evident in simian
plasma. Moreover, abnormal levels of pheny-
lalanine were not detected in macaque,3

reinforcing the notion that these variants are
only deleterious on a human genetic
background. Intriguingly, a different OTC
variant p.(Thr125Met) associated with fatal
hyperammonemia14 was found to correspond
to the wild-type allele in chimpanzees.1,15,16

Among the CPDs identified through a com-
parison with the recently reported mountain
gorilla genome6 was the NPC1-p.(Asn961Ser)
(NM_000271.4:c.2882A4G) that leads to
Niemann-Pick disease C.17

Finally, variants associated with ciliopathies
at the BBS4 and RPGRIP1L genes associated
with Bardet-Biedl and Meckel-Gruber syn-
dromes, respectively, constitute the wild-type
alleles in the genomes of several vertebrates.7

The same study reported a de novo variant at
the BTG2 locus in which the disease-associated
allele corresponded to the wild-type allele in
more than 50 vertebrate species.
At this stage, it is important to mention

that these are examples of a more general
phenomenon that involves at least 4% of all
known missense variants causing human-
inherited disease (see Materials and Methods
section). In practice, this proportion almost
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certainly represents a conservative estimate
because there is an intrinsic ascertainment
bias against the recognition and reporting of
CPDs; such variants, by their very nature, are
often predicted to be benign. This bias is
exacerbated in the context of next-generation
sequencing (NGS) where the inappropriate
exclusion of CPDs from further consideration
constitutes an unfortunate natural conse-
quence of the filtering and prioritization of
the very large numbers of candidate variants
generated. It follows that we need to take
urgent steps both to assess the scale of this

problem and to take appropriate remedial
action.
It is essential that bioinformatic prediction

tools can make accurate and reliable predic-
tions when they are used to assess the
functional impact of a putative compensated
variant. Some existing tools have already been
shown to make incorrect predictions in the
case of experimentally validated pathogenic
variants.7 Here, we demonstrate, in a larger
sample of CPDs, the reduced performance of
existing tools to predict the deleterious
impact of CPDs when found as disease-

associated variants in humans. Further, we
present the prototype of a CPD-specific
predictor that successfully outperformed
currently available tools in terms of its ability
to predict the deleterious impact of these
variants in humans.

MATERIALS AND METHODS

Detection of CPDs in mammalian species
To identify the amino-acid positions where a

deleterious human variant corresponds to the

wild-type residue in a non-human mammalian

species, herein referred to as a CPD,5 we employed

Figure 1 Performance evaluation of four different bioinformatic tools (SIFT, Mutation Assessor, PROVEAN and MetaSVM) used to identify disease-causing
variants. Each bioinformatic tool was evaluated on CPDs (lower line) and DMs (upper line). ROC curves and the AUC were calculated for each data set (CPD
and DM) with a different prediction tool. An AUC of 100% would represent a perfect predictor, whereas an AUC of 50% would represent a prediction tool
making only random predictions (denoted by the black diagonal line). Note: MetaSVM is an ensemble prediction method based on 10 other prediction tools.
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data from the Human Gene Mutation Database
(HGMD; http://www.hgmd.org; 52 765 disease-
causing missense variants, annotated as DMs;
July 2013) to screen 1-to-1 orthologous mamma-
lian protein sequences annotated at the Ensembl
Genome Browser (http://www.ensembl.org; release
73).18 Data from a total of 39 mammalian species
(35 placental, 3 marsupials and 1 monotreme) were
available, and sequences were automatically
retrieved and submitted through a series of strin-
gent filters before being considered for subsequent
analysis. Whenever more than one sequence
matched the gene symbol used in the search
(because of redundancy caused by, for example,
alternatively spliced isoforms), a pairwise alignment
with the human reference sequence was performed
and the sequence retained was that which had the
highest degree of identity with its human counter-
part. In order to avoid highly incomplete sequences,
we calculated the pairwise identity to the human
sequence and retained only those that were at least
50% identical to the human ortholog. The ortho-
logous sequences that passed these filters were then
used in the identification of CPDs by comparing
the aligned sequences. For all the cases where a
CPD was identified, we applied a strategy similar to
that previously documented, 5 namely, screening a
flanking window of five amino-acid residues
upstream and downstream of the putative CPD
site and retaining only those CPDs with no more
than four differences with respect to the human
sequence within the flanking region. Missense
variants at the initiator methionine residue were
removed from the analysis. This strategy allowed
the identification of 1964 CPDs in a total of 684
protein-coding genes (Supplementary Table S1),
a figure that corresponds to ~ 3.7% of all missense
variants analyzed. All the alignments were per-
formed using ClustalO 1.2.0 (www.clustal.org/
omega)19 and other tools were developed locally
using GNU/Linux-based computers with scripting
tools+C programming language.

