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ABSTRACT
Semaphorins constitute a large family of membrane-bound and secreted proteins that provide
guidance cues for axon pathfinding and cell migration. Although initially discovered as repelling
cues for axons in nervous system, they have been found to regulate cell adhesion and motility,
angiogenesis, immune function and tumor progression. Notably, semaphorins are bifunctional cues
and for instance can mediate both repulsive and attractive functions in different contexts. While
many studies focused so far on the function of secreted family members, class 1 semaphorins in
invertebrates and class 4, 5 and 6 in vertebrate species comprise around 14 transmembrane
semaphorin molecules with emerging functional relevance. These can signal in juxtacrine, paracrine
and autocrine fashion, hence mediating long and short range repulsive and attractive guidance
cues which have a profound impact on cellular morphology and functions. Importantly,
transmembrane semaphorins are capable of bidirectional signaling, acting both in “forward” mode
via plexins (sometimes in association with receptor tyrosine kinases), and in “reverse” manner
through their cytoplasmic domains. In this review, we will survey known molecular mechanisms
underlying the functions of transmembrane semaphorins in development and cancer.
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Semaphorins and their receptors

Semaphorins are secreted, transmembrane and
GPI-linked glycoproteins that have been grouped into
8 classes, based on structural features and amino acid
sequence similarity. There are around 20 semaphorins in
humans, Drosophila has 5, and 2 are known from viral
genomes. Semaphorins found in invertebrates are
grouped in classes 1–2, vertebrate ones in classes 3–7,
and a final group contains those encoded by viruses.
Notably, class 1, 4, 5 and 6 comprise transmembrane
molecules, which include a cytoplasmic domain. All
members contain a conserved extracellular domain of
about 500 amino acids known as the Sema-PSI domain,
located at the N-terminal of the molecule. The size of
transmembrane semaphorins may range from 400 to
1000 amino acid residues. In addition, downstream to
the sema domain, class 4 semaphorins include an immu-
noglobulin(IG)-like domain, while class 5 semaphorins
contain 7 thrombospondin motifs. Intracellular domains
of class 4 semaphorins have a PDZ-domain binding
motif at the C-terminus. Transmembrane semaphorins
of class 6 have the longest cytoplasmic domain of about
400 amino acids, which also contains proline-rich motifs.

High-affinity receptors for transmembrane semaphor-
ins are essentially represented by plexin family mem-
bers.1-3 Neuropilins, which are important co-receptors
for secreted semaphorins, do not seem to have a role in
the signaling cascade of transmembrane family members
(with the reported exception of an interaction between
Sema4A and Neuropilin-1).4 Invertebrates bear 2 plexin
genes, while there are 9 plexins in vertebrates. The latter
are divided into 4 subfamilies: PlexinA(1–4), PlexinB
(1–3), PlexinC1 and PlexinD1.The extracellular moiety
of plexins contains one sema domain and 2–3 PSI motifs,
similar to those of semaphorins; moreover, they include
3–4 IPT domains (shared by plexins, integrins and cer-
tain transcriptional factors). All plexins have very similar
cytoplasmic structures, comprising a RasGTPase-activat-
ing protein(GAP) domain with an inserted Rho GTPase-
binding domain(RBD).5

Different transmembrane semaphorins have been
found to interact at lower affinity with additional cell
surface receptors beyond plexins (see Fig. 1). For exam-
ple, Sema4A expressed in dendritic and B cells enhances
the activation and differentiation of T cells and the gen-
eration of antigen specific T cells in vivo also via the
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receptor TIM-2.6 In highly metastatic lung cancer cells,
Sema4B interacts with CLCP1(CUB,LCCL-homology,
coagulation factor V/VIII homology domains protein), a
protein with similarity to neuropilins. Here, Sema4B acts
as one of the ligands of CLCP1, and enhances its ubiqui-
nation and proteosome degradation, in turn regulating
the motility of lung cancer cells.7 A further member of
the class 4, Sema4D, interacts with CD72, a negative
regulator of B cell responsiveness; Sema4D stimulation
induces tyrosine dephosphorylation of CD72 intracellu-
lar tail and its dissociation from the effector SHP-1, turn-
ing off CD72 inhibitory signaling.8 Moreover, Sema5A
exerts both attractive and inhibitory effects on develop-
ing axons of the fasciculus retroflexus by physically inter-
acting with glycosaminoglycan chains of chondroitin
sulfate proteoglycans(CSPGs) or heparin sulfate proteo-
glycans(HSPGs), expressed by different neuronal popu-
lations. In particular, CSPGs function as precisely
localized extrinsic cues that convert Sema5A from an
attractive to an inhibitory guidance cue, whereas axonal
HSPGs mediate Sema5A mediated attraction.9

