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ABSTRACT
Invasive aspergillosis is a life-threatening infection caused by the opportunistic filamentous fungus
Aspergillus fumigatus. Patients undergoing haematopoietic stem cell transplant (HSCT) for the
treatment of hematological malignancy are at particularly high risk of developing this fatal
infection. The susceptibility of HSCT patients to infection with A. fumigatus is a consequence of a
complex interplay of both fungal and host factors. Here we review our understanding of the host-
pathogen interactions underlying the susceptibility of the immunocompromised host to infection
with A. fumigatus with a focus on the experimental validation of fungal and host factors relevant to
HSCT patients. These include fungal factors such as secondary metabolites, cell wall constituents,
and metabolic adaptations that facilitate immune evasion and survival within the host
microenvironment, as well as the innate and adaptive immune responses involved in host defense
against A. fumigatus.
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Introduction

Aspergillus fumigatus is ubiquitous within the environ-
ment and produces abundant spores (conidia) that are
disseminated by air currents. Healthy humans inhale
hundreds of conidia daily without developing disease.
There are multiple levels of host defense that mediate
protection against this constant fungal exposure. The
majority of inhaled conidia undergo mechanical elimina-
tion by mucociliary action within the airways, or are rap-
idly phagocytosed and killed by innate immune cells
including epithelial cells and alveolar macrophages.1

Conidia that escape these first lines of defense, and which
undergo germination, induce epithelial cells, alveolar
macrophages and dendritic cells to initiate a pro-inflam-
matory response through the release of cytokines and
chemokines. This response leads to the recruitment of
neutrophils, which exhibit potent activity against hyphae.
In addition to these innate immune responses, adaptive
Th1 and Th17 type responses can also mediate protec-
tion against infection.2,3 Impairment in these innate or
adaptive immune responses to A. fumigatus permits the
growth of hyphae, which rapidly invade pulmonary tis-
sues, and if unchecked, can disseminate to other deep
organs. Although A. fumigatus conidia comprise only a

small fraction of the spores which humans inhale daily,
this species accounts for the majority of invasive mold
infections in immunocompromised patients.1 The ability
of A. fumigatus to grow at 37�C and to produce conidia
that are small enough to penetrate deep within the air-
ways undoubtedly contributes to the success of this path-
ogen,4 however these properties are not unique to A.
fumigatus and are shared by many other Aspergillus spe-
cies and non-Aspergillus fungi. These observations sug-
gest that A. fumigatus has developed unique virulence
traits that contribute to its success as a human pathogen.

Given the array of human host defenses, invasive
Aspergillosis (IA) is largely a disease of severely immu-
nocompromised patients including those with primary
immunodeficiencies such as chronic granulomatous dis-
ease; patients undergoing haematopoietic stem cell and
solid organ transplantation; patients with hematological
malignancies and prolonged neutropenia; and those
receiving corticosteroid or other immunosuppressive
therapies.5 The burden of disease due to IA has
increased significantly in the last 30 y in large part due
to the increased number of patients undergoing immu-
nosuppressive treatments for hematological malignan-
cies and haematopoietic stem cell transplants (HSCT).6
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IA has become a leading cause of death in HSCT
patients, accounting for 10% of all deaths in this
population.6

In the allogeneic HSCT population, IA can occur early,
during the neutropenic pre-engraftment phase, and late,
during the post-engraftment period.7,8 During the post-
engraftment period patients are usually non-neutropenic
but are immunosuppressed largely as a consequence of
graft-versus-host-disease (GVHD) and the therapies given
for this condition. Early IA is more common in patients
undergoing myeloablative transplants due to the prolonged
neutropenia resulting from the extensive chemotherapy and
radiation used to destroy the native bone marrow. The rise
of non-myeloablative transplantation, with a shorter neutro-
penic period and higher risk of GVHD, has led to a decrease
in the incidence of early IA with a shift to increasing rates of
late IA.9,10 The late risk period associated with GVHD can
last for months to years, making prophylactic and monitor-
ing strategies challenging to implement.11 Further, the sensi-
tivity of galactomannan screening, which is commonly used
for the detection of IA in neutropenic patients, is low in
non-neutropenic hosts.12 Thus, IA is often diagnosed at a
relatively advanced stage of infection in this population,
compromising the efficacy of antifungal therapy.

The pathology and immunobiology of IA is different in
pre-engraftment neutropenic patients and post-engraft-
ment non-neutropenic patients. In neutropenic patients,
A. fumigatus infection likely begins as a bronchopneumo-
nia, but progresses rapidly, with abundant fungal growth,
early angioinvasion, thrombosis and hemorrhage often
leading to fungal dissemination and eventually death.1,13-15

The natural history of IA during neutropenia is therefore
characterized by rapid fungal growth with low levels of
inflammation. Pulmonary computed tomography (CT)
imaging early in infection may reveal a bronchopneumo-
nia, however nodular infiltrates, often surrounded by a
ring of ground glass appearance (the halo sign) are
more commonly detected.5,16 In contrast, non-neutropenic
patients receiving corticosteroids for prophylaxis or treat-
ment of GVHD have an overabundant inflammatory
response to A. fumigatus characterized by pyogranuloma-
tous infiltrates and tissue necrosis, with more limited
fungal growth and angioinvasion.1,14 Exaggerated and
uncontrolled inflammation is thought to contribute to
death in this population. CT findings also include nodules
but may also extend to other airway invasive type of pre-
sentations including tree-in-bud lesions and non-specific
signs of bronchopneumonia.17

