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Abstract

Background—Breast cancer is the most common cancer diagnosed among Latinas in the United 

States and the leading cause of cancer-related death among this population. Latinas tend to be 

diagnosed at a later stage and have worse prognostic features than their non-Hispanic white 

counterparts. Genetic and genomic factors may contribute to observed breast cancer health 

disparities in Latinas.

Methods—We provide a landscape of our current understanding and the existing gaps that need 

to be filled across the cancer prevention and control continuum.

Results—We summarize available data on mutations in high and moderate penetrance genes for 

inherited risk of breast cancer and the associated literature on disparities in awareness of and 

uptake of genetic counseling and testing in Latina populations. We also discuss common genetic 

polymorphisms and risk of breast cancer in Latinas. In the treatment setting, we examine tumor 

genomics and pharmacogenomics in Latina patients with breast cancer.

Conclusions—As the US population continues to diversify, extending genetic and genomic 

research into this underserved and understudied population is critical. By understanding the risk of 

breast cancer among ethnically diverse populations, we will be better positioned to make treatment 

advancements for earlier stages of cancer, identify more effective and ideally less toxic treatment 

regimens, and increase rates of survival.
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Introduction

An estimated 55 million individuals living in the United States identify as being Hispanic or 

Latino.1 Latinos are a culturally and genetically diverse group with origins in Mexico, the 

Caribbean, Central American, and South America. In the United States, 64.0% of Latinos 

are of Mexican background, 9.6% of Puerto Rican background, 3.8% of Salvadoran 

background, 3.7% of Cuban background, 3.2% of Dominican background, 2.4% of 

Guatemalan background, and the remainder are of other origins.2 Although the terms 

Hispanic and Latino/Latina are often interchangeably used, we selected the term Latina for 

the current manuscript as we feel it extends beyond spoken language to reflect both origin 

and cultural traditions of women from Latin America.

Breast cancer is the most common cancer diagnosed among Latinas in the United States and 

is the leading cause of cancer-related death in this population.10 Although the overall 

prevalence of breast cancer in Latinas is lower than in non-Hispanic whites, Latinas tend to 

be diagnosed at a later stage and have worse prognostic features (eg, triple negative disease 

and HER2–positive disease).3 A myriad of socioeconomic and cultural factors contribute to 

health disparities in breast cancer among Latinas,4–6 but biological factors — particularly 

genomics — remain an important but understudied consideration.

High and Moderate Penetrance Genes

Approximately 10% to 15% of breast cancer cases are attributed to inherited gene 

mutations.7 Although multiple genes confer an inherited risk fir cancer,8 BRCA mutations 

are the most prevalent and penetrant mutations, accounting for the majority of hereditary 

types of breast cancer.9 BRCA mutations result in an increased lifetime risk of breast cancer 

of up to approximately 60% to 70% and a lifetime ovarian cancer risk of up to 40%.10–12 

Among Latinas, breast cancer is often diagnosed at younger ages and with worse prognostic 

features, including increased rates of triple-negative disease, than their non-Hispanic white 

counterparts.13–16 Triple-negative disease and premenopausal breast cancer are both clinical 

characteristics associated with a higher probability of having a BRCA1/2 mutation.17,18

Prevalence of BRCA

The prevalence of BRCA mutations in the general US population is estimated to be 1 in 400, 

excluding women of Ashkenazi Jewish descent in whom prevalence is 1 in 40.19–21 

However, less is known about the prevalence among racial and ethnic minority groups, 

including Latinas as a whole or by subethnicity based on country of origin. A review 

examined the spectrum of BRCA1 and BRCA2 mutations in Latin America and the 

Caribbean using studies published between the years 1994 and 2015.22 Six of the 33 studies 

were conducted among Latina living in the United States, with the vast majority of 

participants drawn from clinic-based samples of patients of Mexican origin with breast 
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cancer residing in California, Arizona, and Texas.22 Prevalence estimates of carrying a 

BRCA mutation for this US Latina group ranged from 0.7% to 42% and varied based on 

whether cases were selected or unselected for family history or clinical characteristics (eg, 

affected vs unaffected, age at diagnosis), cancer site (eg, breast, ovarian), and type of testing 