Signaling mode paradigms used by
transmembrane semaphorins

Transmembrane semaphorins can act by multiple signal-
ing modes. Clearly, when exposed on the cell surface,
they can engage short-range cell-to-cell interactions with
neighboring cells, either of the same type, or belonging
to a different cell population in the tissue environment.
Moreover, while they are synthesized as single-pass

membrane-spanning molecules, in many cases their
extracellular moiety can be shed in soluble form, and
potentially act as a secreted diffusible signal. Unlike what
is known for secreted class 3 semaphorins (which are
processed by furin-like convertases), transmembrane
semaphorin cleavage is mediated by diverse metallopro-
teases e.g. MT1-MMP mediates tumor angiogenesis
through the release of Sema4D,10 most of which have
not been clearly identified; moreover, the targeted cleav-
age sites generally need elucidation.

Thus transmembrane semaphorins can function by
3 different signaling paradigms: in juxtacrine mode (when
membrane-bound), and in autocrine or paracrine mode
(upon ectodomain release) (see Fig. 2). Sema4D is a good
example of this signaling versatility, and its proteolytically
shed isoform has been characterized even better than its
membrane-bound counterpart.11 For instance, Sema4D
autocrine signals in endothelial cells promote sprouting and
angiogenesis;12 however, Sema4D can also act in paracrine
manner on the endothelium when released by other cells in
the microenvironment.13 As an example of juxtacrine sig-
naling, the ligation of Sema4D/CD100 in gd T cells to the
receptor PlexinB2 exposed by damaged keratinocytes indu-
ces cell rounding via signals through ERK kinase and cofilin,
contributing to the skin wounding process.14

Bidirectional signaling of transmembrane
semaphorins

All semaphorins are known to act through the intracellu-
lar domain of the plexins, by a so-called “forward”

Figure 1. Representative transmembrane semaphorins and their receptor complexes. A number of transmembrane semaphorins signal
through diverse receptor complexes. Notable examples are illustrated in this figure. Sema4A can bind to Tim-2, a protein expressed on
T cells, in addition to plexins. In lymphocytes, Sema4D can associate with CD72, a member of the C-type lectin family. In cancer cells,
Sema4D can signal through complexes including PlexinB1 and ErbB2 or Met depending on the cell type. Sema5A can signal through
PlexinB3 and Met in epithelial cancer cells. However, in neurons, proteoglycans such as HSPG and CSPG modulate Sema5A signaling,
independent of PlexinB3. PlexinA1 is alternatively associated with OTK or VEGFR2 receptor tyrosine kinases in different cells of the
developing heart, and these signaling complexes have distinct functions in cardiac development.
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signaling pathway, which negatively regulates integrin-
mediated adhesion and induces cytoskeletal remodeling.
Moreover, exclusively transmembrane semaphorins can
also mediate a “reverse” signaling mode, by acting as
receptors rather than ligands, and signal through their
own cytoplasmic domains.

In fruit fly Drosophila melanogaster, Sema1a is a
repulsive ligand controlling motor axon guidance during
development. Sema1a interaction in trans with PlexinA
exposed by adjacent cells is crucial for defasciculation of
nerve bundles. This forward signaling cascade is modu-
lated by perlecan, an extracellular matrix component,
which enhances semaphorin-induced downregulation of
integrin adhesive function and FAK dephosphorylation,
leading to motor axon defasciculation.15 Notably, Sema1a
can also mediate motor axon defasciculation through
reverse signaling mechanisms, whereby its cytoplasmic
domain can interact with 2 major antagonistic regulators
of the GTPase Pebble and the inhibitor RhoGAP p190.
The first activates Rho1 and promotes axon-axon repul-
sion and defasciculation, while p190-RhoGAP antago-
nizes this mechanism allowing axonal attraction;16,17 the
extracellular Sema1a-binding molecule triggering this
cascade is still unclear.