Given these important clinical, pathologic and radiologic
differences between early and late IA, understanding the
pathogenesis of aspergillosis in HSCT patients requires stud-
ies in both neutropenic and non-neutropenic experimental
models. Multiple neutropenic models of IA have been

reported, including treatment of mice with chemotherapeu-
tic agents such as cyclophosphamide or using antibody
depletion of neutrophils.18,19 Non-neutropenic models of IA
commonly rely on the treatment ofmice with corticosteroids
such as cortisone acetate to induce susceptibility to infec-
tion.1 These models result in experimental IA that mirrors
the differences seen in human pathology between neutrope-
nic and non-neutropenic patients.20 Both of these models
frequently use intranasal and intratracheal administration of
high doses of conidia, however inhalational chamber meth-
ods have been describedwhich induce reproducible infection
in immunocompromised mice with an inoculum of 103 to
104 conidia per animal.19,21 Although these studies have
largely relied on the use of BALB/C or C57BL6 mice, a com-
parison of 10 inbred mouse strains using the neutropenic
model of IA revealed marked differences in their intrinsic
susceptibility toA. fumigatus.22 A haplotype-based computa-
tional genetic analysis wide-association study identified a
correlation between survival of thesemouse strains and poly-
morphisms in several genes including the gene encoding for
plasminogen.22 Further studies testing the role of these poly-
morphisms in the pathogenesis of IA have not yet been
reported. The use of transgenicmice inmodels of IA has also
provided a powerful tool to study the role of host immune
factors in governing defense against A. fumigatus, although
many of these studies have been performed in immunocom-
petent mice infected with a very high inoculum (up to 107

conidia per animal)23 and thus extrapolation to IA in HSCT
requires caution. Relatively few studies have used a murine
model of myeloablative HSCT-related aspergillosis in which
mice are transplanted with purified haematopoietic stem
cells following myeloablative irradiation before A. fumigatus
infection.24,25 Mouse models of acute leukemia and GVHD
have been developed but have not been used for the study of
IA.26-28 Despite these limitations, studies with these experi-
mental models have begun to shed light on the pathogenesis
of IA in HSCT patients. In this review, we will examine a
selection of experimental studies that highlight key factors
governing the host-pathogen interaction in IA, with a focus
on fungal factors that play a distinct role in neutropenic vs.
non-neutropenic hosts and host factors that have been
directly linked to IA susceptibility in patients undergoing
HSCT.

Fungal virulence factors

Secondary metabolites as virulence factors
and implications for HSCT

Like many molds, A. fumigatus can produce a variety of
secreted bioactive secondary metabolites. A list of char-
acterized A. fumigatus virulence factors is shown in
Table 1. The epipolythiodioxopiperazine gliotoxin has
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been the best studied of these mycotoxins. Gliotoxin is
produced by mature hyphae of A. fumigatus both in
vitro, and during human infection.29 Studies in vitro
have found that gliotoxin is a potent immunosuppres-
sive molecule that mediates a variety of functions
including inhibition of NF-kB activation and NADPH
oxidase function, thereby preventing macrophage and
neutrophil phagocytosis and oxidative killing29-32; alter-
ation in neutrophil and macrophage cytoskeletal struc-
ture to facilitate immune evasion33; inhibition of
macrophage phosphoinositide signaling protein phos-
phatidylinositol-3,4,5-trisphosphate, impairing phago-
some formation34; and induction of leukocyte
apoptosis.35,36 Studies in mouse models have been help-
ful in understanding the relative importance of these
various functions in the pathogenesis of IA. Initial stud-
ies in neutropenic models of IA found that A. fumigatus
gliotoxin-deficient mutants are fully virulent.37-39 How-
ever, in a non-neutropenic mouse model, gliotoxin-defi-
cient mutants display attenuated virulence and induce
lower levels of apoptosis in neutrophils surrounding
fungal lesions.40,41 Collectively, these studies suggest
that gliotoxin contributes to virulence largely through
the induction of neutrophil apoptosis and thus this
toxin plays little role in the pathogenesis of IA in neu-
tropenic hosts such as HSCT patients pre-engraftment.

It is likely that secondary metabolites other than glio-
toxin also contribute to virulence. Support for this
hypothesis comes from studies of the global regulator of
secondary metabolite production LaeA. Deletion of laeA
leads to a near complete repression of all secondary
metabolite biosynthetic gene clusters in A. fumigatus,
including the genes required for the production of

gliotoxin.42 In contrast to gliotoxin-deficient mutants,
the DlaeA mutant is attenuated in virulence in both neu-
tropenic and non-neutropenic murine models of IA.42-44

While the attenuated virulence of the LaeA-deficient
mutant in non-neutropenic mice may be due in part to
decreased gliotoxin expression, this mutant is much
more attenuated in virulence than gliotoxin-deficient
strains, suggesting that LaeA controls other secondary
metabolites important for virulence. This hypothesis is
supported by the observation that the LaeA-deficient
mutant is also virulent in neutropenic mice in which
gliotoxin is dispensible for virulence.42 LaeA has been
observed to mediate A. fumigatus-dependent inhibition
of angiogenesis in a neutropenic mouse model by both
gliotoxin-dependent and -independent factors.43 It has
been suggested that inhibiting angiogenesis may help
sequester the fungus from host defenses and antifungals
to promote infection. Importantly however, LaeA also
governs other fungal processes in addition to the regula-
tion of secondary metabolite production, including the
expression of hydrophobins and of alb1, a gene required
for synthesis of conidial pigment.44 As detailed below,
both of these factors have been reported to play a role in
the pathogenesis of IA in experimental mouse models.
Studies of individual secondary metabolites are likely
required to elucidate their role in the pathogenesis of IA
and to determine their potential as therapeutic targets in
the context of HSCT-associated IA.