(eg, inclusion of large rearrangement testing).22 In the cohorts of unselected patients with 

breast cancer, the BRCA mutation prevalence was 1.2% to 4.9%, which was consistent with 

expected rates.22

BRCA mutations have also been documented in all residents of Latin American countries 

where these genes have been studied, including Argentina, Brazil, Chile, Colombia, Costa 

Rica, Cuba, Mexico, Peru, Puerto Rico, Uruguay, and Venezuela.23–54 Most studies have 

focused on the spectrum of BRCA mutations.22,55 In a review of BRCA1 and BRCA2 
mutations in persons living in Latin America and the Caribbean, 36% of the 33 studies 

primarily focused on Mexican or Mexican American patients.22 Of the Mexican study 

population, the mutation prevalence was between 4.3% and 23.0%.22 For other Latina 

subethnic groups, the mutation prevalence estimates of each country studied were: Colombia 

(1.2%–15.6%; 2 studies), Costa Rica (4.5%; 1 study), Cuba (2.6%; 1 study), Peru (4.9%; 1 

study), Uruguay (17%; 1 study), and Venezuela (17.2%; 1 study).22 These studies provide 

insight into areas of future research of BRCA mutation distribution and frequency based on 

country of origin, the role of specific founder mutations, the contribution of large genomic 

rearrangements to the spectrum of mutations across various Latina subethnic groups, and the 

consideration of other non-BRCA genes that increase the risk of breast cancer.

Although recurrent mutations were identified within most studies, the specific mutation 

varied by study and country.22 BRCA1 185delAG has also been documented in Latinas 

across Latin America and the United States.43,45–47,50,56–58 One of the 3 Jewish founder 

mutations, BRCA1 185delAG is estimated to have arisen about 800 years ago or earlier and 

is believed to have been introduced into Latin America about 650 years ago.59 When this 

mutation is identified in Latinos, haplotype analysis supports that this mutation is of the 

same origin as the Jewish founder mutation, rather than a separate genetic event.60,61 Pooled 

mutation estimates performed by Porchia et al55 found that BRCA1 185delAG is the second 

most prevalent BRCA1 mutation and its frequency is not significantly different between 

Mexico and other Latin American countries (P = .70). However, it is worth noting that not 

all Central and South American countries were represented in their analysis.55

The most common BRCA1 mutation in the same meta-analysis was deletion of exons 9 to 

12.55 This mutation is estimated to have originated nearly 1,500 years ago near Puebla 

Mexico.48,58 However, to date, it has been reported in Mexicans and Mexican Americans 

alone.22,35,55,61,62 The contribution of large genomic rearrangements to BRCA1 in Latin 

American patients was evaluated in a study of US Latinas and described the prevalence of 

rearrangements by racial and ethnic groups.63 Large rearrangements were significantly more 

common in individuals who reported Latin American ancestry, and the prevalence of 

rearrangements was two-fold higher than in the overall population tested.63 This laboratory-

based cohort extracted ethnicity data from genetic testing request forms; therefore, no data 

about subethnicity was available.63 However, the 2 most frequent BRCA1 rearrangements 

identified in this study were deletion of exons 9 to 12 and deletion of exons 1 and 2, likely 
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reflecting the underlying US Latino population in whom the majority is of Mexican 

ancestry.63 In a Puerto Rican study, BRCA1 deletion of exons 1 to 2 was seen in nearly 20% 

of study patients positive for BRCA1.52 Because Puerto Ricans represent the second largest 

US Latino group after those of Mexican ancestry, these findings support utilizing an assay 

that includes large rearrangements when testing Latinos.52 The study results also highlight 

the importance of understanding more granular aspects of ethnicity, such as country of 

origin, to ensure that all mutations that contribute significantly are captured.