DM set
A set of 10 211 disease-causing missense variants,
which result in an AAS in 2030 genes, was obtained
from the HGMD.20 This set of disease-causing
variants is representative of data sets that have
typically been employed in the training and evalua-
tion of a number of different bioinformatic

prediction tools to identify disease-causing AAS.
In order to allow an unbiased evaluation of
bioinformatic prediction tools, an unseen test set
(not used for training) should always be used,
otherwise the evaluation represents in-sample error
rather than out-of-sample error and hence is likely
to be overly optimistic in terms of prediction
performance. As some of the prediction tools
evaluated here (eg, MetaSVM) either already used,
or could have used, HGMD (or other similar
overlapping data sets, eg, OMIM) either as training
data or in the development of the prediction
method, this DM set was selected so as to contain
only recently reported (2014 onwards) disease-
causing missense variants from HGMD. This data
set of variants would therefore not have been
available when the various pathogenicity prediction
tools being tested were being developed. This set of
disease-causing variants is henceforth referred to as
the DM set.

SNP set
As a negative control, a set of 2174 putatively
‘neutral’ common missense SNPs (MAF≥ 0.4) in
1640 genes from the NHLBI ESP6500 Exomes
(http://evs.gs.washington.edu/EVS/) was compiled.
This set is henceforth referred to as the SNP set.

Performance evaluation of bioinformatic
prediction tools used to identify disease-
causing variants
Numerous different prediction methods to identify
disease-causing or functional variants have been
developed. The four chosen here (SIFT,21 Mutation
Assessor,22 PROVEAN23 and MetaSVM24) were
selected on the basis that they are commonly used
(eg, SIFT) or represent a different approach to the
classification problem (eg, MetaSVM, an ensemble
approach using population frequency data and the
scores from 10 other prediction methods (SIFT,
PolyPhen-2 HDIV, PolyPhen-2 HVAR, GERP++,
MutationTaster, Mutation Assessor, FATHMM,
LRT, SiPhy and PhyloP)). Prediction scores for
the CPD, DM and SNP set (where available) were
then obtained from dbNSFP (version 3.2c).24 As a
means to evaluate performance for each of the four
bioinformatic prediction methods, receiver operat-
ing characteristic (ROC) curves and the area under
the ROC curve (AUC) were calculated for the CPD
set versus the SNP set and the DM set versus the

SNP set. In this context, an ROC-AUC of 100%
would represent a perfect predictor, whereas an
AUC of 50% would correspond to a prediction tool
making random predictions.

Feature subset ranking
In order to evaluate discriminative features or
attributes (commonly used to identify disease-
causing variants) in the context of CPDs, an array
of features relating to the AAS (eg, solvent
accessibility) were derived from SNVBox25

(Supplementary Table S2). Related features were
then grouped into seven different subsets (amino-
acid-based, exon-based, genomic MSA, protein
MSA, protein structure, regional protein composi-
tion and annotated functional sites). For more
details, please refer to SNVBox.25 The prediction
performance of each feature subset (eg, exon-based
features) was evaluated using 10-fold cross-valida-
tion and a linear support vector machine (SVM)26

for two different data sets (CPD and SNP, DM and
SNP) by training the SVM classifier with only the
specific feature subset under evaluation. For each
feature subset, ROC curves and the AUC were
calculated, which allowed us to rank precisely how
informative each feature subset was for identifying
CPDs and also for identifying disease-causing
variants. As a control, a random attribute was
generated for each training instance and the
performance was measured using the AUC of
the ROC.