Cell wall components that play an important
role in the pathogenesis of IA

As the site of first contact between the host and fungus
during infection, the fungal cell wall plays a key role in
the pathogenesis of IA. Although a comprehensive dis-
cussion of the role of the fungal cell wall components in
virulence is beyond the scope of this review, a number of
more recent experimental findings will be highlighted.

Components of the cell wall of conidia
Resting conidia of A. fumigatus are extremely hydropho-
bic due to the presence of an organized layer of immuno-
logically inert rodlet proteins (RodA) that cover and
conceal the underlying cell wall polysaccharides.45 Stud-
ies in vitro have demonstrated that this rodlet layer con-
fers a variety of phenotypes on resting conidia including
rendering them adhesive to host macromolecules and
masking b-glucans and other polysaccharides from rec-
ognition by host macrophages and dendritic cells.45-47

Studies in mouse models, however, have yielded conflict-
ing results. In immunocompetent mice, loss of RodA
results in a dramatic increase in pulmonary inflamma-
tory responses, and impaired virulence in a corneal

Table 1. Fungal virulence factors reviewed in this paper and their
role in virulence in immunocompetent, neutropenic and non-
neutropenic mouse models. – indicates that the contribution of
the indicated factor to virulence in this experimental model is
not known.

Mouse Model and Contribution to Virulence

Virulence Factor Immunocompetent Neutropenic Non-neutropenic

Gliotoxin — NO YES
LaeA — YES YES
RodA YES — —
Melanin/Alb1 YES — —
Ags1, 2, 3 YES YES —
GAG/Uge3 — YES YES
RbhA — YES YES
SidA, C, D, F, G — YES YES
HapX — YES YES
AcuM — — YES
AcuK — — YES
SrbA — YES YES
SrbB — — YES
RbdA YES — YES
HorA — YES YES
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model of A. fumigatus infection.46 However, conidia
deficient in RodA are fully virulent in a corticosteroid
treated, non-neutropenic mouse model of pulmonary
IA.45 Studies in neutropenic mice have not yet been
reported. Thus, although RodA clearly plays a role in
preventing potentially deleterious pulmonary inflamma-
tory responses to daily conidial exposure in healthy indi-
viduals, its role in the pathogenesis of IA in HSCT
patients remains unresolved.

A. fumigatus conidia are heavily pigmented due to the
presence of cell wall melanin. Studies in vitro have identi-
fied a number of roles for melanin in the host-pathogen
interaction including contributing to cell wall integrity,
modulating macrophage cytokine responses, and inhibi-
tion of phagolysosome acidification of alveolar macro-
phages, monocytes and neutrophils.48-52 The mechanisms
by which melanin interacts with phagolysosomes to con-
tribute to disease are beginning to be elucidated. It has
been suggested that melanin interferes with LC3-associated
phagocytosis (LAP), an Atg5-dependent autophagy path-
way that promotes fungal killing.53,54 When Atg5 was inac-
tivated in macrophages and murine haematopoietic cells,
the virulence of a melanin-deficient A. fumigatus strain
was restored. Consistent with these in vitro observations,
conidia melanin production is essential for normal viru-
lence.55,56 Mutant A. fumigatus strains lacking the conidial
pigmentation gene alb1 (also known as pksP) are signifi-
cantly attenuated in virulence in immunocompetent
mice.57 It is therefore likely that melanin contributes to the
establishment of both early and late IA in HSCT patients.

Although a-1,3-glucans are an important component
of both conidia and hyphae, recent studies have
highlighted a role for these glycans in the cell wall of
conidia during experimental IA. Synthesis of a-1,3-glu-
cans is mediated by one of 3 glucan synthases: ags1,
ags2 and ags3.58,59 Single deletions of each of these
genes is associated with minimal changes in cell wall
composition, however loss of all 3 genes results in a
complete absence of a-1,3-glucan synthesis, and exten-
sive structural modification of the cell wall.60 Absence
of a-1,3-glucans is associated with the production of an
amorphous layer of glycoproteins that covers the nor-
mal rodlet layer, leading to enhanced recognition of
conidia by macrophages.61 The a-1,3-glucan deficient
mutant is markedly impaired in virulence in both
immunocompetent and neutropenic models of aspergil-
losis, possibly through enhanced elimination of conidia
by pulmonary macrophages.61 Studies in corticosteroid-
treated mice have not been reported. The dramatic
effect on virulence in a neutropenic host suggests the
possibility that inhibition of a-1,3-glucan synthesis
could be an effective antifungal strategy in the future
for the treatment of early IA in the HSCT population.

