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ABSTRACT

Hydroxyl radical footprinting can probe the solvent
accessibility of the ribose moiety of the individual
nucleotides of DNA and RNA. Semi-automated analy-
tical tools are presented for the quantitative analyses
of nucleic acid footprint transitions in which pro-
cesses such as folding or ligand binding are followed
as a function of time or ligand concentration. Efficient
quantitation of the intensities of the electrophoretic
bands comprising the footprinting reaction products
is achieved by fitting a series of Lorentzian curves to
line profiles obtained from gels utilizing sequentially
relaxed constraints consistent with electrophoretic
mobility. An automated process of data ‘standardiza-
tion’ has been developed that corrects for differences
in the loading amounts in the electrophoresis. This
process enhances the accuracy of the derived transi-
tions and makes generating them easier. Together
with visualization of the processed footprinting in
false-color two-dimensional maps, DNA and RNA
footprinting data can be accurately, precisely and
efficiently processed allowing transitions to be
objectively and comprehensively analyzed. The utility
of this new analysis approach is illustrated by its
application to the ion-meditated folding of a large
RNA molecule.

INTRODUCTION

‘Footprinting’ refers to assays in which either cleavage of the
backbone or modification of the base or side-chain of a
macromolecular polymer by a solution probe detects local
differences in solvent accessibility (1). Many nucleic acid
footprinting techniques utilize cleavage of the phosphodiester
backbone with the reaction products detected by acrylamide
gel electrophoretic separation and autoradiography. While
visual inspection of resultant autoradiograms can yield
much qualitative insight into the structure or ligand binding
of a DNA or RNA molecule, accurate quantitation of ‘foot-
prints’ can yield a wealth of information about equilibrium and
kinetic transitions [reviewed in (2)].

Protocols were developed for the analysis of quantitative
DNase I footprint titration autoradiograms that involved envel-
oping a band or series of bands on a gel within a contour (a
‘block’), integrating the optical density within the contour and
correcting for the background of the autoradiogram. Trans-
formations termed ‘standardization’ and ‘normalization’,
respectively, are conducted for a series of lanes that comprise
a titration experiment that correct for lane-to-lane density
variation and convert density changes to apparent saturation
(1,3,4).

Footprinting with hydroxyl radicals is a proven probe of the
structure and function of DNA and RNA (5–8). Advantages of
the hydroxyl radical as a nucleic acid footprinting probe
include (i) sequence-independent intrinsic cleavage at each
nucleotide, (ii) equivalent intrinsic reactivity towards single-
and double-stranded structures and (iii) fine structural
resolution due to the small size of the probe. The available
evidence indicates that the hydroxyl radical cleaves the carbon
backbone of the deoxyribose and ribose sugars, respectively,
by hydrogen abstraction and subsequent ring opening as a
function of the solvent accessibility of ring carbons (9,10).
The autoradiograms of the hydroxyl radical reaction products
are characterized by a ladder of bands corresponding to the
products of n, n + 1, n + 2, n + 3, . . . nucleotides (Figures 1A
and 9A) that place great demands on quantitative analysis
protocols. While the ‘block’ approach to autoradiogram
quantitation is effective for quantitating groups of bands or
discontinuous cleavage patterns, it is both time-consuming to
conduct and of limited precision for a band-by-band analysis.

A variety of ‘peak fitting’ protocols have been published
that deconvolute a line scan of the banding pattern into a
family of Gaussian or Lorentzian curves [e.g. (11–14)]. The
combination of ‘peak fitting’ band density determinations with
‘standardization’ and ‘normalization’ data transformations in a
semi-automated protocol is driven by the need to objectively
extract high-resolution structural information at the single band
level from transitions monitored by hydroxyl radical footprint-
ing including new approaches that report time-dependent
transitions on millisecond (15–18) or longer (19–21) time-
scales. An integrated peak-fitting approach is described in
this paper that was developed for the analysis of the mono-
valent-ion-induced equilibrium folding of the ribozyme
derived from the group 1 intron of Tetrahymena thermophila
(22). The software that has been developed to implement this
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approach will be available for download on the corresponding
author’s webpage (http://www.aecom.yu.edu/mbrenowitz/).