Dutil et al22 noted that most Latin American studies they reviewed identified a higher 

proportion of BRCA1 than BRCA2 mutations, a finding similar to reports in other 

populations. However, studies from 4 different countries (Costa Rica,40 Cuba,38 Puerto 

Rico,52 Uruguay64) reported more BRCA2 mutations than those in BRCA1. While these 

studies may have been limited by sample size and the mutation-detection strategies and 

technologies,38,40,52,64 this finding has been also reported in a single US-based clinical site 

and may warrant further exploration.68

The meta-analysis performed by Porchia et al55 identified recurrent BRCA2 mutations 

across all studies with the following pooled prevalence: H372N (0.88%; 95% confidence 

interval [CI], 0.24–1.92), E49X (0.38%; 95% CI, 0.13–0.75), and 3492insT (0.32%; 95% 

CI, 0.24–0.53). BRCA2 3492insT has been identified in different regions of Spain with a 

frequency as high as 2.08%.65–71 Although it is possible that this mutation was introduced in 

Latin America by the Spaniards, no haplotype studies of this specific mutation were 

identified to confirm a shared ancestry rather than a separate mutational event.52

BRCA1 and BRCA2 account for the majority of hereditary breast cancer, but other high- 

and moderate-risk genes also predispose individuals to breast cancer, including TP53, 
PTEN, CDH1, STK11, CHEK2, PALB2, ATM, and others.25,29,30,72–80 Limited studies 

have been performed of non-BRCA genes in Latina breast cancer cohorts, leaving much to 

be learned about the prevalence and spectrum of mutations in these genes among Latinas 

with breast cancer (Table 1).25,29,30,72–80

One exception is the Brazilian founder mutation in TP53, R337H. Mutations in TP53 cause 

Li-Fraumeni syndrome, which is associated with an elevated risk for a wide spectrum of 

cancers, including adrenal cortical carcinoma, soft-tissue and bone sarcomas, brain tumors, 

and breast cancer.81–83 The overall contribution of TP53 mutations to breast cancer is 

estimated to be less than 1%, unless selecting for early-onset breast cancer.84,85 In studies of 

women diagnosed with breast cancer at or before the age of 30 or 35 years, 5% to 8% had 

TP53 mutations.86–89

TP53 R337H was first identified in individuals with childhood adrenal cortical carcinomas 

living in southern Brazil.90 This mutation occurs in 2.4% to 8.6% of Brazilian women with 

breast cancer.72,73,90,91 In a large study, which included 403 patients with breast cancer 

diagnosed at 45 years or younger, 12.1% carried the TP53 R337H mutation. Although the 

mutation was significantly more frequent in younger patients compared with those 

diagnosed at or above age 55 years (P < .001), 5.1% of the older group carried the 

mutation.73 To date, no other populations have been identified in whom TP53 makes such a 
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significant contribution to breast cancer. The prevalence of this mutation in southern Brazil 

has been estimated be approximately 0.3%.92,93 Additional haplotype analyses support the 

hypothesis that this recurrent mutation is a founder mutation from a shared ancestor.73,94

Historically, the genetic assessment for hereditary breast cancer involved the formation of a 

differential diagnosis followed by a syndrome-by-syndrome evaluation through the 

sequential testing of genes. However, the rapid integration of next-generation sequencing has 

enabled simultaneous testing of multiple inherited cancer genes, thereby expanding the use 

of multigene panels in clinical testing at a reduced cost.95 This expansion is reflected in the 

emerging body of literature on breast cancer focused on multigene panel findings from the 

research, clinical, and laboratory settings.96–104

These literature cohorts are predominantly non-Hispanic whites, with Latinas representing 

less than 1.0% to 7.4% of study participants96–99,101–103 — thus highlighting another area 

where future research is needed. One study of 475 patients undergoing multigene panel 

testing included 228 Latino patients (47.6% of study population), and it reported that the 

likelihood of detecting a deleterious mutation was no different among the ethnic and racial 

groups represented.102 Of the patients with breast cancer (n = 197), 14.8% (n = 28) carried 

mutations, and, as expected, BRCA1 and BRCA2 were the most commonly mutated genes; 

however, 16 mutations were identified in other genes (CDH1 = 4, CHEK2 = 3, MUTYH = 3, 

PALB2 = 2, TP53 = 1, RAD50 = 1, RAD51D = 1, BARD1 = 1).102 Of note, the likelihood 

of identifying more than 1 variant of uncertain significance in Latinos was significantly 

higher than that of non-Hispanics whites.105 Thus, a need exists for further research to better 

classify rare variants, especially given the under-representation of Latinos in laboratory and 

research databases.