Components of the hyphal cell wall that play
a role in virulence
Hyphae of A. fumigatus are covered in a layer of galacto-
saminogalactan (GAG), a partially deacetylated hetero-
polymer of a-1,4 linked galactose and N-acetyl
galactosamine.61-63 GAG has been described to mediate a
number of virulence-associated functions in vitro includ-
ing mediating adhesion and biofilm formation64; mask-
ing b-1,3-glucan from host recognition by dectin-1 on
dendritic cells; mediating resistance to neutrophil extra-
cellular traps65; inducing natural killer cell-mediated
neutrophil apoptosis66; and the induction of expression
of the immunosuppressive cytokine IL-1RA.67 In con-
trast to gliotoxin, in vivo studies using GAG-deficient
mutants found that GAG effects on virulence are more
marked in neutropenic mice,64 suggesting that neutro-
phil-independent functions of GAG are more important
in mediating virulence. Conversely, it was found that
increasing GAG expression in the naturally GAG-defi-
cient species Aspergillus nidulans enhances virulence in
non-neutropenic but not neutropenic mice.65 In this sys-
tem, the predominant role of GAG is to mediate resis-
tance to killing by neutrophil extracellular traps. Further
studies are required to reconcile these findings and better
understand the role of GAG in virulence in neutropenic
and non-neutropenic hosts.

Other fungal factors involved in the
pathogenesis of IA

Adaptation to the host environment is a critical factor for
the survival of A. fumigatus during infection. For exam-
ple, A. fumigatus mutants defective in nitrogen metabo-
lism, such as the DrbhA mutant, exhibit significantly
reduced growth and virulence in both neutropenic and
non-neutropenic mouse models of infection.68,69 The
ability to acquire micronutrients such as iron is similarly
critical for fungal growth in vivo. Not surprisingly, side-
rophore biosynthesis has also been implicated in viru-
lence in both neutropenic and non-neutropenic mouse
models.70-73 The A. fumigatus DsidA mutant, which is
completely deficient in iron siderophore synthesis, grows
poorly in low iron conditions and within alveolar macro-
phages and is completely avirulent.73 Attenuated viru-
lence has also been reported in other strains of A.
fumigatus with mutations in the siderophore synthesis
pathway and with other mutations affecting iron metab-
olism, including HapX, AcuM, and AcuK.72,74-76 Taken
together, these studies strongly suggest that the ability of
A. fumigatus to acquire and utilize iron from the host is
essential for pathogenicity. This hypothesis is supported
by the observation that iron overload within HSCT
patients is a risk factor for the development of IA.77,78
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Recent studies have also implicated the ability of A.
fumigatus to adapt to hypoxic conditions as a critical
factor in the development of IA. During A. fumigatus
infection, the organism grows within a hypoxic
microenvironment resulting from a number of factors
including impaired blood supply from thrombosis
and tissue necrosis, inhibition of angiogenesis, and
increased oxygen consumption by host inflammatory
cells.79 Fungal adaptation to hypoxia therefore is criti-
cal for pathogenicity.80 A. fumigatus SrbA and SrbB,
members of the highly conserved sterol regulatory
element binding protein (SREBP) family of transcrip-
tion factors, have been reported to play critical roles
in fungal adaptation to hypoxia.81,82 In vitro, SrbA is
required for normal hyphal growth and cell wall mor-
phology under hypoxic conditions, and increases
ergosterol biosynthesis, thereby contributing to azole
antifungal resistance.81 Interestingly, SrbA also regu-
lates iron acquisition in response to hypoxia and low
iron conditions by increasing siderophore biosynthe-
sis.83 SrbB mediates similar functions to SrbA but
also regulates heme biosynthesis, as well as carbohy-
drate and sterol metabolism under hypoxic condi-
tions.82 Mutants deficient in SrbA display significantly
reduced growth and are avirulent in both neutropenic
and non-neutropenic mouse models, while SrbB-defi-
cient mutants are markedly reduced in virulence in a
non-neutropenic mouse model.81-83 The virulence of
SrbB-deficient mutants in neutropenic mouse models
has not been reported. Notably, mutants deficient in
both SrbA and SrbB are more impaired in growth
and virulence than mutants deficient in either pro-
tein.82 This observation suggests that SrbA and SrbB
regulate both shared and distinct genes that are cru-
cial to fungal metabolism and virulence. Another pro-
tein in the SREBP family, SrbC, remains to be
characterized. Roles for other proteins in the regula-
tion of the hypoxic response are now emerging. The
iron metabolism regulators HapX and SreA have
been found to play a role in hypoxia adaptation.83,84

Most recently, the signal peptide peptidase SppA,
the protease RbdA, and the hypoxia-induced dehy-
drogenase HorA have also been linked to hypoxia
adaptation and virulence, possibly through interac-
tions with the Srb pathways.80,85,86 Together these
data suggest a model whereby the ability of A. fumi-
gatus to thrive in hypoxic microenvironments is a
critical factor in the pathogenesis of IA and suggest
a potential role for hyperbaric oxygen therapy for IA
in HSCT patients.

Recent advances in microfluidics have provided new
tools for the in vitro study of the effect of micro-envi-
ronmental conditions on fungal growth and secondary

metabolite production. A micrometabolomics platform
has been developed which couples a microfluidic solid
or liquid culture system to liquid chromatography-
mass spectrometry for the profiling and discovery of
secondary metabolite production in response to envi-
ronmental variations.87 Use of this system revealed a
clear relationship between A. fumigatus colony diame-
ter and the secondary metabolite profile produced by
the active culture that was independent of biomass.87

Similarly, marked differences were observed in the
metabolite profile of A. fumigatus grown in blood as
compared with grown in standard culture media.87 A
similar system has been used to study the dynamics of
germination in the pathogenic yeast Cryptococcus
neoformans.88 The use of this and other similar micro-
systems may provide a useful tool to improve our
understanding of the importance of the microenviron-
ment on the expression and function of virulence
factors of A. fumigatus.