MATERIALS AND METHODS

Biochemical protocols

Hydroxyl radical footprinting. The L-21 Sca1 ribozyme
derived from the group 1 intron of T.thermophila was made
by in vitro transcription, purified and then end labeled at either
the 30 or 50 end with 32P as described (15,23). RNA samples
were annealed in the indicated buffer and exposed to hydroxyl
radicals generated using either Fe-EDTA (7,8,24,25) or syn-
chrotron radiation (16,26) as indicated in the text for a duration

sufficient to achieve ‘single hit’ backbone cleavage kinetics.
The samples were processed and separated by electrophoresis
on 8% polyacrylamide, 5% bis-acrylamide gels using the TBE/
Urea buffer system (6,27). The dried gels were imaged by
exposure to a phosphor storage screen that was scanned
with 16 bit image depth at 200 mm spatial resolutions with
a Storm 820 imager (Molecular DynamicsTM).

Computational protocols

Commercial software often contains useful graphical inter-
faces and powerful features that are difficult and expensive
to duplicate. For this reason, our protocols use commercially
available software when feasible and make use of scripting
languages to implement special applications and tools. Pro-
cesses that do not require a graphical interface can be imple-
mented as command line C language programs to maximize
the speed of their execution.

Acquisition of ‘lane profiles’. A profile of each lane of a gel
(Figure 1A) is obtained from the digital autoradiogram using
the ImageQuant software as has been described previously
(14). Line profile generation is readily implemented in
other software packages. Because of the high signal-to-
noise of the phosphor storage plate image, the background
density of the digital image is usually negligible (<0.5% of
the peak band densities) and thus requires no processing. If the
background is significant relative to the band densities, a
baseline can be set at the averaged background level in the
peak-fitting session.

In this procedure, a line (or ‘polyline’ if the lane is not
straight) is drawn down the middle of a lane. The ‘width’
of the line is increased to �50% of the average width of
the bands. This procedure averages the density across the
relatively constant portion of the bands (Figure 1B). The
data are exported to a spreadsheet as a two-dimensional
array in the format of pixel intensity (arbitrary units) versus
pixel number.

Peak fitting. The two-dimensional array of pixel intensity
versus number is copied into the Origin v6.1 software
equipped with the Peak Fitting Module v6.0 (OriginLab1).
The peak-fitting operations are CPU intensive so that a fast
processor and generous system and memory are desirable. A
Windows 2000 workstation equipped with 1.5 GHz Pentium 4
processor and 384 MB RDRAM was used for the calculations
presented in this article. In general, fitting 80–90 peaks
requires 5–10 min on this system. The Lorentzian peak
function is used since it adequately represents the shape of
electrophoresis bands (12). The Lorentzian peak function is
expressed as

y =
2An

p
� wn

4 x � xcnð Þ2 + w2
n

, 1

where wn is the peak width, An the peak area, xcn the peak
center position, n the peak number and (2An)/(pwn) the peak
height. Deconvolution of the lane profile is accomplished by
nonlinear least-squares fitting to an array of Lorentzian peak
functions (12,28) (Figure 1C). Portions of this procedure are
automated as described in Results using the scripting language

Figure 1. An overview of the peak-fitting procedure. (A) A portion of the
phosphor storage image of a hydroxyl radical footprint of RNA. The
ImageQuant software was used to draw the lines that define the line density
profiles shown in (B). The dashed lines on either side of the solid one denote the
horizontal boundaries of each line; the software averages the pixel density
values of pixels between these boundaries for each vertical increment in the
line profile. Lanes 1 and 2 differ by the presence of MgCl2 in lane 2 to fold the
RNA into a discrete tertiary structure. (B) The line profiles showing the average
density for each row of pixels up the line from the bottom to the top of the gel.
(C) The fit of the line profile for lane 1 to a family of Lorentzian curves as
described in the text. Each Lorentzian peak corresponds to an individual band.
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LabTalkTM within Origin. An outline of the procedure is as
follows:

(i) The initial guess for the peak center positions are manu-
ally assigned using the Peak Fitting Module Graphical
Interface.

(ii) A LabTalkTM script performs several initialization opera-
tions. First, it selects a linear base line (consistent with
uniform background of the phosphor storage screens).
Second, the manually assigned peak center positions
xcn are improved by running a single iteration of the Peak
Fitting Module’s fitting routine. Third, the default values
of wn are discarded and new initial values that are propor-
tional to the inter-peak distances are assigned (see
Results, Equation 6).