A machine-learning approach to assess the
functional impact of potential CPDs
Current methods to assess the impact of potential
disease-causing variants have neither been specifi-
cally developed nor evaluated in the context of
CPDs. Although they do demonstrate some utility
in terms of the functional assessment of CPDs, we
set out to develop a novel prototype CPD-specific
predictor. Using the features employed in this study
(Supplementary Table S1), two different Random
forest 27 classification models were built. Random
forest can be employed for supervised classification
and involves an ensemble of decision trees, which
helps to minimize overfitting, making them robust
to noise in the data. The first Random forest
classification model, termed the 'CPD-trained
model', was trained using the 1964 CPD
(positive examples) and 2174 SNP variants

Table 1 Evaluation of feature subsets (ROC-AUC, 10-fold cross-validation with linear support vector machine classifier) to discriminate

between CPDs versus SNPs and disease-causing mutations versus common SNPs (DM versus SNPs)

Feature subset CPD-AUC (%) DM-AUC (%) Performance reduction for CPD (CPD-AUC versus DM-AUC)

Genomic MSA 74.0 94.6 −20.6

Protein MSA (homologous) 60.4 80.7 −20.2

Local protein structure 56.5 68.5 −12.0

Regional protein composition 55.3 63.5 −8.2

Exonic features 64.7 71.0 −6.4

Annotated functional sites 50.3 55.3 −5.0

Amino-acid features 64.5 69.1 −4.6

Random value (control) 50.0 48.7 1.3

Features ranked by performance reduction between CPD set and DM set.
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(negative examples). The second model, termed the
'DM-trained model', was trained using the DM set
as positive examples (10 211 instances) and the
SNP set as negative examples (2174 instances).
As the ‘DM-trained model’ demonstrated a class
imbalance with fivefold more positive examples
than negative examples, the DM set (majority class)
was randomly undersampled (without replace-
ment) to balance the classes. The DM-trained
model also excludes any features derived from
multiple sequence alignments (MSA). To evaluate
both models (‘CPD-trained model’ and ‘DM-
trained model’), 10-fold cross-validation was per-
formed and the AUC was then calculated. In the
case of 10-fold cross-validation for the ‘DM-trained
model’, the positive variants in the ‘test’ fold were
derived from the CPD set (therefore, the training
fold had disease-causing mutations as positives and
common SNPs as negative instances), in order that
we evaluated the performance of the model on
classifying CPDs (rather than disease-causing muta-
tions in general). Standard benchmarking statistics
were employed to evaluate performance such as the
true-positive rate (sensitivity), the false-positive rate
and the Matthew’s Correlation Coefficient
(MCC).28 The MCC was employed as it represents
one of the best available measures of prediction
quality. It returns a value between − 1 and +1;
a coefficient of − 1 represents the worst possible
prediction, 0 a random prediction and +1 a perfect
prediction.

RESULTS AND DISCUSSION

How accurately are CPDs predicted by
current bioinformatics tools?
Owing to their occurrence in MSAs,
there may well be a tendency for CPDs to
evade detection by the predictive tools com-
monly used to evaluate the functional impact
of human missense variants, simply because
the mutant residues in question are tolerated
in other mammalian species. Most predictive
methods rely to some extent on the degree of
evolutionary conservation of the mutated
residue but, when a mutant residue occurs
as the wild-type allele in one or more
orthologs, its impact in a human context
may not be readily predictable. Thus, for
example, using three widely used predictive
tools, PolyPhen,29 SIFT21 and Mutation
Assessor,30 Jordan and et al.7 failed to
predict the deleterious effect of three CPDs
(NM_033028.4(BBS4):c.493A4C (p.Asn165-
His); NM_015272.3(RPGRIP1L):c.2810G4
T (p.Arg937Leu); and NM_006763.2(BTG2):
c.421G4A (p.Val141Met)) experimentally
demonstrated to be disease-associated in
human.
To assess the extent of the ability of