Factors underlying the virulence of non-fumigatus
Aspergillus species

Although A. fumigatus accounts for the majority of
cases of IA, other species such as A. terreus and A.
flavus can also cause disease in HSCT patients.
There are relatively few studies probing the host-
pathogen interactions of these Aspergillus species
during infection. The virulence of A. flavus has been
evaluated in intravenous models of disseminated IA
in both immunocompetent and neutropenic mice. In
intravenous infection models, A. flavus was reported
to exhibit increased virulence as compared with A.
fumigatus.89 However, it has been postulated that the
larger spore size of this species limits its penetration
of the lower airways, thus reducing the ability of this
species to establish infection. The virulence and nat-
ural history of A. terreus infection in neutropenic
and non-neutropenic mouse models have also been
compared. In neutropenic mice, infection with A.
terreus resulted in a degree of mortality that was
similar to previous reports of A. fumigatus infection
in the same model.90 In contrast, A. terreus exhibited
attenuated virulence in corticosteroid-treated mice as
compared with prior reports of A. fumigatus in this
model.90 Interestingly, in both models, fatty degener-
ation of hepatocytes was noted, a finding not previ-
ously reported in A. fumigatus infection.90

Confirmation of these findings awaits a direct head-
to-head comparison of A. terreus and A. fumigatus
infection in these models. Unlike studies of patho-
genic yeast, the heterologous expression of putative
A. fumigatus virulence factors in less virulent
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Aspergillus species has only been reported in a single
study.65 In this work, detailed above, heterologous
expression of an A. fumigatus glucose epimerase was
used to enhance the production of cell wall galacto-
saminogalactan in A. nidulans, and was associated
with increased virulence in neutropenic mice.65

Heterologous expression of non-fumigatus Aspergil-
lus virulence factors in A. fumigatus and the
converse holds promise for the study of other
species-specific virulence factors in mouse models.

Host response to aspergillosis

Our understanding of the host response to A. fumigatus
has greatly increased in recent years. As an exhaustive
review of fungal immunology studies is beyond the scope
of this review, we will highlight advances in our under-
standing of host defense against IA, with an emphasis on
immune factors that have been linked to susceptibility of
HSCT populations to this infection. A general schematic
of host immune factors involved in defense against
A. fumigatus is shown in Figure 1.

Innate immune defenses against invasive
aspergillosis in HSCT patients

Conidia that escape elimination by pulmonary
mucociliary action or by alveolar macrophages shed
their hydrophobin coat and undergo germination.
Recognition of these germinated conidia and hyphae
by the innate immune system is critical for the con-
trol of infection. Effective innate immune response
to early IA begins with the recognition of fungal
elements by cell surface pattern recognition receptors
(PRRs) such as the C-type lectins dectin-1 and dec-
tin-2; members of the toll-like receptor (TLR) family;
and soluble factors such as pentraxin-3, surfactant
proteins A and D (SP-A, SP-D) and mannose-bind-
ing lectin (MBL) (Figure 1).11 Effective fungal recog-
nition leads to the activation of inflammatory
programs including the NFk-B pathway and the
NLRP3 inflammasome resulting in secretion of a
variety of pro-inflammatory cytokines and chemo-
kines by epithelial cells, inflammatory monocytes,
dendritic cells (DCs) and alveolar macrophages
(Figure 1). This cytokine environment contributes to
the recruitment and activation of effector cells such
as neutrophils which mediate fungal killing.11 Poly-
morphisms in a number of key genes involved in
mediating these innate responses to A. fumigatus
have been identified in HSCT donors and
recipients.91,92

Cellular pattern recognition receptors
Several cellular PRRs have been implicated in the recog-
nition of A. fumigatus, of which dectin-1 and members
of the TLR family have been best studied. Dectin-1 is a
C-type lectin expressed by macrophages and DCs that
recognizes the A. fumigatus cell wall constituent b-1,3-
glucan.93 Interaction of dectin-1 with A. fumigatus
conidia promotes their phagocytosis, enhances macro-
phage activation, and induces proinflammatory
responses including the secretion of tumor necrosis fac-
tor (TNF).94 Dectin-1 mediates recruitment of the auto-
phagy protein LC3 II to phagosomes in monocytes, a
process that is inhibited by corticosteroids.95,96 Immuno-
competent mice deficient in dectin-1 are more suscepti-
ble to A. fumigatus infection.97-99 In an experimental
HSCT mouse model investigators observed that dectin-1
deficient mice are more susceptible to IA than wild-type
mice following transplantation with wild-type stem cells.
Dectin-1 deficient mice transplanted with stem cells
from donors deficient in dectin-1 exhibit the highest sus-
ceptibility to IA, while wild-type mice transplanted with
dectin-1 deficient stem cells do not exhibit increased sus-
ceptibility to infection.98 These findings suggest that
expression of dectin-1 by non-haematopoietic cells may
also play an important role in mediating protection
against IA during HSCT.

Experimental studies also suggest that dectin-1 may
hold promise for therapy of IA. Transient transfection
experiments in neutropenic mice have demonstrated
protective effects of augmenting expression of native
dectin-1 or of a fusion protein consisting of the extracel-
lular domain of dectin-1 linked to the Fc portion of
murine immunoglobulin G1.100,101 Human studies of
dectin-1-based therapeutics have not been reported.