(iii) The script then improves the quality of the initial guesses
with the following iterative procedure. A single iteration
of the nonlinear least-squares routine is performed with
xcn and wn fixed (An only is floated) and the correlation
coefficient recorded. Values of wn are then increased by
1% (i.e. values of wn are multiplied by 1.01) and the
constrained fitting routine repeated. If the correlation
coefficient improves, this operation is repeated until
the correlation coefficient ceases to improve. If the cor-
relation coefficient becomes worse, the values of wn are
decreased by 0.5% and the constrained fitting is repeated.
This cycle of uniformly incrementing or decrementing the
values of wn is repeated ten times or until no improvement
in the correlation coefficient is observed. This operation
optimizes wn within the model relating relative widths of
the peaks encapsulated in Equation 6 (see Results). Its
importance is that it minimizes excursions into local
minima when the less constrained fitting in the next step
is performed.

(iv) Following a review by the investigator of the fitting para-
meters assigned by the script in the preceding three steps,
full fitting of the lane profile to a family of Lorentzian
peaks is initiated. All of the peak parameters are floated
(xcn, An and wn) with the constraints on wn initially set to
–15% for first fitting session and then to –5% for the
subsequent fitting sessions (see next step). As discussed
in the Results, the constraints on wn required to achieve a
physically meaningful fit of the model to the data depends
upon the degree of peak separation.

(v) The best-fit parameters of the first lane analyzed are saved
as a template and imported as the initialization values for
fitting the next lane. This procedure is effective since the
peak parameters xcn and wn are well conserved across the
lanes of a high-quality gel; only An will (incrementally)
change during the course of a typical transition.

(vi) Steps (iii) and (iv) are repeated for the remainder of the
lanes that constitute the transition curve being analyzed.
The quantity sought in a line profile analysis, peak area, is
expressed as

Arean =
Z ¥

�¥

2An

p
� wn

4 x � xcnð Þ2 + w2
n

dx, 2

where the parameters are as defined in Equation 1. The
fitted peak areas (row i) determined for each lane of a gel
(column j) are entered into the two-dimensional Peak
Area Matrix A using a spreadsheet program (Figure 2A).

Automated data ‘standardization’. The first of two data trans-
formations used to generate the equilibrium or time-dependent
transitions monitored by footprinting (4) is ‘standardization’.
The purpose of this transformation is to correct for variations
in the amount of nucleic acid loaded onto each lane of a gel.
Standardization ratios the fitted peak areas to a selected peak
or peaks within the same lane. Ideally, a standard peak does not
systematically vary with the transition being followed. In the
context of RNA structure, optimum standard peaks are those
whose solvent accessibility minimally changes throughout the
transition being followed. The automated software iteratively
tests each peak within a dataset as a candidate standard and
presents the results in terms of the preferred rows in rank order
for inspection by the investigator. The investigator then
chooses the standard(s) to be used in the subsequent analysis
of the data. The operations underlying this protocol will be
considered in Results. The steps in this process are summar-
ized below:

(i) Peak Area Matrix A from step (v) above (Figure 2A) is
the input into a program that calculates all of the possible
Standardized Matrices Ak (k = 1 ! N), where k is a
candidate standard row and N is the total number of rows
in the dataset, by dividing each element in Peak Area
Matrix A by the corresponding element of row k (Figure
2B). This operation performs an unbiased testing of each
row as a valid standard and avoids the assignment of
standards based upon preconceptions about the structure
of the nucleic acid or the behavior of a peak during the
observed transition.

(ii) The standard deviation of each row of a Standardized
Matrix Ak is calculated for the k = 1 ! N family of
matrices by

SDi;k =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM
j=1 j ak;i; j � ak;i;r j 2

M � 1

s
3

where i and k are as defined above and r denotes the
reference lane chosen for the transition. The results of
this calculation are assembled into the Standard Devia-
tion Matrix Vi,k (Figure 2C). This operation quantifies the
variance of peaks in each row in Standardized Matrix Ak

following its division by a candidate reference peak k.
(iii) Each column k in matrix Vi,k is divided by a designated

element in reference lane r of the corresponding matrix Ak

in order to normalize the values and the quotient entered
into the Normalized standard deviation matrix Vnorm,i,k

where i and k are as defined above (Figure 2D). This
operation corrects for differences in the relative peak
areas among the columns in Standardized peak area
matrix. For example, a row with large peaks might have
a larger uncorrected standard deviation than a row
with smaller ones despite having less variation (see
Supplementary Material).