existing predictive methods to deal with

CPDs, we compared a set of more than
10 200 disease-causing variants from the
HGMD with a set of CPDs (Supplementary
Table S1) and a set of neutral missense SNPs
(MAF≥ 0.4; Figure 1). The results showed
that all four bioinformatic prediction tools
tested here exhibited reduced prediction
performance (−24.2 to − 8.5% AUC) in
relation to CPDs as compared with disease-
causing variants. The performance (ROC-
AUC) of the four tools evaluated in the
context of identifying CPDs was as follows:
SIFT (68.1% AUC), Mutation Assessor
(71.4% AUC), PROVEAN (72.3% AUC)
and MetaSVM (85.6%). Of the four tools,
SIFT exhibited the largest reduction in pre-
diction performance (−24.2%) for identifying
CPDs. MetaSVM, a consensus of scores from
10 different tools (SIFT, PolyPhen-2 HDIV,
PolyPhen-2 HVAR, GERP++, MutationTa-
ster, Mutation Assessor, FATHMM, LRT,
SiPhy and PhyloP) and the maximum
frequency observed in the 1000 Genomes
populations, outperformed all other tools in
terms of identifying CPDs (AUC=85.6%;
Figure 1), suggesting that an ensemble approach
could prove useful in classifying CPDs.

Evaluation of features commonly used to
identify disease-causing AAS
In order to perform an evaluation in the
context of CPDs, the discriminatory power of
groups of related features (eg, structural
features; Supplementary Table S2) commonly
used to distinguish disease-causing missense
variants from neutral polymorphic missense
variants was computed using 10-fold cross-
validation with a linear SVM (Table 1 and
Figure 2). Each feature subset was evaluated
in the contexts both of identifying CPDs and
disease-causing mutations, in order to com-
pare and contrast how informative the differ-
ent features are for the two different classes of
disease-causing mutations (CPD set versus
DM set). The most informative feature
subsets discriminating disease-causing var-
iants from common putatively neutral poly-
morphisms (DM versus SNP) were derived
from MSA (94.6% AUC for genomic MSA

Figure 2 Evaluation of different groups of commonly used features (feature subset ranking) for
identifying disease-causing AAS. Each feature subset is then evaluated (10-fold cross-validation using a
linear support vector machine) in the context of (i) discriminating between CPDs and common
polymorphisms (CPD versus SNP set), (ii) discriminating between disease-causing variants (DMs) and
common polymorphisms (DM versus SNP set). The AUC of the ROC curve was then calculated for each
feature subset; features employed in each subset are shown in Supplementary Table S1. As a control, a
random feature was computed for each training example and the AUC of the ROC calculated.

Table 2 Performance benchmarks for the identification of CPDs based on the two machine-learning models prototyped in this study

Data set TPR (%) FPR (%) MCC AUC of ROC

CPD-trained model 78.05 21.75 0.56 86.21

DM-trained model (no MSA features) 54.84 21.98 0.34 75.10

Abbreviations: FPR, false-positive rate; MCC, Matthew’s Correlation Coefficient; MSA, multiple sequence alignments; TPR, true-positive rate.
The first model, termed the 'CPD-trained model', was trained using the sets of CPDs and common SNPs employed in this study (CPD and SNP sets). The second model, the 'DM-trained model', was
trained using disease-causing mutations and common SNPs (DM and SNP sets) but excludes any features derived from MSA. The Random Forest machine-learning algorithm was employed, and
evaluation was performed using a variation of 10-fold cross-validation, whereby the positive evaluation set in each fold comprised unseen examples from the CPD set for both models (DM-trained
model and CPD-trained model). An MCC of −1 represents the worst possible prediction, 0 a random prediction and +1 a perfect prediction.
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and 80.7% AUC for protein MSA; Figure 2—
DM set). These MSA-derived features (geno-
mic and protein MSA) also demonstrated the
largest reduction in performance (−20% in
AUC; Table 1) when used to discriminate
between the CPDs and the SNP set
(as compared with the DM versus the SNP
set; Figure 2—CPD set). MSA-derived
features include information pertaining to
evolutionary conservation (genomic or pro-
tein level). As these features proved to be the
most informative (of all the features studied)
in terms of discriminating between disease-
causing mutations and putatively neutral
SNPs, it is likely that the lower level of
evolutionary conservation was responsible
for the reduced performance in discriminat-
ing between CPDs and the SNP set. As all
feature subsets demonstrated reduced perfor-
mance in classifying CPDs as compared with
disease-causing mutations, it is apparent that
CPDs cannot simply be regarded as disease-
causing mutations that happen to occur in
evolutionarily unconserved residues; rather,
CPDs must differ from standard disease-
causing mutations in terms of other features
such as the immediate protein context and
the structural location of the affected residue
within the body of the protein molecule.

