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ABSTRACT
Analysis of gene expression and whole-genome features of 64 human epidermal growth factor 2 (HER2)-
positive breast tumors supports the idea that their intrinsic heterogeneity actually reflects their cell of
origin, suggesting that HER2 amplification is an embedded event in the natural history of these tumors.
Possible mechanisms for this event involve breakage-fusion-bridge and chromothripsis. KEYWORDS
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Human epidermal growth factor 2-positive (HER2C) breast
cancers (BC) represent a clinically well delineated group of
tumors, characterized by amplification and overexpression of
the erb-b2 receptor tyrosine kinase 2 gene (ERBB2, also known
as HER2) on chromosome arm 17q. This feature makes them
amenable to efficient anti-HER2 targeted therapies (e.g., trastu-
zumab), which are now routinely used in patients with HER2C
tumors and have completely changed the outcome of HER2C
BC over the last 2 decades.1 However, the situation is strikingly
different on the biological side. This group of tumors is now
well recognized as being highly heterogeneous from different,
but related, standpoints, including expression subtypes,2 DNA
alterations,3 immune microenvironment,4 and response to
therapy.5 In this context, and in the framework of the Interna-
tional Cancer Genome Consortium (ICGC), we undertook a
comprehensive study of 99 HER2C primary invasive carcino-
mas, including whole-genome sequencing (WGS) of 64 tumor–
normal paired samples.6 This provided further insight into
their genomic architecture using high dynamic copy number
analysis and detection of large-scale rearrangements.

First, we used array-based gene expression as an operational
basis to classify HER2C tumors into 4 groups (A to D in Fig. 1),
which were further characterized in terms of interdependent bio-
logical and genomic variables. Groups A and B included most
ER-positive (ERC) tumors, whereas groups C andDmostly con-
tained ER-negative (ER-) tumors. In terms of PAM50 intrinsic
subtypes, the tumors were predominantly luminal B (in groups
A and B) and HER2-enriched (in groups C and D), with only a

marginal number of luminal A and basal tumors. These four
groups displayed specific genomic alterations in terms of muta-
tions, amplifications, and rearrangements. All samples in group
D and none in group A displayedmutations in the tumor protein
p53 gene (TP53). Conversely, only one sample in group D har-
bored a mutation in phosphatidylinositol-4,5-bisphosphate 3-
kinase catalytic subunit a gene (PIK3CA) whereas the other
groups displayed an equal number of such mutations. A similar
gradient, from A to D, was also observed in terms of genomic
(homologous recombination deficiency-associated genomic
instability, fraction of genome altered) and cell of origin tran-
scriptomic signatures. Group D displayed more genomic insta-
bility and a progenitor luminal signature whereas group A was
more stable and displayed a typical mature luminal signature.
All these observations are concordant with the cell of origin
scheme,7,8 in which the intertumoral heterogeneity reflects the
developmental stage of the epithelial mammary cells. Thus,
groups D and C, with basal-like features, arise from luminal pro-
genitors whereas groups A and B, with typical luminal features,
are associated withmature, differentiated luminal cells. This sug-
gests that ERBB2 amplification, although probably strongly
selected, is an embedded event that is superimposed on the stan-
dard time course of breast carcinogenesis.

WGS data allowed us to gain more information about the
amplification process itself and provided some indications
about how (and maybe when) it arose. To this purpose, whole-
genome paired end sequencing provides 2 important experi-
mental clues: (1) dynamic and high-resolution analysis of copy
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numbers; and (2) the ability to pinpoint large-scale structural
rearrangements using clipping and abnormal mapping of
read pairs. We could show that, in several cases, the observed
sequence of copy numbers as well as the orientation of clipped
reads was consistent with a breakage-fusion-bridge (BFB) fold-
ing mechanism.9 However, the observation of long distance
and inter-chromosomal rearrangements further showed that
the amplification is a complex event (or sequence of events),
likely involving multiple amplicons on the same or different
chromosomes and several intertwined mechanisms. Indeed,
one of the features of HER2C tumors is the ubiquitous pres-
ence of firestorms, corresponding to multiple closely spaced
amplicons on highly rearranged chromosomal arms.10 It is
therefore tempting to explain the complex amplification pat-
terns observed by combining 2 mechanisms: chromothripsis,
which will generate a mosaic of fragments (but no amplification
per se), followed by a BFB amplification of chromosomal arm
(s). When limited within the 17q arm, this gives rise to the
observed co-amplification of the 17q12 region (ERBB2) with
17q21 and 17q23. These 17q co-amplifications are more fre-
quent in group A. It is important to note that here the term
“co-amplification” does not only refer to the co-occurrence of
amplicons but also denotes that rearrangement breakpoints
(detected by abnormal mapped reads) are observed between
them, suggesting they arose from a common molecular process.
When involving other chromosomes, this gives rise to impor-
tant co-amplifications with cyclin D1 (CCND1) on 11q13, zinc
finger protein 703 (ZNF703) on 8p12, and v-myc avian myelo-
cytomatosis viral oncogene homolog (MYC) on 8q24. Both
CCND1 and ZNF703 co-amplifications are more frequently
observed in ERC tumors (groups A and B), whereas MYC co-
amplifications seem to be ubiquitous.

One can speculate that combining phenotypic (such as gene
expression groups) and mechanistic (such as co-amplifications)

features may improve our current classification of HER2C BCs
and lead to rational therapeutic strategies by targeting addi-
tional pathways and/or genes co-amplified with ERBB2. This is
of course important for patients who show an initial poor
response or exhibit resistance to HER2-targeted drugs. From
this latter point of view, a critical aspect that was not addressed
in this first paper is intra-tumoral heterogeneity. This is clearly
a question that should be tackled in the near future.
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