(iv) Each column in matrix Vnorm,i,k is the standard deviation
calculated for each row of Standardized Matrices Ak

(Figure 2C). These data are collected into a Global
standard deviation vector V

�!
global,k by calculation of the

standard deviation of each of the columns in Vnorm,i,k

for k = 1 ! N (Figure 2E). This operation provides a
single measure of the overall variability of the rows of the
Standardized Matrices Ak.
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Figure 2. This figure outlines the matrices and transformations used to ‘standardize’ the data. (A) The ‘peak area matrix’ into which the results of the Lorentzian peak
areas are transferred. (B) Within a peak area matrix, each row is divided by reference row ak,j in order to convert to relative values independent of differences in the
total intensity. This transformation, termed ‘standardization’, is repeated for each row resulting in a family of standardized matrices, Ak, for k = 1 !N where N is the
total number of bands analyzed. (C) The standard deviation of each row for each matrix Ak and the values entered into the vector SD

�!
k (k=1!N). The resultant vectors

SD
�!

k are assembled into the ‘standard deviation matrix’, Vi,k. Each row of this matrix presents the standard deviations of peak i standardized by each reference peak.
(D) To compensate for the difference in standard deviations due to the original peak area, each column SD

�!
k in matrix Vi,k is divided by the reference peak area that was

used to calculate the standard deviations. The resultant is entered into the vectors SD
�!

norm,k that are assembled into the ‘normalized’ matrix Vnorm,i,k. (E) The global
standard deviation for each matrix Ak is calculated from the each column of Vnorm,i,k and the resultant entered into the vector V

�!
global,k whose values are global measures

of the quality of reference row k in Ak.
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(v) A score, Sck, is calculated for each candidate standard k
that ranks the quality of each peak as a ‘standard’ by

Sck = SDglobal;k · hSDnorm;ki2
4

where hSDnorm,ki is the mean value of column k of the
normalized standard deviation matrix Vnorm,i,k. The ratio-
nale for this calculation and the use of this parameter is
discussed in Results.

(vi) The investigator selects the standardized matrices Ak

with the top five ‘scores’ for completion of the data
reduction, visualization and analysis protocols describe
below.

Calculation of relative protection. Visualization of the stand-
ardized data on a common scale is either the final step in their
analysis or as a prelude to further quantitative analysis. ‘Nor-
malization’ of the data to ‘apparent saturation’, �YYapp, scales the
relative peak areas to a reference condition that is defined as
zero and represents one of the transition endpoints (3). The
expression used is

�YYapp = 1 � ak;i;j

ak;i;r
, 5

where ak,i,j is target element, ak,i,r is the element of reference
lane r in the row i. The reference lane is typically either the
initial or final state of the transition being followed. This
procedure converts units that are specific to a detection method
(such as peak area) to a scale that is intuitive with respect to the
biological system under investigation. Decreases in the
reactivity of the footprinting probe relative to the reference
(i.e. ‘protection’) yield �YYapp values ranging from zero to one.
Increases in the reactivity of the footprinting probe (i.e.
‘enhancement’) relative to the reference results in negative
numbers. The normalization protocol is conducted on the
Standardized Matrices Ak as follows:

(i) All of the elements in the selected matrices are normal-
ized to the elements in the reference lane using Equation 5
(Figure 3B).

(ii) The resultant normalized matrices Ak1 to Ak5 are then
averaged to yield a single normalized averaged matrix
Anorm (Figure 3C) that is output as a tab-delimited text file
to ease importation into a spreadsheet application for
subsequent visualization and analysis of the data. This
matrix is the final result of the peak-fitting analysis and is
the basis for data visualization or subsequent analysis of
footprinting transitions.

Data visualization. The peak-fitting approach to the quantitat-
ive analysis of footprinting experiments yields a plethora of
titration data potentially encompassing tens to hundreds of
nucleotides. In contrast to generating tens to hundreds of titra-
tion curves, we have found it useful to display the entire
dataset as a false-color, two-dimensional map (often referred
to as ‘thermograms’) that permits easy visualization of the
changes in hydroxyl radical reactivity (22). Manipulation of
the color-mapping palette and arithmetic interpolation of the
peak area data enhances visualization of the transitions. From
this complete representation of the data, the nucleotide or
nucleotides whose transition is to be further analyzed can

be chosen. Since a standard implementation of commercial
software has been used to generate color maps (KyPlot v2 by
Koichi Yoshioka), it will not be further described.