Genetic Counseling and Testing

Patient- and Health Care–Related Factors

An important step toward understanding the role of BRCA and other high- and moderate-

risk breast cancer genes in Latinas is to increase the number of individuals who receive 

genetic counseling and subsequently elect to undergo testing. However, growing evidence 

identifies disparities in awareness of and access to genetic counseling among Latinas 

compared with non-Hispanic white women. Data from health interview surveys from 2000, 

2005, and 2010 show that Latinas had the lowest level of awareness about genetic testing for 

inherited cancer risk than all of the other US racial ethnic groups.106–108 Using telephone 

surveys, Gammon et al109 studied 63 Latinas and 84 non-Hispanic whites at increased risk 

for carrying a BRCA1 or BRCA2 mutation, examining their awareness, cognitions, and 

psychosocial needs related to genetic counseling and testing. Among those who had not 

previously undergone genetic counseling (53 of the 120), Latinas were more unaware than 

their white counterparts of the availability of testing (56.9% vs 34.8%, respectively).109 

Vadaparampil et al110 reported on a sample of Latinas with a personal or family history of 

breast cancer, all of whom reported an awareness of genetic risk for breast cancer (ie, family 

history). However, none of the Latinas had a clear understanding of what genetic testing was 

and had not received physician referral for genetic testing.110 Findings did differ based on 

country of origin — an important are to consider in future work, given the diversity of 
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Hispanic populations across the United States.110 In another report, Kaplan et al111 reported 

differences in awareness of genetic testing by race and ethnicity such that 19.4% of Latinas 

had heard of genetic testing compared with 59.4% of whites, 26.1% of Asian Americans, 

and 31.0% of black women.

In a study of more than 2,400 patients completing a family cancer history form, Mays et 

al112 found that, overall, despite low levels of initial awareness, 65 patients (2.7%) met 

criteria for cancer risk assessment; of those, 72.3% expressed interest in receiving genetic 

counseling. Furthermore, no differences in interest in genetic services were reported across 

all racial and ethnic groups.112 Among 1,536 women with nonmetastatic breast cancer, Jagsi 

et al113 found that Latinas had a greater desire for genetic counseling than other groups 

(58.8% of Spanish-speaking Latinas; 36.7% of English-speaking Latinas; 27.1% of non-

Hispanic whites; and 28.1% of blacks). In addition, Lagos et al114 examined social, 

cognitive, and cultural variables among Latinas prior to an appointment for genetic 

counseling. Fifty low-income, underserved Latinas completed the assessment, and the 

results demonstrated their readiness (having the necessary skills for the genetic-counseling 

process), low fatalism, and high rate of self-efficacy, and social support.114 However, this 

study was conducted in women who showed up to their genetic counseling appointments, 

thus representing a unique group of women.114 Vadaparampil et al115 studied a group of 

Puerto Rican women (living in Puerto Rico or central Florida) with a family or personal 

history of breast cancer and found that the vast majority of participants said they would 

undergo genetic testing within the next 6 months if it was available. Barriers included the 

cost of testing and potential pain.

Uptake of Services

Given lower levels of patient awareness, physician recommendations may provide a critical 

approach to increasing utilization of genetic counseling and testing for hereditary risk of 

breast cancer. However, available studies113,116,117 suggest a missed clinical opportunity, 

because both English- and Spanish-speaking Latina survivors of breast cancer were more 

likely to have unmet needs for discussion with a health care professional about cancer 

genetic testing than their non-Hispanic white counterparts. For example, Jagsi et al113 

reports that minority patients were the most likely to express an unmet need for a discussion 

about genetic testing, although they also showed a strong desire for such testing.

Preliminary studies support the uptake of genetic counseling when services are 

offered.118–121 One study of predominantly Latina patients (71.4%) offered genetic 

counseling at the safety-net hospital found that 88.0% kept their appointments.118 Another 

study of women (69.6% were Latinas) seen in the safety-net hospital setting reported that 

96.4% of them underwent BRCA testing when it was recommended to them.119 Once 

Latinas were referred, Olaya et al120 found that they are equally likely as the general 

population to complete BRCA testing. Overall, 52% completed genetic testing, and no 

differences by race and ethnicity were observed.120 Woodson et al121 reported on the 

utilization of group pretest genetic counseling in a community clinic made up of mostly 