A machine-learning approach to evaluate
potential CPDs
We next prototyped two different machine-
learning approaches to assess the pathogeni-
city of potential CPDs using the features
indicated in Supplementary Table S2
(see Materials and Methods section). The
CPD-trained model (AUC= 86.21%) outper-
formed the DM-trained model (with no MSA
features) by over 10% based on the AUC
(Table 2 and Figure 3). Both models shared
similar false-positive rates with the DM-
trained model exhibiting reduced sensitivity
(−23.2%) as compared with the CPD-trained
model. In the context of identifying CPDs,
the CPD model prototyped here outper-
formed all existing bioinformatic prediction
methods evaluated in this study, indicating
utility in developing a specific CPD predictor.
The work performed here also demonstrates
that bioinformatic prediction methods
(eg, MetaSVM; 85.6% AUC) not specifically
developed for predicting the pathogenicity of
CPDs can still be useful in this context.
Future avenues to explore would include the
further development of the prototype and the
evaluation of an ensemble model combining
a general model such as MetaSVM with
a CPD-specific model. It may also be

worthwhile trying to identify novel CPD-
specific features, which could prove useful
in classifying CPDs.
In conclusion, the scale of the CPD

phenomenon is such that a significant pro-
portion of disease-associated human variants
(a minimum of 3.7%) are found as the wild-
type allele in at least one of the other
mammalian species analyzed here. In terms
of evaluating the pathological impact of such
variants, traditional approaches suffer from
the serious drawback of relying upon the
evolutionary conservation score between
homologous proteins irrespective of the influ-
ence of genetic variation at other amino-acid
positions. Here we demonstrate the poor
performance of established mutation predic-
tion tools to assess the pathological signifi-
cance of CPDs and show that the
development of new tools, which result in
increased prediction accuracy, is possible. The
in silico assessment of pathogenesis for novel
CPDs identified by whole-exome/genome
NGS studies currently requires a different
protocol from that employed for the bulk of
non-compensated variants. We propose a
two-stage analysis, whereby whole-exome/
genome data should first be screened for
potential CPDs (using the strategy employed
in this study (and in others)5 to identify
missense variants where the mutant amino
acid represents the wild-type amino acid in
another mammalian species). A method such
as the novel CPD prediction tool prototyped
here could then be applied to identify any
high confidence CPD candidates for further
analysis. This work represents the first step
toward the development of a new algorithm
for identifying CPDs. The prototype algo-
rithm presented here remains to be exten-
sively evaluated but nevertheless promises to
form the backbone of a CPD-specific proto-
col that could help to avoid the misclassifica-
tion of a sizable proportion of pathological
missense variants as benign.
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Figure 3 Performance evaluation for the identification of CPDs by means of a ROC curve using 10-fold
cross-validation of the two Random Forest prediction models prototyped in this study. The first model,
termed the 'CPD-trained model', was trained using the CPD and SNP sets employed in this study
(red line). The second model, the 'DM-trained model', which excludes any features derived from MSAs,
was trained using disease-causing variants (DM and SNP sets) but in each ‘test’ fold the positive
variants were derived from the CPD set (blue line). The AUC was then calculated for each model (CPD-
trained model and DM-trained model). An AUC of 100% would represent a perfect predictor, whereas
an AUC of 50% would correspond to a prediction tool making random predictions (represented by the
diagonal line). The full colour version of this figure is available at European Journal of Human Genetics
online.
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