RESULTS

Generation of a line profile

Storage phosphor imaging of footprinting gels virtually elim-
inates the need to correct for background density and provides
enhanced dynamic range when sufficient radioactivity and/or
exposure time takes advantage of the 16 bit density sampling.
Drawing ‘line profiles’ down lanes and averaging across the
middle 50% is computationally efficient [compared with
separating, analyzing then averaging a series of single pixel
wide lines (12)], and minimizes error due to the broadening or
narrowing characteristics of the ends of the electrophoretic
bands. In the absence of a significant skew, bending or smiling
in the band shapes, this approach generates good peak shapes
that can be well fit by the Lorentzian peak function. We note
that automation of the generation of line profiles would accel-
erate the analysis of footprinting gels and that such operations
are included in some contemporary software packages.

Peak fitting

The accuracy and precision of a peak-fitting operation is cri-
tically dependent upon both the constraints used in the analysis
and the attentiveness of the investigator conducting the ana-
lysis. The Lorentzian function has been shown to provide the
best description of an electrophoretic band line profile (12)
and will be used in our analyses. The Lorentzian function
(Equation 1) has two parameters that affect the peak area,
wn and An (Equation 2), whose correlation is a key considera-
tion when fitting a line profile due to overlap of the electro-
phoretic bands. This correlation can be limited experimentally
by higher resolution electrophoretic separation and/or limiting
the number of bands being analyzed, or, computationally, by
setting constraints during peak fitting as described below.

For example, peak fitting a line profile without constraints
(other than a fixed baseline) can leads to the results that are
grossly in error (Figure 4A, arrow). Such a misfit peak will
dominate and thus invalidate a fit. This pitfall can be circum-
vented by considering that the electrophoretic mobility of
bands is a function of fragment length (data not shown).
The broadening of bands are also a function of their distance
of electrophoretic migration (29,30). Thus, the widths of
neighboring bands are empirically calculated as the function
of inter-peak distance and peak number (the latter roughly
proportional to the logarithm of electrophoretic mobility).
That this relationship holds true is seen by the ratio of
peak width to average inter-peak distance [w/(xcn+1 � xcn),
w/(xcn � xcn�1)] linearly increasing with the distance a peak
travels down the gel (Figure 4B).

This relationship is implemented in the ‘peak width assign-
ment’ routine [Peak Fitting step (ii)] by

wn

�DDn
= m �Pn + b, 6

where Pn is the target peak number, wn is peak width to be
calculated for Pn, �DDn is the average inter-peak distance at peak
Pn, m is the slope and b the intercept. �DDn is calculated

PAGE 5 OF 12 Nucleic Acids Research, 2004, Vol. 32, No. 15 e119



automatically by the distance of peak P2 from adjacent P1 and
P3, P3 from adjacent P2 and P4, etc., and used for the calculation
of each peak width wn. The coefficients m = 0.65 and b = 0.011
were empirically determined from the linear fit of the data of
Figure 4B. (These coefficients need to be determined for a
particular gel electrophoresis protocol since the inter-peak dis-
tance and the dispersion of the bands may be dependent of the
particular gel system being used.) Equation 6 and the empiri-
cally determined coefficients are then used to assign initial
values of wn for any set of peaks derived from electrophoreto-
grams obtained using the calibrated gel system.

Figure 5 demonstrates the value of this procedure on a lane
profile that was difficult to fit due to changes in peak widths
down the lane. Panels A and B compare results obtained with-
out assigning the peak width as described in step (ii) while
panel B shows the results obtained following peak width
assignment. The improved residuals of panel B show that

the process significantly improves the quality of the fitted
peaks. The absence of systematic error in the fitted peaks
highlights the consistency of electrophoretic data with the
simple linear model for peak width.

Peak fitting step (iii) further refines the initial peak para-
meters prior to the full fitting of the data through an iterative
refinement of the peak width model implemented by
Equation 6 in step (ii) in order to guarantee that a global
minimum can be achieved within the constraints.