Cell-surface expressed TLRs also contribute to the
recognition of A. fumigatus. TLR2 and TLR4, which
signal through the adaptor protein MyD88, enhance
pro-inflammatory cytokine production in response to A.
fumigatus.49,102 TLR2 forms a heterodimer with TLR1
and TLR6 in mouse cells, but only TLR1 in human cells
has been hypothesized to play an accessory role to dec-
tin-1 in the induction of TNF responses to A. fumiga-
tus.102,103 Two studies have examined the susceptibility
of TLR2-deficient mice to infection with A. fumigatus. In
both studies, TLR2-/- mice developed higher pulmonary
fungal burdens during infection; however increased mor-
tality in neutropenic TLR2-/- mice was only observed in
one of these 2 studies.104,105 In this neutropenic mouse
model, TLR4-/- mice were more susceptible to A. fumi-
gatus infection than TLR2-/- mice.105 The role of these
TLRs in the pathogenesis of non-neutropenic IA has not
yet been studied.
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The intracellular PRR TLR9, which recognizes unme-
thylated CpG DNA, traffics to phagosomes containing
A. fumigatus.106,107 It has been suggested that TLR9
recruitment to phagolysosomes acts to inhibit inflamma-
tory responses and prevent over-exuberant inflamma-
tion. In support of this hypothesis, neutrophil-depleted
TLR9-/- mice displayed reduced pulmonary fungal
growth when infected with resting conidia, and pro-
longed survival when infected with swollen conidia. A
more recent study suggests that in non-neutropenic
hosts TLR9 may play a different role and induce TNF

production and neutrophil recruitment via calcineurin-
NFAT mediated signaling.108 This observation raises the
possibility that loss of TLR9 signaling may play an
important role in the susceptibility of non-neutropenic
HSCT patients to IA in the post-engraftment phase.

Studies in human patients have confirmed the impor-
tance of many of these PRRs in mediating immunity to
A. fumigatus. HSCT patients who received allogeneic
stem cells with TLR1, TLR4, TLR6 and dectin-1
polymorphisms have significantly increased susceptibil-
ity to IA.98,109-111 One of the best studied of these

Figure 1. Host immune response against A. fumigatus. Conidia which enter the lungs and escape airway epithelial cells are rec-
ognized by innate immune effector cells via cell surface pattern recognition receptors (PRRs) such as dectin-1 or toll-like recep-
tors (TLRs) and soluble factors such as pentraxin-3 (PTX-3), surfactant proteins A and D (SP-A,D) or mannose-binding lectin
(MBL). Alveolar macrophages recognize and clear conidia leading to the activation of inflammatory pathways and the secretion
of various proinflammatory cytokines by epithelial cells, other macrophages and dendritic cells. The cytokine environment con-
tributes to the recruitment of other innate immune effectors such as inflammatory monocytes and neutrophils which mediate
fungal killing of conidia that have escaped initial recognition and germinated into hyphae and further stimulate proinflamma-
tory responses. Dendritic cells (DCs) are the link between the innate and adaptive immune responses to A. fumigatus. During
infection and after interaction with other innate effectors, they secrete various chemokines such as CCL3, CCL4, CCL20, CXCL8
and CXCL10 to allow migration of more inflammatory cells to the site of infection. They also interact with immature helper T
cells (Th) through the major histocompatibility complex (MHC) and T cell receptor (TCR), resulting in the secretion various cyto-
kines driving protective Th1 and Th17 responses against A. fumigatus. They can also inhibit Th2 responses which favor disease
progression and allergy. Regulatory T cells are producers of IL-10 which is linked to disease progression in IA.
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mutations is the dectin-1 Y238X polymorphism, which
results in the production of a truncated dectin-1 protein
that is unable to localize to the cell membrane and medi-
ate fungal recognition.98 The presence of this mutation
in HSCT donors or recipients is associated with a signifi-
cantly increased susceptibility to IA.98 Interestingly, nor-
mal patients who received donor stem cells with the
Y238X polymorphism had an increased risk of IA in
both the early (0–30 days) and late (30–120 days) stages
after transplantation while recipients carrying the poly-
morphism receiving normal donor cells largely devel-
oped IA very late (after 120 days) following
transplantation. As was reported in mouse models, the
worst prognosis was observed in cases in which both
donor and recipient carried this dectin-1 polymor-
phism.98 Furthermore, significantly lower levels of proin-
flammatory cytokines IFNg, IL-10, IL-1b, IL-6 and
IL-17A were detected in the serum of patients with the
Y238X polymorphism during Aspergillus infection, con-
sistent with a role for dectin-1 in mediating innate host
defense against A. fumigatus.98 These observations sug-
gest the possibility that mapping of these polymorphisms
may allow identification of subpopulations of patients at
higher risk for IA that may benefit from more aggressive
screening or prophylactic strategies.