The signaling cascade elicited downstream of sema-
phorin/plexin interactions in vertebrates has been stud-
ied in a variety of cell types and models. Certain forward
signaling mechanisms are shared by most plexins or
family members of the same subclass. For instance,

many plexins have been found to regulate the activity of
GTPases of the Ras/Rho family. In particular, plexin
cytoplasmic domain carries intrinsic GTPase Activating
Protein (GAP) activity against R-Ras, M-Ras and/or
Rap-1 GTPases. In different studies, this has been shown
to inhibit beta1 integrin-dependent adhesion and cell
detachment from the extracellular matrix;18,19 hinder the
activity of phosphoinositide 3-kinase, leading to AKT
dephosphorylation and activation of GSK-3beta;20 and
derepress p120-Ras-GAP activity, leading to downregu-
lation of RAS-MAPK signaling.21 The final outcome of
this signaling cascade typically is the inhibition of cell
migration. Moreover, Rho GTPases, such as RhoA, Rac
and Cdc42, known to control cell motility by regulating
actin and microtubule dynamics, are considered impor-
tant downstream effectors of plexin receptors. For
instance, it was reported that Sema4D activated PlexinB1
can regulate RhoA activity via p190-RhoGAP protein,22

or inhibit RAC-dependent PAK activation.23 In addition,
PlexinB1 and PlexinB2, by means of leukemia associated
Rho-GEF(LARG) and p190-PDZ-RhoGEF tethered to
their C-terminus consensus sequences, can upregulate
GTP-bound active RhoA levels, impinging on cytoskele-
tal reorganization and growth cone morphology.24,25

Notably, many forward semaphorin signals are medi-
ated by multimeric receptor complexes, containing plex-
ins in association with additional transmembrane
subunits. For transmembrane semaphorins, these often
implicate plexin-associated tyrosine kinase receptors

Figure 2. Various signaling mode paradigms used by Sema4D transmembrane semaphorin. Sema4D is taken as an example of diverse
signaling paradigms of transmembrane semaphorins. In particular, Sema4D produced by endothelial cells can function in autocrine
manner on its surface receptor such a PlexinB1. In addition, Sema4D released by other cells in the tumor microenvironment (e.g., Tumor
Associated Macrophages) can signal in paracrine fashion to endothelial cells. Moreover, during wound healing, Sema4D expressed by
dendritic epidermal T cells can bind to PlexinB2 expressed on the surface of damaged keratinocytes, acting in juxtacrine mode.
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(RTK) (see Fig. 1). For example, semaphorin-dependent
stimulation of PlexinB1, PlexinB2 or PlexinB3 can acti-
vate and induce the phosphorylation of ERBB2, MET
and RON receptor tyrosine kinases in different cell
types.12,26-29 Furthermore, Sema6D-PlexinA1 forward
signaling, required for the ventricular chamber morpho-
genesis during chick embryo heart development,
depends on the differential involvement of 2 plexin-asso-
ciated RTKs. In cells of the conotruncal segment,
Sema6D binding to a PlexinA1-VEGF-R2 kinase com-
plex mediates cell migration and invasive growth.
By contrast, Sema6D inhibits the migration of cardiac
muscle cells of ventricle region, which express PlexinA1
in association with another (kinase-dead) RTK, named
OTK (off-track kinase).30,31

On the other side of the street, the intracellular
domain of transmembrane semaphorins, including
Sema6D, has been found to interact with putative signal-
ing effectors, potentially mediating reverse signaling cas-
cades. In particular, the cytoplasmic portion of Sema6D
can bind to both Abl kinase and Mena/Enabled. During

cardiac chamber formation, upon Sema6D engagement
in trans with PlexinA1, Abl kinase gets activated, result-
ing in the phosphorylation of Mena. This leads to the
dissociation of Mena from Sema6D cytoplasmic tail,
thereby promoting cell migration and trabeculation of
the myocardial layer.31

Other class 6 semaphorins have been found in associ-
ation with intracellular effectors. For example, Sema6A
can interact with EVL (Ena/VASP-like protein) via its
zyxin-like C-terminal domain suggesting a possible role
in retrograde signaling during neuronal development.32

Furthermore, the intracellular domain of Sema6B was
found to bind to the SH3 domain of the oncogenic tyro-
sine kinase c-Src (Fig. 3).33

Interestingly, the cytoplasmic domain of many class 4
semaphorins terminates with a consensus sequence
anchoring PDZ domains.34-36 These protein-protein
interaction domains mediate receptor clustering in
neuronal post-synaptic membranes, and in general serve
as scaffolds for the assembly of multi-molecular signaling
complexes. Indeed, 3 different class-4 semaphorins have

Figure 3. Forward and reverse signaling effectors of transmembrane semaphorins. The general paradigm of forward and reverse signal-
ing of transmembrane semaphorins is depicted on the left. On the right, a table summarizes various effectors implicated in these dis-
tinctive signaling modes for different family members.
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been shown to co-localize and interact with PSD-95/
SAP90, e.g., Sema4C in cerebral cortical neurons,37 and
Sema4B and Sema4F in hippocampal neurons.35,36 Dur-
ing muscle development, knocking down Sema4C or
blocking its PDZ domain-binding motif resulted in inhi-
bition of myogenic differentiation;38 these data suggested
a putative role of reverse signaling, though the plexin
counterpart responsible for triggering this process has
not been identified.