Peak fitting step (iv) is the nonlinear least-squares minim-
ization of the lane profile to Equation 1. If well-separated
peaks characterize the lane profile, constraints on the fitted
parameters (xcn, An and wn) are not required and the fit is
iterated until the correlation coefficient ceases to increase.
However, since it is desirable to extract as much information
from electrophoretograms as possible, investigators will (and
indeed should) always try to ‘push the limit’ of resolution of

Figure 3. An outline of the transformation of the ‘standardized’ data to ‘relative protection’ values that range from zero to one where one denotes complete protection
and negative numbers denote enhancements in �OH reactivity. (A) The standardized matrices Ak are ranked based on the quality calculation described in the text. (B)
Each element in matrices Ak is divided by the element in the reference lane (in same row) and then subtracted from 1. (C) The top-ranked standardized matrices
(typically five) are averaged to generate the normalized averaged matrix ( �AAnorm) that is then plotted for inspection or subject to further analysis.
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their analysis. In such cases, physically meaningless fits such
as those shown in Figure 4A may result. We have empirically
determined that such excursions of individual values of wn can
be prevented by serial fits in which wn is constrained within
15% initially (in order to generate a ‘template’) and 5% for the
subsequent analyses of the other lanes in the transition (data
not shown). The 15% tolerance is necessary to accommodate

the deviations in wn predicted from Equation 6. Iterating until
the correlation coefficient cease to decrease (<0.0005%) typic-
ally yields overall correlation coefficients of 0.999 to 0.9999
for average quality electrophoretograms.

When a series of replicates, a titration or a time course have
been generated, each lane of an experiment must be fit using
the same protocol and constraints. It is advantageous with
regard to accuracy, precision and efficiency to utilize the
results of the initial fit as a template for the analysis of sub-
sequent lanes. This use of a template takes advantage of the
incremental nature of the analysis of a transition since typi-
cally there are only incremental differences of peak intensity
between sequential lanes of an isotherm or time course. In
particular, accurate and precise quantitation of ‘protected’
peaks whose amplitudes will be small is enhanced by the
determination of xcn for lanes where the amplitude of these
peaks is large.

Standardization/normalization

The choice of the peak(s) to be used as a standard is critical to
the accuracy of the resolved transition. The key characteristic
of a good standard is that it does not systematically change
over the course of the transition being analyzed. The impact of
standardization can be readily seen in the protection patterns
calculated for the Mg2+-mediated folding of RNA (Figure 6A);
different standard peaks yield different footprinting patterns.
A bad standard can yield either meaningless or, worse,
misleading results.

Choosing a standard row in the case of sequence-specific
protein binding to a well characterized set of a few nucleotides
within the gel is often trivial, while making the best choice is
often not obvious in the case of complex transitions such as
those typically observed for the folding of large RNA mole-
cules. Indeed, even for the ‘trivial’ case cited above, long-
range interactions or conformational changes propagated
along the DNA might make choosing the appropriate standard
non-trivial. Thus, even for simple systems it is desirable to
have an unbiased selection of standard peaks.

The method that we have developed for automated standard
selection is implemented through the calculation of the
‘score’, Sck (Equation 4). While SDglobal,k values reflect the
variance within a column of the matrix nnorm,i,k, this parameter
does not provide information about the magnitude of the
values. Including the term hSDnorm,ki2 in the score calculation
(Equation 4) allows consistent comparisons among the scores
to be made since the area of the peak does not bias the ranking
of peaks as standards.

Figure 6 shows the calculation of footprint titration pro-
tection patterns utilizing each of the four different standard
peaks. The results of these calculations demonstrates that
SDglobal,k and its corresponding mean value is a less accurate
measure of standard peak quality than the score, Sck. Panel A
shows the electrophoretogram of an RNA folding titration as
a function of increasing [MgCl2] in with regions of �OH
protection clearly evident at high [MgCl2]. This example
was chosen because the changes in �OH reactivity are visible
in the electrophoretogram allowing direct comparison with
the �OH reactivity profiles reconstructed from the standar-
dized peak areas. Panel B is a line profile for lane 4 and its
fitted peaks.