Latinas (62.3%) with breast cancer; the majority (86.7%) underwent BRCA genetic testing 

when offered.
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Overall, these studies have focused on the delivery of cancer genetics services to majority 

Latina cohorts, demonstrating that genetic counseling and testing is likely well-received by 

Latinas with breast cancer; however, these studies were all conducted in safety-net hospitals 

or in community, low-resource settings and were aimed at the provision of service to low-

income, uninsured patients.118–121 Although Latinas continue to be disproportionally 

uninsured or underinsured, these study findings might not generalize to other health care 

settings. Thus, further studies are needed across various clinical settings and in a wider 

representation of Latinas with breast cancer to better understand the utilization of genetic 

testing as well as the barriers for referrals.

Common Genetic Polymorphisms and Risk of Breast Cancer

Genome-Wide Association Studies

Progress in the discovery of germline genetic polymorphisms associated with breast cancer 

risk changed pace when technological advances in genotyping made it possible to 

characterize genome-wide genetic variation at a relatively low cost.122 In 2007, the first 

breast cancer genome-wide association studies were published, and they reported a handful 

of single nucleotide polymorphisms (SNPs) associated with a modest increase in risk.123–125 

Since then, more than 100 common variants that either increase risk for or are protective 

against developing breast cancer have been discovered and, including replication efforts, 

data from more than 120,000 women have been analyzed.123–146 A small proportion of 

samples included in these major initiatives are from minority populations in the United 

States (eg, Latinas, African Americans)123–146 and the first results of genome-wide 

association studies of Latinas with breast cancer were published in 2014.147 This latter study 

represents important but limited progress, considering that the sample size was one-tenth of 

that available for genome-wide association studies involving women of European 

origin.123–125,147

Until the first genome-wide association studies of breast cancer in women of European 

origin were published, the search for risk predisposing genetic variants was focused on 

finding polymorphisms within genes that, for known or hypothesized involvement in the 

biology of the disease, were likely to contribute to breast cancer risk.123–125 These studies in 

US Latinas or Latin American women typically consisted of the replication of previously 

associated polymorphisms reported in Europeans, with few of these studies looking for 

variation in samples of Latinas before further testing specific polymorphisms for 

associations in larger samples.148,149

Compared with the hundreds of genome-wide association studies in non-Hispanic white 

women, we identified 13 case-control studies or cohorts that include US Latina or Latin 

American women.150–163 These studies include populations of women of no more than 100 

and up to approximately 5,000 women of Latin American origin; combined, the study 

populations tally approximately 5,000 Latina women with breast cancer and 11,000 Latina 

healthy controls.150–163
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Candidate Gene or Pathway Studies

Multiple breast cancer–association studies of candidate genes or pathways have been 

reported for US Latina and Latin American women during the last 20 years. Genes or 

pathways studied have included those related to hormone metabolism, hormone receptors, 

and hormone coactivators or supressors,148,164–169 growth factors,149,170–176 matrix 

metalloproteinases,177,178 inflammation and energy balance,158,179–184 metabolism of 

xenobiotic compounds and oxidative stress,159,185–188 DNA repair,160,161,163,189 and 

angiogenesis.190 Results reported in these publications should be interpreted with caution, 

given that approximately 60% of the candidate gene analyses included in our report did not 

adjust for genetic ancestry, which is a known confounder in genetic association studies in 

admixed populations.191,192 In addition, no associations in candidate gene or pathways 

studies, nor any of the interactions with risk factors, genetic ancestry, or tumor 

characteristics, have been replicated in independent samples of Latinas.

Replication of Identified Single Nucleotide Polymorphisms

Few studies have included Latinas and tested the association between SNPs discovered in 

genome-wide association studies of breast cancer conducted in samples of European or 

Asian women.193–198 The first study genotyped previously reported SNPs in the 2q35 region 

and FGFR2, TOX3, and MAP3K1, reported statistically significant replications for the 

polymorphisms in FGFR2 and 2q35.193 Two different studies published the results of 

analyses conducted in the same sample of high-risk families from Chile and healthy 

controls, testing associations between previously reported variants in FGFR2, MAP3K1, and 