Finally, as mentioned above, the cytoplasmic domain
of fly Sema1a can mediate opposite reverse signaling
effects by interacting with the 2 major antagonistic regu-
lators of RhoA: the GTPase exchanger Pebble and the
inhibitor p190RhoGAP.16,17

In cis versus in trans signaling functions of
transmembrane semaphorins

In addition to their interaction in trans between adjacent
cells, transmembrane semaphorins and plexins can also
associate in cis on the surface of the same cell, resulting
in the functional regulation of other signaling cascades.
Notably, the association of a semaphorin with its co-
expressed plexin receptor in cis can inhibit the signaling
function of either of the 2 molecules in trans with adja-
cent cells. For example, in cis Sema6A-PlexinA4 associa-
tion in dorsal root ganglion neurons hinders Plexin
interactions in trans with Sema6A molecules expressed
by adjacent cells.39 Moreover, while Sema6A is widely
expressed in the developing hippocampus, where it acts
as repelling signal for extending axons (mossy fibers), its
association in cis with PlexinA2 co-expressed in certain
areas hinders Sema6A activity in trans there by establish-
ing a permissive corridor for layer-restricted axonal
innervations.40 In other settings, in cis interaction
between a semaphorin/plexin pair can instead activate
plexin signaling, as shown in C.elegans for transmem-
brane semaphorin SMP-1 and class A plexin homolog
PLX-1, leading to repelling signals inhibiting moto neu-
ron synapse formation.41

Transmembrane semaphorins in embryo
development

The development of complex tissues and organs depends
on cell proliferation, migration and differentiation.
While semaphorins have been shown to regulate many
of these processes, the best characterized feature of s
emaphorin/plexin signals is to provide repulsive or
attractive cues for migrating cells and growing neurites.42

Thus, semaphorin-deficient mouse models have been
widely used to study the physiological role of these
molecules in the developing nervous system (Table 1).

Table 1. Transmembrane semaphorin functions in development
and pathophysiology.

Semaphorin
Reported role in embryo development or adult

pathophysiology

Sema4A Disruption of Sema4A associated with retinal
degeneration93

Deficient mice for Sema4A has defective T cell
priming94

Induces growth cone collapse of hippocampal
neurons in a Rho/Rho-kinase dependent
manner95