Soluble factors that are critical for defense
against invasive aspergillosis
Experimental studies in transgenic mice have identified a
role for the soluble PRR pentraxin-3 in host defense
against A. fumigatus. Pentraxin-3 binds to fungal galac-
tomannan and enhances the uptake and killing of
conidia by macrophages as well as activation of
DCs.97,112,113 Immunocompetent mice deficient in pen-
traxin-3 were more susceptible to A. fumigatus infection
and failed to mount a protective Th1 adaptive immune
response to this organism.113 Administration of recombi-
nant pentraxin-3 protects against A. fumigatus infection
in a murine model of allogeneic transplantation in which
mice were challenged with A. fumigatus.114 In this
model, treatment with pentraxin-3 results in accelerated
recovery of pulmonary phagocytic cell populations and
Th1 lymphocytes and was synergistic with amphotericin
B therapy.115,116 Consistent with these experimental
studies, it has been reported that HSCT recipients trans-
planted with donor cells containing a polymorphism in
the pentraxin-3 gene PTX3, displayed a higher incidence
of IA.117 The presence of this polymorphism was associ-
ated with reduced levels of pentraxin-3 production by
neutrophils and a functional defect in neutrophil phago-
cytosis and killing of A. fumigatus in vitro.117 Collectively
these data suggest a possible role for screening of HSCT
patients with IA in order to identify pentraxin-3 deficient

patients that may benefit from replacement therapy.
Genome-wide association studies are underway to
explore host susceptibility to IA based on genetic defects,
which can be used as a basis for clinical trials involving
medical intervention based on patient genetic screening
and immune profiling.118

Two recent experimental studies have examined the
role of IL-1a and inflammasome-dependent IL-1b in
the pathogenesis of IA.119,120 In neutropenic mice, the
processing of IL-1b by the NLRP3 inflammasome is
critical for defense against pulmonary challenge by A.
fumigatus.119 In contrast, a more modest role for
inflammasome-dependent IL-1b was reported in immu-
nocompetent mice challenged with a high dose of
conidia.121 In this model, IL-1a played a dominant role
in enhancing the recruitment and activity of neutro-
phils.121 The role of IL-1b and IL-1a in the pathogene-
sis of IA in non-neutropenic immunocompromised
hosts remains unstudied. Interestingly, a polymorphism
in NLRP3 (rs35829419, Q705K) was found to be associ-
ated with the development of IA in HSCT patients
when present in either the donor or recipient.122 Sur-
prisingly, however, this polymorphism was reported to
be associated with increased activation of the inflamma-
some and IL-1b production. Further studies will be
required in human populations to better understand the
importance of the inflammasome in mediating antifun-
gal defense during HSCT.

Epithelial cells in the innate defense against A.
fumigatus infection
Successful infection of pulmonary epithelial cells by A.
fumigatus conidia and hyphae has long been hypothe-
sized to play an important role in the pathogenesis of
invasive aspergillosis.123-126 In a mouse model of chemo-
therapy-induced neutropenia, treatment of mice with an
inhaled synergic combination of TLR2, 6 and 9 agonists
induced protection against A. fumigatus, by enhancing
mucosal and epithelial cell responses.28 Similar protec-
tion was observed against other pathogens including
Pseudomonas aeruginosa, suggesting that enhancing epi-
thelial cell resistance to infection may be a useful strategy
to reduce mortality due to opportunistic pneumonia in
the HSCT population.

The adaptive immune response to aspergillosis
in HSCT patients

The importance of cellular and acquired immunity in the
protection against A. fumigatus infection is well estab-
lished in mouse models of IA. Early studies in these
models showed that production of Th1-type cytokines
such as IFNg, TNFa and IL-12 is associated with
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resistance to disease, while the production of Th2 cyto-
kines such as IL-4 is associated with disease progression
(Figure 1).127 The association of a Th2 cytokine environ-
ment with IA was shown through early experiments
using transgenic mice deficient in IL-4. In both immuno-
competent and neutropenic mouse models, IL-4-/- mice
were protected against IA.128 Interventional studies with
adoptive transfer of immune cells have highlighted the
importance of Th1-mediated immunity in resistance to
A. fumigatus infection. Vaccination of immunocompe-
tent and neutropenic mice with T cells and DCs pulsed
with Aspergillus antigens in order to induce Th1 medi-
ated resistance was associated with enhanced survival
following fungal challenge.129,130 Studies of human DCs
in vitro have found that these cells produce chemokines
and other ligands CCL3, CCL4, CXCL8, CXCL10 and
CCL20 that stimulate migration of polymorphonuclear
cells (PMNs) and memory Th1 cells to the site of infec-
tion aiding in host resistance (Figure 1).131,132 Interest-
ingly in humans, polymorphisms in chemokine ligand
CXCL10 resulting in decreased DC CXCL10 production
have been associated with increased risk of IA in HSCT
patients.22,133 Further studies, using DC vaccines to pro-
mote Th1 immunity, have shown promise in HSCT
mouse models.134,135 In these studies, adoptive transfer
of DCs pulsed with A. fumigatus conidia or transfected
with A. fumigatus conidial RNA induced the production
of IFNg producing Th1 cells in mice following HSCT
and increased resistance to A. fumigatus challenge.134

Interestingly, resistance to IA was not observed when
DCs were pulsed with A. fumigatus hyphae. In other
studies, HSCT mice treated with Aspergillus specific Th1
cells by adoptive transfer also exhibited increased resis-
tance to A. fumigatus infection.134,136 More recently, the
adoptive transfer of transgenic T-cells engineered to
express a chimeric antigen receptor which incorporated
the extracellular portion of the b-glucan receptor, dec-
tin-1, was reported to reduce fungal burden in a neutro-
penic model of IA.137 Building on these experimental
studies, the role of fungal specific T-cells in the treatment
or prevention of IA in HSCT patients is an area of
intense clinical interest, and holds great potential for the
management of this infection, although significant chal-
lenges remain in translating these experimental techni-
ques to clinical practice.