TOX3 and the 2q35 and 8q24 regions and breast cancer risk.197,198 They replicated the 

associations for FGFR2, MAP3K1, TOX3, and 2q35 but not for 8q24.197,198 An analysis 

conducted in a pooled sample of Latina cases and controls from the Four-Corners study, San 

Francisco Bay Area Breast Cancer Study, and a study in Mexico, investigated the association 

between 10 identified polymorphisms in genome-wide association studies (in region 2q35 

and in or near RELN, MRPS30, RNF146, FGFR2, TOX3, LSP1, TLR1, MAP3K1, 
RAD51L1) and breast cancer risk.195 They replicated associations for the polymorphisms in 

RELN, FGFR2, TOX3, and TLR1 and 2q35 and found heterogeneity by ancestry for the 

RELN, 2q35, and TLR1 SNPs.195 A follow-up study reported that the heterogeneity by 

ancestry for the 2q35 polymorphism was likely due to the association between genetic 

ancestry, use of hormone therapy, and breastfeeding.194 Another analysis of the FGFR2 
polymorphism in the Mexican study reported an interaction between the FGFR2 
polymorphism and alcohol intake.196 The first genome-wide association study of breast 

cancer in US Latinas also replicated previous associations, with most of the SNPs being 

concordant in terms of direction and magnitude of association with those reported in 

European or Asian populations.147 Twenty-three of the 83 variants tested had probably 

values below .05.147

Ancestry

Admixture mapping leverages the demographical history of admixed populations to find 

genomic regions that may carry trait-associated variants.199–207 An admixed population 

results from the combination of 2 or more ancestral groups.200 The principle of admixture 
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mapping is to identify genomic regions in which cases share more of the same genetic 

ancestry than either population-based controls (case-control analysis) or compared with the 

average ancestry of the rest of the genome among cases (case-only analysis).202 This 

approach has identified risk variants or risk regions for multiple complex traits, including 

obesity, hypertension, and cancer.199,201,203–207 The incidence of breast cancer varies across 

different racial and ethnic groups in the United States, and Latinas have lower incidence 

rates than non-Hispanic whites but higher rates than American Indian women.208 Genetic 

ancestry has also been associated with breast cancer risk in US Latinas and Mexican women 

after adjusting for non-genetic risk factors, suggesting that a genetic component could be 

responsible for the difference in risk.158,209,210 An admixture mapping study in Latinas 

reported a statistically significant association between a region in the long arm of 

chromosome 6 (6q25) near ESR1 and risk of breast cancer and a suggestive association on 

chromosome 11.211 Higher Indigenous American ancestry at chromosome 6q25 was 

associated with lower risk of breast cancer.211 This finding was concordant with the previous 

reports of lower rates of risk of breast cancer among Latinas with high American Indian 

ancestry compared with women with high European ancestry after adjusting for possible risk 

factors such as socioeconomic status, number of full-term pregnancies, and breast 

feeding.209–211

One included a discovery phase and replication in 3 additional studies.147 The study 

reported genome-wide results that were statistically significant for 2 linked SNPs 56kb 

upstream of ESR1 (rs140068132 and rs147157845).147 These SNPs have a frequency of 

between 5% and 23% in Latin American populations and are absent in most all other 

groups.147 The minor allele was protective, with an associated odds ratio (OR) of 0.60 (95% 

CI, 0.53–0.67) per allele and was more protective for estrogen receptor (ER)–negative 

disease than for ER-positive disease (OR for ER-negative disease 0.34; 95% CI, 0.21–

0.54).147

Treatment

Tumor Genomics

A growing body of evidence suggests differences in the tumor biology of breast carcinoma 

across various races and ethnicities. Several studies have evaluated the prevalence of 

phenotypic subtypes of breast cancer in Latinas compared with other population 

groups.212–218 Most data have shown a higher proportion of hormone receptor–negative 

disease types among Latinas when compared with non-Hispanic whites (Table 2).3,212–216 

However, those results have not always been concordant, and the differences seen across 

these studies could represent small sample sizes, patient age, or unadjusted rates for genetic 

ancestry. Although studies based on data from the California Cancer Registry indicated a 

higher proportion of triple-negative tumors,217 this finding was not confirmed in a Colorado 

study.212 In a retrospective study performed in Brazil, patients in the southern regions with a 

higher percentage of European ancestry and higher socioeconomic status presented with the 

highest proportion of luminal tumors, whereas the more aggressive subtypes were seen in 

the northern parts of Brazil, an area with a higher African ancestral influence.218
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Approximately 15% of breast cancer types overexpress erb-b2 receptor tyrosine kinase 2 