Mutation associated with retinal degenerative
disease96

Associated with experimental autoimmune
myocarditis97

Downregulation reduces severity of allergic
response98

Supports photoreceptor survival in retinal pigment
epithelium99

Maintains stability of regulatory T cells4

Inhibitory role in allergic asthma100

Required for optimal activation and differentiation
of CD8C T cells101

Involved in rheumatoid arthritis102

Sema4B Negative regulator of basophil-mediated immune
response103

Associates with brain injury induces astrogliosis104

Sema4C Required in myogenic differentiation38

Required in cerebellar development44

Expressed in neuronal stem cells105-107

Modulates morphogenesis of ureteric
epithelium108,109

Induces EMT in renal tubular epithelial cells110

Sema4D Regulates B cell signaling8

Deficiency of Sema4D leads to defective B and T
cells activation111

Released by activated lymphocytes112

Sustains proliferation and survival of normal and
leukemic CD5CB lymphocytes113

Expressed by oligodendrocytes and upregulated
after CNS lesion114

Stimulates outgrowth of embryonic DRG sensory
neurones115

Induces growth cone collapse by R-Ras GAP
activity20

Involved in induction of immune allo-response116

Regulates dendritic spine density through RhoA/
ROCK pathway117

Released by platelet in response to vascular
injury118

Inhibits collagen synthesis of rat pulp derived
cells119

Regulates gonadotropin hormone releasing
hormone-1 neuronal migration53

Controls epithelial branching
morphogenesis120

Regulates SHP-2 to induce axon repulsion121

Remodels dendrite morphology by inactivating
M-Ras122

Deficiency results in increased number of
oligodendrocytes in mouse brains45

Controls microglia activation123

Deficiency associates with superior mouse motor
behavior124

Stimulates PTEN activity to induce growth cone
collapse52

Lack of Sema4D impairs thrombus growth125

Reduces intimal neovascularization and plaque
growth126

Inhibitory regulator of oligodentrocyte
development54

(Continued)
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Among mutants deficient for transmembrane semaphor-
ins, Sema4B¡/¡mice displayed reduced proliferation of
astrocytes after CNS injury.43 On the other hand,
Sema4C and Sema4G deficient mice showed severe
defects in cerebellar development: in particular, Sem-
a4C¡/¡ mutants show exencephaly and neonatal lethal-
ity, a phenotype less prominent in Sema4G deficient
mice.44 Sema4D¡/¡ mutants resulted in increased oli-
godendrocyte number in basal conditions and upon
injury.45 Gross defects in the early development were
seen in Sema5A KO mice, leading to embryonic lethality,
although the implicated deficient mechanism was not
elucidated.46 Recent studies also reported aberrant pro-
jections of thalamo-cortical axons in Sema6A null
mice.47 Moreover, Sema6A is expressed by tangentially
migrating granule cells in the developing cerebellum,
where it controls the switch from tangential to radial
migration.48 Studies of PlexinA4 and PlexinA3/A4 dou-
ble mutants have shown that these plexins regulate the
patterning of spinal sensory axons and cranial nerve pro-
jections.49,50 In a recent study, double deletion mutants
of PlexinB1 and PlexinB2 displayed impaired corticogen-
esis with cortical thinning. These homologous plexins
seem to play redundant/compensatory roles during fore-
brain development, in order to ensure proper neuronal
proliferation and neocortical expansion.51 In most cases
the absence of dramatic neuronal phenotypes in trans-
membrane semaphorin mutants may be explained by
redundancy among family members or the existence of
corrective mechanisms by which early axons which are
misguided are eliminated.

Notably, Sema4D/PlexinB1 signaling is a typical
example mediating either attractive or repelling cues for
different neurons. In hippocampal development,
Sema4D inhibits axonal extension by suppressing R-Ras
activity, leading to Akt dephoshorylation and activation
of GSK-3b.52 Opposite effects are seen in the hypothala-
mus, where gonadotropin-releasing hormone expressing
neurons (GnRH neurons) control the release of repro-
ductive hormones by the pituitary. Indeed, failure to
stimulate the pituitary with GnRH causes reproductive
disorders and lack of initiation of puberty, and PlexinB1
deficient mice revealed a migratory effect in GnRH-1
neurons, leading to smaller neuronal population in adult
brains, and consequent fertility defects. Notably, in this
context, Sema4D promotes directional migration of
GnRH-1 cells by coupling PlexinB1 with MET kinase
activation.53

Oligodendrocytes are a type of neuroglia found in
CNS, which is responsible for the formation of a myelin
sheath surrounding neuronal projections. Several sema-
phorins, including Sema4D, Sema4F, Sema5A and
Sema6A are known to be major modulators of

Table 1. (Continued ).

Semaphorin
Reported role in embryo development or adult

pathophysiology

Promotes rapid assembly of GABAergic synapses in
rodent hippocampus127

Required for optimal lung allergic inflammation128

Required for development of the hindbrain
boundary and skeletal muscle in zebrafish129

Sema4E Guides branchiomotor axons to their targets in
zebrafish130

Sema4F Involved in Schwann cell axonal interactions131

Regulates oligodendrocyte precursor migration in
the optic nerve55

Sema4G Required in cerebellar development44

Sema5A Inhibition serves as ensheathing function during optic
nerve development132

Inhibits axon growth by retinal ganglion cells56

Bifunctional guidance cue for axons of fasciculus
retroflexus9

Inactivation leads to embryonic lethality 46

Bifunctional axon guidance cue for axial
motoneurons in vivo133

Controls selective mammalian retinal lamination
and function134

Involved in mammalian retinal development135

Inhibits synaptogenesis in early postnatal and adult
born hippocampal dentate granule cells136