Figure 4. An overview of constrained peak fitting. (A) Shown are the results of
an unconstrained peak-fitting session in which uniform peak widths were
initially assigned. Note the variability of the peak widths far beyond the
physically appropriate value in particular, the peak highlighted by the
arrow. (B) The results of a calibration carried out using Equation 6 showing
the linear relationship between peak number and peak width/inter-peak
distances (w= �DD). (C) The improvement resulting from the application of Equa-
tion 6 together with the peak width constraints that are described in the text.
While correlation coefficients for panels A and C are 0.99981 and 0.99967,
respectively, panel C accurately reflects the properties of the electrophoretic
band separation.
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Peak 20 is obviously a poor standard since its �OH reactivity
titrates with [MgCl2] (panel A). This is evident by comparing
panels C and A; the calculated �OH reactivity pattern does not
match the electrophoretogram. The measures SDglobal,k and Sck

both reflect the poor quality of this peak as a standard. Peak 11
is clearly a better standard than peak 20 by the numerical as
well as visual criteria (panel D). While peaks 16 and 9 are both
better standards than peak 11, differences between SDglobal,k

and Sck as quality evaluators can be discerned (Panels E & F).
While SDglobal,k is slightly smaller for peak 16 compared to
peak 9, its mean value is greater, reflecting a greater systematic
deviation. In contrast, Sck is lowest for peak 9, reflecting the
absence of systematic error in the data standardized using this
peak. Figure 7 illustrates this relationship by viewing the dis-
tribution of peak area values within the individual electro-
phoretic lanes (Figure 6A). The values of the ‘good’
standard peak 9 cluster around the median value reflecting
their random distribution. In contrast, the broad asymmetric
distribution of the values of peak 20 illustrates that it is a very
poor standard.

Sensitivity to noise in the data

A series of simulations were performed on a model footprint-
ing reactivity titration to test the effect of noise on the

resolution of peak area values. Random noise of 5, 10 and
20% was introduced to the simulated peak area matrix
(Figure 8A, top to bottom). Experimental data typically yields
overall errors of 5–10%. With 10% noise, the original reactivity
pattern can be easily recognized including subtle reactivity
changes such as those seen at positions 18–19. Although the
original reactivity pattern is recognizable with 20% noise, arti-
facts are now evident and subtle reactivity changes are no longer
recognizable. As discussed above, 5% variance in peak width
results in up to 10% variance in peak area. Therefore, peak width
variance should be kept within 5% from template parameters
when analyzing subtle changes in the reactivity.

A straightforward way to circumvent the limitations of
noise on resolution of footprint reactivity patterns is to average
the data from multiple gels. This will reduce statistical (so-
called ‘white’) noise in the data, but will not reduce systematic
errors. The white noise error reduction is 1=

ffiffiffiffi
N

p
, where N is the

number of gels averaged. Figure 8B shows three simulated gels
derived from the same original (Figure 8A, top) into which 10%
error was independently introduced. Averaging of the gels
(Figure 8B, bottom) reduces the apparent error in the averaged
composite. This type of error reduction can be experimentally
implemented in two ways. The first way is for complete transi-
tions to be determined experimentally two or more times

Figure 5. (A) The left panel shows the results obtained following fitting without peak width assignment prior to the chi-square minimization routine. The initial peak
widths are uniform and the peak width boundaries are constrained to–15% of initial value. The residual plot (right panel) shows substantial error. Since the peak width
was not adjusted prior to minimization, some peak widths that reached the boundaries could not converge to their minimum and are thus trapped at values that are
narrower or wider than they should be. (B) The left panel shows the results obtained following assignment of the initial peak widths using Equation 6 followed by
adjustments as described in the text using the same fitting conditions as in (A). The significant improvement in the residuals is seen in the right panel. Since the peak
widths are assigned prior to chi-square minimization routine, the values can be optimized within the 15% of boundaries.
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independently. Alternatively, replicates of each abscissa value
being analyzed can be done within a single experiment.
Whether, such additional measurements are necessary depends
upon the overall quality of the data as well as the subtlety of
reactivity changes being probed.