(ERBB2; also referred to as epidermal growth factor receptor 2 [HER2 or HER2/neu]) 

protein.219 High levels of HER2 expression identify those women who benefit from 

treatment with HER2-targeted agents, which have been shown to increase survival in the 

adjuvant and metastatic settings.220,221 Most studies with HER2-targeted therapies have 

enrolled majority populations of non-Hispanic whites, although consistent evidence 

demonstrates that a higher proportion of HER2-positive tumors exist among Latinas, even 

after adjusting for other tumor characteristics (eg, grade, stage, ER status) and breast cancer 

risk factors (eg, number of children, alcohol consumption).212

Further tumor characterization has been made possible due to advances in molecular tumor 

profiling. Oncotype DX (Genomic Health, Redwood City, CA) is a 21-gene breast cancer 

assay — known as a recurrence score — that provides prognostic and predictive information 

regarding the benefits of adjuvant chemotherapy in patients with ER-positive tumors. Use of 

Oncotype DX is part of several guidelines from professional medical organizations, 

including the National Comprehensive Cancer Network, the American Society of Clinical 

Oncology, and the European Society for Medical Oncology.222–224 The characteristics of 

this assay and the impact of its results on treatment decisions among Latinas with breast 

cancer are lacking in the medical literature. Kalinsky et al225 studied 74 Latinas and 145 

non-Hispanic white women matched for age, disease stage, and nodal status, and they 

observed no differences in the overall recurrence score, ER or progesterone receptor status, 

or HER2 expression by Oncotype DX. However, Latinas had a higher expression of CCNB1 
and AURKA, 2 genes that are part of the proliferation score and heavily weighted in the 

calculation of the recurrence score.

Multiple trials whose study populations were mostly comprised of non-Hispanic white 

women have shown that use of Oncotype DX affects treatment recommendations and leads 

to an increase in physician and patient confidence in treatment decisions.226–229 A small 

study of 96 patients with breast cancer treated in Mexico showed that use of the Oncotype 

DX changed treatment decisions for 32% of patients, a finding suggesting that its use has a 

meaningful impact on recommendations for adjuvant treatment.230 Results from cost-

effectiveness analyses indicated that use of the Oncotype DX assay was projected to improve 

rates of life expectancy when compared with the current standard of care.231

Pharmacogenomics

Several factors cause variations in the individual response to drugs, including age, body 

mass index, diet, and genetic variation.232–234 SNPs in genes related to drug-metabolizing 

enzymes have been recognized as important determinants of variability to drug response.235 

Most studies have not been sufficiently powered to determine whether specific 

chemotherapy agents used to treat breast cancer have different rates of effectiveness and 

toxicities based on race or ethnicity.236 However, differences in the metabolism of endocrine 

therapies have been well documented according to race and ethnicity.237–240

In a study that evaluated clinical data and blood samples from patients with breast cancer 

undergoing adjuvant tamoxifen therapy, mostly non-Hispanic white women (68%) and 

Latinas (26%) had significantly higher serum levels of tamoxifen and 4-hydroxytamoxifen, 
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one of tamoxifen metabolites (P = .02 and P = .007, respectively).237 In 2 other studies, 

genetic polymorphisms in CYP2D6 associated with lower plasma concentrations of the 

active metabolites of tamoxifen were described in Mexican, Puerto Rican, and Spanish 

patients.238,239 A higher prevalence of this poor metabolizer phenotype has also been 

observed in non-Hispanic whites.240 In an attempt to clarify whether CYP2D6 allele status 

influences outcomes from tamoxifen, investigators assessed data from 2 large prospective 

trials and found that CYP2D6 allele status did not predict clinical benefit of adjuvant 

tamoxifen in terms of risk of recurrence.241,242 Therefore, changes in treatment decisions 

based on CYP2D6 allele status alone are not recommended. Differences in the incidence of 

polymorphisms of the aromatase gene among different ethnic groups have also been 

reported and could potentially lead to different outcomes and toxicities among 

populations.243 One trial evaluated the benefit of extended hormonal therapy with an 

aromatase inhibitor after 5 years of tamoxifen treatment in non-Hispanic whites (n = 4,708) 

and minority women (n = 352; 1.5% were Latinas).244 In general, the researchers found that, 

compared with non-Hispanic whites, minorities had fewer associated toxicities and no 

definitive survival benefit with aromatase inhibitors.244 However, these results should be 

cautiously interpreted, because the minorities participants were less adherent to hormonal 

therapy and the study was not powered to detect survival benefit in the subgroups.244