Modulates attraction of dorsal root ganglion axons
in vertebrates137

Mutation associates with risk of Parkinson disease138

Sema5B Mediates synapse elimation in hippocampal
neurons139

Control selective mammalian retinal lamination and
function134

Proteolytically processed into a repulsive neural
guidance cue140

Repellent cue for sensory afferents projection in
developing spinal cord141

Sema5C Contributes to olfactory behavior in adult
drosophila142

Sema6A Repels embryonic sympathetic axons143

Regulates cerebellar granule cell migration48

Induced by interferon-gamma in Langerhans cells144

Acts as a gate keeper between central and
peripheral nervous system145

Controls lamina-restricted projection of
hippocampal mossy fibers40

Controls nucleus centrosome coupling in migrating
granule cells146

Controls guidance of corticospinal tract axons147

Promotes dentritic growth of spinal motor
neuron148

Improves functional recovery after cerebral
ischemia149

Mutation disrupts limbic and cortical connections
during neurodevelopment150

Regulates oligodendrocyte differentiation and
myelination57

Promotes eye vesicle cohesion151

Sema6B Regulates lamina restricted projections of
hippocampal mossy fibers152

Acts as a receptor in post crossing commissural axon
guidance153

Sema6C Leads to GSK-3-dependent growth cone collapse154

Expressed in innervated and denervated skeletal
muscle155

Sema6D Plays dual role in cardiac morphogenesis30

Regulates myocardial patterning in cardiac
development by reverse signaling31

Altered signaling inhibits synapse formation156

Promotes retinal axon midline crossing157
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oligodendrocyte development, and this is a particularly
interesting model of short range cell-to-cell and bidirec-
tional semaphorin signaling. For instance, Sema4D
knockout mice display an increased number of oligoden-
drocytes in the adult cerebral cortex, which is due to
reduced oligodendrocyte apoptosis; this effect could be
reversed by adding soluble Sema4D, which suggests its
role as a ligand in this process.45,54 Another class-4 Sem-
aphorin, Sema4F, is widely expressed by neuronal pre-
cursors, mature neurons and glial cells. Sema4F is
reported to inhibit the migration of oligodendrocyte pro-
genitor cells and promote their differentiation.55 Sema5A
expression is restricted to oligodendrocytes and their
precursors, among optic nerve glial cells; and it was dem-
onstrated that Sema5A induces growth cone collapse and
inhibits axon growth of retinal ganglion cells (RGC).56

Sema6A is also expressed at high levels during oligoden-
drocyte development, peaking during myelination.
Sema6A knock-out mice show delayed oligodendrocyte
differentiation both in vivo and in vitro and interestingly,
this delayed differentiation of Sema6A-deficient oligo-
dendrocytes is not rescued by the addition of exogenous
Sema6A ex vivo, suggesting a possible reverse signaling
mechanism, to be further elucidated.57

As mentioned above, during chick embryo heart
development, knockdown of Sema6D or its receptor
PlexinA1 results in lesser expansion of the primitive ven-
tricle and poor trabeculation of the muscular layer. In
this context, the interaction between endocardial and
myocardial cells (expressing both Sema6D and Plex-
inA1) can trigger both forward and reverse signaling cas-
cades controlling cell migration, morphogenic patterning
of the cardiac chambers and muscle layer trabeculation.
In particular, (endocardial-expressed) Sema6D forward
signals to myocardial cells of the conotruncal segment
expressing PlexinA1-VEGFR2 receptor complexes to
promote cell migration and invasive growth. By contrast,
Sema6D inhibits the migration of cardiac muscle cells of
ventricle region, which express PlexinA1 in association
with the catalytic inactive off-track kinase.30,31 On the
other hand, trabecular formation is promoted by
Sema6D reverse signaling into myocardial cells of the
compact layer.31

Transmembrane semaphorins implicated in
cancer

Accumulating evidence indicates that semaphorin
signals can play a major role in the tumor context,
beyond their established role in development. Various
cancer cells express both semaphorins and their receptor,
and experimental evidence shows that these signals can
either promote or impede the various hallmarks of

Table 2. Transmembrane semaphorins implicated in cancer
development.

Target protein Functions potentially relevant in cancer

Sema4A Suppresses angiogenesis via PlexinD1158

Germline variant is associated with increased risk for
colorectal cancer59

Sema4B Interacts with CLCP1,a protein with high sequence
similarity to neuropilins and regulates motility of
lung cancer cells7

Repressed by HIF-1 a to promote non-small cell
lung cancer invasion60

Inhibits MMP9 to prevent metastasis and inhibits
growth invitro and invivo of non-small cell lung
cancer61,62

Sema4C Elevated expression in esophageal, gastric and rectal
carcinomas63

Mutated in some colorectal cancer cell lines159

Promotes invasive growth in malignant gliomas66

Regulated by MiR-138 and involved in cell
proliferation and epithelial mesenchymal
transition in non-small cell lung cancer cells160

Regulated by MiR-125b and involved in paclitaxel-
resistance of breast cancer cells and epithelial to
mesenchymal transition in lung cancer64in breast
cancer65

Sema4D Promotes angiogenesis by stimulating Rho
pathways74

Associated with poor clinical outcome in cervical
cancer161

Promotes tumor angiogenesis and progression,as
TAMs are a major source of Sema4D13