Following RNA folding nucleotide by nucleotide

The protocol described in this paper was developed in order to
study the folding of a large RNA molecule, the T.thermophila
group I intron ribozyme (22). Manual methods proved imprac-
tical for the analysis of the hydroxyl radical reactivity of each
of the almost 400 nucleotides of this RNA as a function of salt
concentration. The P4–P6 domain of the RNA was equili-
brated in the presence of various concentrations of Na+ and
the hydroxyl radical reactivity determined (Figure 9). A lane
of ribozyme equilibrated with Mg2+ (the native catalytically
active conformation) is included as a reference (Figure 9A,
Mg2+ lanes and; Figure 9B, lower panel). A characteristic of
Na+ titrations of the Tetrahymena ribozyme is the subtlety
of hydroxyl reactivity changes, typically 20–50% of the
difference between unfolded and folded RNA. These subtle

transitions can be readily discerned on the false-color repre-
sentation of the peak-fitting results (Figure 9B). Since each
and every band on the gel was analyzed, a completely
objective picture of the folding transition was obtained (22).
Inspection and interpretation of these and related data have
yielded new insights into RNA folding including revealing the
presence of misfolded intermediates whose stability is
transient with increasing ion concentration (22).

DISCUSSION

A robust approach for the nucleotide-by-nucleotide analysis of
footprinting transition curves has been developed that allows
large amounts of data to be accurately processed. Automated
multiple peak-fitting procedures are more easily accomplished
when absolute band assignments are available, such as in
calibrated spectroscopy measurements (31), that are absent
in footprint autoradiograms. Three distinct elements contri-
bute to this approach to footprint titration analysis. First,
the linear relationship between peak position (a function of
electrophoretic mobility) and peak width is utilized to create

Figure 6. (A) A section of a gel image of a titration of the Tetrahymena ribozyme with increasing concentrations of Mg2+ to induce folding. Bands protected from �OH
cleavage as the concentration of Mg2+ increases (bands 2, 14–15, 18–20) are readily recognizable. (B) The band density profile and fitted peaks obtained for lane 4.
(C–F) Reconstructions of gel images generated from ‘standardized’ and ‘normalized’ data derived from the gel image of (A) using the indicated peak as the standard.
(G) The distribution of standard deviation values of each row (residues 1–21 in the profile), their mean values and SDglobal,k values.
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initial parameter values and reduce the computation time. The
constraints created reduce the probability that the fit will
be trapped in a local minimum during the chi-square
minimization.

Second, since a transition curve incrementally changes over
its course, the results of fitting the first lane are used as ‘tem-
plate’ for fitting the second lane and so on. In addition to
minimizing trapping in local minima, use of a template
reduces the analysis time considerably as the template sets
all peak parameters at once, eliminating time-consuming
peak parameter adjustment. Fitting sequential lanes is virtu-
ally a ‘single-click’ process using the template with high-
quality gels.

Third, standardization of the transition curve [a procedure
that corrects for uneven loading of sample onto a gel (3)] is
automatically and objectively accomplished without user
intervention. This feature of the protocols is perhaps the
most important advancement in the analysis of complex foot-
print patterns. The approach used to identify ‘good standards’,
i.e. identify peaks that do not change its relative intensity
across the transition being probed, assumes that peaks
whose �OH reactivity either decreases or increases do not
heavily dominate the population. In the case of a large
RNA molecule the variety of structural elements provides a
wide range of �OH reactivity and thus, there is no serious
problem of dominant protections/enhancements biasing the
standardization result. For an analysis of protein–DNA inter-
actions, the use of sufficiently long DNA molecules provides
the appropriate context. Although this limitation has not been
reached in our analyses of experimental data, investigators

Figure 7. The distribution of relative protection values after standardization by
different reference peaks. The relative protection values of the peaks in the lanes
are plotted for each lane after standardization. The systematic deviations can be
easily seen for the data standardized by inappropriate reference bands. The data
standardized by peak 20 show significant deviations toward the enhancement
while the data standardized by peak 11 show opposite, indicating protection in
peak 20 and enhancement in peak 11. The difference between the data
standardized by peak 16 and 9 are not as obvious as the others in Figure 6E
and F (and SDglobal) but the systematic deviation from the center can be seen
clearly for the data standardized by peak 16. The standardization by peak 9 is
clearly optimal.

Figure 8. (A) The top panel is a simulated ‘perfect’ footprint pattern. The lower panels have increasing amounts of random error introduced into the simulated peak
area matrices demonstrating the degradation of standardization when >10% noise is present in the data. (B) However, data quality can be improved by averaging
multiple gels. The top three panes represent simulations into which the 10% noise was independently introduced. The bottom panel shows that averaging these three
simulations recovers the simulated protection pattern at a level of 5% error.
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should remain aware and carefully compare their results for
other relevant biological information.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at NAR Online.
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