Conclusions

Several genetic and genomic factors are related to the health disparities of breast cancer in 

Latinas. Increasing our knowledge about the contribution of high- and moderate-penetrance 

mutations to the risk of breast cancer among Latinas overall and for subgroups based on 

country of origin is an important priority. Although genetic counseling and testing for 

inherited susceptibility to breast cancer has been clinically available for nearly 20 years, 

disparities in awareness, referral to services, and access persist. Therefore, interventions to 

address barriers related to low levels of awareness and lacking physician referrals are 

critical.106–111

Even though multiple candidate gene studies have been conducted in this population, only 

identified variants in genome-wide association studies have been systematically replicated. 

Much larger sample sizes will be required if we expect to discover similar results in Latinas 

as would be identified for the European genome in view of their Indigenous American 

component. We cannot assume that overlapping variants alone between different ancestral 

genomes will be associated with rate of risk, so our efforts should be focused on reducing 

research disparities by expanding available resources to include large cohorts and case-

control studies of diverse populations in and outside the United States.

Latinas remain systematically underrepresented in pharmacogenomics studies and the 

current studies were not powered to detect outcome differences. They are also 

underrepresented in clinical treatment trials and other patient-reported outcomes research. 

Future research should draw from the few models of success in prior studies that have 

recruited sufficient numbers of Latinos.245–248 Lessons can also be learned from successful 

examples of recruiting other racial and ethnic minority patients who have survived breast 

cancer.249 Elements that appear to bolster success include partnership with community-
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based organizations that provide services to Latinas and the provision of language-

concurrent clinical care.250–252 The heterogeneity of the US Latina population must also be 

considered, because different cultural influences, levels of awareness of, and interest in 

genetic and genomic services appear to vary by country of origin.110

An urgent need exists to ensure that existing genomic research considers the unique needs of 

this Latina population. As the US population continues to diversify with up to one-third 

identifying as Hispanics by 2060,1 extending genetic and genomic research into this 

underserved and understudied population will be critical. By understanding the risk of breast 

cancer among diverse populations, we will be better positioned to make advancements in the 

number of women diagnosed at earlier stages, identify more effective and less toxic 

treatment regimens, and increase rates of survival. Meeting these goals will contribute to 

reducing the current health disparities in these patients with breast cancer.
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Table 2

Comparison of ER and HER2 Status in Hispanic, Black, and White Women

Study No. of Patients Hispanic White Black

Chlebowski205 N = 3,800
n = 103 Latinas

ER+: 83.0% ER+: 87.0% ER+: 71.0%

Dunnwald206 N = 209,276
n = 5,585 Latinas

ER+: 70.2% ER+: 78.4% ER+: 60.5%

Hausauer207 N = 243,906
n = 15,355 Latinas

ER+: 53.2% (unknown ER status: 
29.4%)

ER+: 63.5% (unknown ER 
status: 22.3%)

ER+: 46.4% (unknown ER 
status: 29.4%)

Hines203 N = 285
n = 69 Latinas

ER+: 63.8%
HER2: 31.9%
TNBC: 17.4%

ER+: 77.3%
HER2: 14.3%
TNBC: 15.1%

—

Li204 N = 124,934
n = 7,219 Latinas

ER+: 68.7% ER+: 78% ER+: 53.4%

Parise3 N = 143,184
n = 24,078 Latinas

ER+: 74.6 %
HER2: 22.2%
TNBC: 15.9%

ER+: 82.7%
HER2: 17.2%
TNBC: 11.2%

ER+: 66.5%
HER2: 20.1%
TNBC: 24.5%

ER = estrogen receptor, TNBC = triple-negative breast cancer.
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