Induces angiogenesis by Met recruitment to Plexin
B112

Promotes tumor associated macrophage dependent
metastatic behavior in colon cancer162

Regulated by HIF-1which affects tumor growth and
vascularity163

Increases tumor cell motility via Plexin B1 in
pancreatic cancer cells68

Activates NF-KappaB and IL-8 to promote a pro-
angiogenic response in endothelial cells77

Promotes growth and invasion in HeLa cells164

Promotes perineural invasion in a RhoA/ROK-
dependent manner80

Overexpression is related to poor prognosis in
ovarian cancer165

Suppresses c-Met activation and migration and
promotes melanocyte survival166

Cooperates with VEGF to promote angiogenesis and
tumor progression79

Over expression as a poor prognosis marker in
ovarian cancer and promotes monocyte
differentiation toward M2 macrophage167

Promotes proliferation, migration and invasion in
lung cancer cells168

Recruits pericyte and regulates vascular
permeability through endothelial production of
PDGF-B and ANGPLT471

Promotes osteosarcoma development and
metastasis72

Blocking Sema4D with monoclonal anti Sema4D
antibody promotes immune infiltration into
tumor and enhances response to various other
immunomodulatory therapies85

Induction of expansion of myeloid derived
suppressor cells by Sema4D derived from Head
and Neck Squamous Cell Carcinoma169

Sema4F Biomarker of aggressive prostate cancer and critical
regulator of neuroepithelial interactions86,170

Sema4G Significantly downregulated in colorectal cancer171

Sema5A Identified as a functional cell adhesion molecule with
potential role in metastasis172

(Continued)
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cancer, like tumor cell proliferation and survival, tumor
angiogenesis and evasion from immune response, to
name a few. Notably, the expression of various sema-
phorins and their receptors has been found to be either
up-regulated or down-regulated compared to normal
tissues, consistent with their potential role as tumor pro-
moters or suppressors (Table 2).58

Also in the cancer context, while considerably more
attention has been devoted to the role of semaphorins of
the secreted type, scattered reports started to highlight
the potential relevant role of transmembrane semaphor-
ins, and their peculiar signaling modes. Especially sema-
phorins belonging to class 4 have been found to regulate
the behavior of cancer cells, as well as tumor angiogene-
sis. Germline variants of Sema4A have been associated
with increased risk for a type of familial non-polyposis
colorectal cancer; Sema4A-V78M mutation in particular
caused increased MAPK/Erk and PI3K/Akt signaling in
HCT-116 colorectal cancer cells in vitro59 and more
studies are required to validate its tumorigenic activity in
vivo.

In lung cancer, the role of Sema4B seems rather con-
troversial. Sema4B expression is suppressed by hypoxia60

and it may inhibit growth of non-small lung cancer cells
by suppressing PI3K/Akt signaling pathway61 and

metastasis by down regulating expression of MMP9.62

Other data showed that Sema4B interacts with CLCP1
and may drive its degradation and enhance cell motility;
CLCP1 is a protein similar to neuropilins overexpressed
in lung cancer metastatic cells.7

Aberrant expression of Sema4C has been reported in
esophageal, gastric and colorectal cancer.63 In paclitaxel-
resistant lung and breast cancer cells Sema4C levels is
regulated by miR-125b, and its overexpression not only
resensitizes these cells to the drug, but also reverts a mes-
enchymal to epithelial phenotype.64,65 In glioblastoma,
the activation of PlexinB2 receptor by the ligand
Sema4C, induces actin-based cytoskeletal dynamics and
cell migration by RhoA and Rac1 activity.66 The expres-
sion of Sema4C was up regulated both at the transcrip-
tional and the translational levels in lymphatic
endothelial cells of breast cancer tissues.67