As with the Th2 cytokine IL-4, the immunosuppres-
sive cytokine, IL-10, produced by regulatory T cells,
enhances susceptibility to IA (Figure 1). In non-neutro-
penic mice pre-treated with corticosteroids, high levels
of pulmonary IL-10 expression were associated with IA
mortality.138,139 In both immunocompetent and non-
neutropenic mouse models, IL-10-/- mice were better
able to control fungal infections and survived longer

when challenged with lethal doses of A. fumigatus.138,139

Polymorphisms in the IL-10 promoter gene have been
identified in HSCT patients and have been linked to
GVHD and susceptibility to IA.140-142 IL-10 promoter
polymorphisms resulting in increased transcript levels
are associated with increased susceptibility to both
GVHD and IA,141 while patients with promoter poly-
morphisms resulting in low to undetectable transcript
levels were much more tolerant to A. fumigatus infection
and disease.142 Further study of IL-10 promoter poly-
morphisms in humans may be useful both to identify
HSCT patients susceptible to IA and to understand the
role this cytokine plays in host immunity.

The role of the IL-23 – IL-17 axis in the pathogenesis
of IA is somewhat controversial. IL-23 produced by mac-
rophages and DCs in response to A. fumigatus leads to
Th17 polarization and IL-17 production during experi-
mental infection.3,143 An initial study reported that neu-
tralization of IL-17 and IL-23 in immunocompetent mice
improved the outcome of IA and suggested that the IL-
23/IL-17 axis inhibits protective Th1 mediated responses
while inducing damaging host inflammatory responses.144

However, other studies using anti-IL-17 antibodies have
reported that neutralization of IL-17A renders mice more
susceptible to A. fumigatus infection.93 Similarly, in an
experimental model of pulmonary A. fumigatus coloniza-
tion in immunocompetent mice, clearance of the fungus
from the airways was associated with the development of
Th17 responses,145 and IL-17 production by neutrophils
has been found to be protective in a model of A. fumiga-
tus keratitis.144 Similar conflicting results have been
reported from human studies. A. fumigatus was a weak
inducer of IL-17 production in human T-cells in vitro,
and low levels of IL-17 were detected in the bronchoal-
veolar lavage (BAL) of patients with IA.146,147 Active
down regulation of IL-17 production through fungal
tryptophan metabolism and kynurenine production was
suggested as a mechanism whereby A. fumigatus evades
Th17 responses.146 Polymorphisms in IL-23 but not IL-
17A and IL-17F genes were associated with lower rates of
IA in a cohort analysis of T-cell depleted allogeneic
HSCT patients.148 Overall, the role of the Th17 response
and IL-17 in IA remains poorly understood, and further
studies are required to evaluate the utility of treatment
strategies targeting this immune axis.

Finally, although Aspergillus antibody responses have
largely been viewed as non-protective in IA, several stud-
ies using carbohydrate antigens and anti-carbohydrate
monoclonal antibodies have challenged this dogma.
Active vaccination of mice with b-glucan conjugated to
diphtheria toxoid protected immunocompetent mice
from intravenous challenge with A. fumigatus, although
protection of immunosuppressed mice and efficacy in
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pulmonary disease were not evaluated.149 In a more
recent study, administration of a monoclonal IgM anti-
body targeting a sialylated b-1,3-linked oligosaccharide
was found to protect mice from intravenous challenge
with A. fumigatus.150 Excitingly, treatment with this anti-
body also improved the survival of neutropenic mice
infected intratracheally with A. fumigatus though not
when these mice were infected intravenously. The mech-
anism by which this monoclonal antibody mediates pro-
tection in neutropenic mice is unclear, but may involve
complement and/or enhancing phagocytic killing by
non-neutrophil leukocytes. The findings of these studies
suggest the exciting possibility that passive therapy with
anti-Aspergillus antibodies could be an effective strategy
for the prevention of IA during HSCT.

Conclusion

The pathogenesis of IA is governed by a complex inter-
play between environmental conditions, fungal virulence
factors and the host immune response. Patients undergo-
ing HSCT encompass a range of different physiological
and immunological environments as a function of their
underlying hematological disease; the chemotherapy and
conditioning regimens administered pre-transplant; the
engraftment status and degree of neutropenia; the pres-
ence of secondary infections that modulate host immu-
nity such as CMV; and the degree of GVHD and the
immunosuppressive therapies used for this condition.
Many fungal virulence factors and host immune parame-
ters are therefore likely to play an important role in path-
ogenesis in select groups of patients at specific times
during their course of treatment. This level of complexity
is a major challenge for the study of host-pathogen inter-
actions in this population and will necessitate the valida-
tion of experimental results in multiple animal models as
well as human populations. The development of robust
and practical animal models for leukemia, HSCT and
GVHD will be critical tools for the advancement of this
field. Nonetheless, there is cause for optimism. Human
genetic association studies have validated many of the
findings in mouse studies of Aspergillus immunity. The
identification of these key host determinants of suscepti-
bility may lead to pre-transplant screening algorithms
that can identify very high-risk patients who would be
candidates for aggressive surveillance or antifungal pro-
phylactic strategies and the development of novel immu-
notherapies for the prevention and treatment of IA.
Similarly, the recent identification of novel fungal viru-
lence factors may lead to the development of new anti-
fungal strategies for this important disease. Collectively,
these advances hold promise for an era of new therapies

targeting the host-fungal interphase in order to reduce
mortality due to IA in this vulnerable population.
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