Sema4D is widely expressed in cancer cells and it is
the most studied transmembrane semaphorin in cancer.
High expression of Sema4D was associated with poor
survival in pancreatic ductal adenocarcinoma, where it
enhances tumor cell motility,68 and its higher expression
was correlated with poorer overall and disease free sur-
vival in soft tissue sarcoma.69 In breast carcinoma cells,
PlexinB1 and PlexinB2 form complexes with ErbB2 tyro-
sine kinase, which elicits a pro-migratory effect in
response to Sema4D. In these cells, Sema4D-PlexinB1
signaling can instead mediate an anti-migratory effect
when associated with MET receptor.26,70 In addition,
Sema4D production by head and neck carcinoma cells
elicits the expression of Platelet Derived Growth Factor-
B and Angiopoietin-like-protein-4 by endothelial cells
(in a PlexinB1/RhoA dependent manner) inducing pro-
liferation and differentiation of pericytes, and vascular
permeability. These data suggest that targeting Sema4D
along with VEGF could be a better therapeutic option
for the treatment of solid tumors.71 Recent studies have
identified Sema4D as an oncogene in osteosarcoma by
forward genetic screening, where by Sema4D was dem-
onstrated to be highly expressed in large fraction of
human osteosarcoma tumors and cell lines associated,
and overexpression of Sema4D is these cells lines acti-
vated AKT and/or MAPK pathways.72 In addition to
cancer cells, Tumor Associated Macrophages (TAM)
may be a major source of Sema4D in the tumor microen-
vironment;13 this was found to enhance angiogenesis and
tumor cell invasiveness by transactivating oncogenic
receptor tyrosine kinase MET, associated with Plex-
inB1.28,73 In general, effective silencing of Sema4D in
cancer cells inhibits tumor vasculature and tumor bur-
den.10,74-80 Moreover, Sema4D activity in cancer can
be targeted with monoclonal antibodies, such as
VX15/2503,81-84 currently in clinical trials for

Table 2. (Continued ).

Target protein Functions potentially relevant in cancer

Inhibits glioma cell motility through RhoGDIalpha-
mediates inactivation of Rac1-GTPase88

Identified as a novel biomarker for non-small lung
carcinoma in non smoking women90

Promotes angiogenesis by increasing endothelial
cell proliferation, migration and decreasing
apoptosis173

Highly expressed in pancreatic cancer and
associated with tumor growth, invasion and
metastasis174

Soluble Sema5A suppresses pancreatic tumor
burden but increases metastasis and endothelial
cell proliferation175

Sema5B Promotes cell viability of Clear cell renal carcinoma89

Repressed by FoxP1 in endothelial cells 176

Sema5C Required for I(2)gl cancer metastatic phenotype in
drosophila model system177

Sema6A Promotes tumor progression and angiogenesis by
enhancing VEGF and bFGF signaling92,,178

Controls cell growth and survival of BRAFV600E
human melanoma cells91

Prognostic biomarker in glioblastoma179

Sema6B Expression is downregulated by all-trans-retinoic acid
in glioblastoma180 and by PPAR and RXR ligands in
breast cancer cells181

Expression is strongly downregulated in breast
cancer and a new isoform of Sema6B is
identified182

Sema6D Activates VEGF-2 and NF-KappaB to mediate survival
of malignant mesothelioma cells183

Co-predictor in breast cancer survival184

Putative driver of osteosarcoma development and
metastasis72
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treating solid tumors. Notably, blocking Sema4D with
monoclonal antibodies in tumors may promote immune
cell infiltration and enhance response to immunomodu-
latory drugs such as anti-CTLA-4.85 Another member of
this subclass, Sema4F, is a critical regulator of neuroepi-
thelial interactions and considered as a biomarker in
prostate cancer, as its cytoplasmic expression also corre-
lates with nerve density and perineural invasion.86

Also Sema5A-receptor PlexinB3 was found to interact
with MET and promote tumor cell invasiveness.29

Sema5A regulates cell motility and morphology of
human glioma cells via RhoGDIalpha-mediated inactiva-
tion of Rac1 GTPase and the functional regulation of fas-
cin-1 actin-binding protein.87,88 In renal cell carcinoma
cells, Sema5A downregulation significantly reduced
viability.89 On the other hand, lower expression of
Sema5A was associated with poor survival among non-
smoking women bearing non-small cell lung carcinomas
(NSCLC).90

A recent report pointed to the requirement of Sema6A
for the survival of BRAF V600E human melanoma cells,
whereby depletion of Sema6A causes loss of anchorage-
independent growth and inhibition of migration and
invasion.91 Sema6B could have a pro-proliferative effect
on U87MG cells as silencing it inhibited tumor
formation.92

Conclusion and future perspectives

Consistent evidence indicates that transmembrane sema-
phorins are major guidance cues for axon pathfinding
and the wiring of the neural network, and emerging reg-
ulators of angiogenesis and tumor progression. They can
act as versatile, short or long range signals, in either
membrane bound or secreted form, respectively. More-
over, they can mediate downstream “forward” and
“reverse” signaling cascades, which implicate a variety of
potential effector molecules, beyond plexin receptors. In
sum, our knowledge of transmembrane semaphorin
functions and signaling pathways is still far from com-
plete and further studies will be required to understand
their relevance in development and cancer.
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