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ABSTRACT

Microarray technology is extensively used in biologi-
cal research. The applied technologies vary greatly
between laboratories, and outstanding questions
remain regarding the degree of correlation among
approaches. Recently, there has been a drive toward
ensuring high-quality microarray data by the imple-
mentation of MIAME (Minimal Information About a
Microarray Experiment) guidelines and an emphasis
on ensuring public-availability to all datasets.
However, despite its current widespread use and
availability, very little is known about the extent to
which application of the different technologies influ-
ences the outcome of transcriptional profiles and dif-
ferential expression. The results among the handful of
published studies are conflicting. Here, we present a
comprehensive evaluation encompassing different
reporter systems (short oligonucleotides, long oligo-
nucleotides and cDNAs), labelling techniques and
hybridization protocols. We used four oligonucleo-
tide and two cDNA platforms to compare gene expres-
sion between two sample types. We determined the
overall consistency (reproducibility) within each plat-
form, and correlation among replicates within and
between technologies. We find that the top perform-
ing platforms show low levels of technical variability
that result in an increased ability to detect differential
expression. Most importantly, we show the top four
platforms are highly correlated with biological, rather
than technological, differences accounting for the
majority of variation in the data.

INTRODUCTION

DNA microarrays provide powerful tools for the global char-
acterization of gene expression. The technology is evolving
rapidly and there are now numerous high-density platforms
available. The platform choices differ in probe content,
design, deposition technology, as well as labelling and hybri-
dizing protocols. Possible choices of probe types include

spotted cDNA sequences or PCR products, several hundred
to thousand base pairs in length, short (25-30mer) oligonu-
cleotides or longer (60-70mer) oligonucleotide reporters.
Furthermore, reporters can be either contact-spotted using
pins, ink jet-deposited or synthesized directly on a number
of different slide matrices. Manufacturers advocate many
different protocols to ensure specificity, sensitivity and
reproducibility. Labelling methods vary from in vitro tran-
scribed cRNA or directly labelled cDNA targets coupled
with fluorescent cyanine dyes to secondarily labelled
biotin-/streptavidin-conjugated targets. Finally, experimental
approaches used to generate expression profiles can be carried
out in one-colour (one labelled target per array) or two-colours
(two separately labelled targets for each array). All of these
approaches have their own advantages and disadvantages
with respect to many factors from starting amount of probe
required through to cost, time, and data acquisition and
transformation (1).

Despite widespread use, there have been few studies exam-
ining the quality of data produced by, or the correlation
among, different platforms and approaches. The results
demonstrating concordance (2-6) or discordance (7-11)
between technologies are conflicting. Furthermore, the major-
ity of these studies are also limited in scope as they generally
compare two or three technologies.

The present study examines six popular approaches for
generating expression data from DNA microarrays, including
two cDNA platforms, three short oligonucleotides and one
long oligonucleotide platform. Gene expression profiles
were compared between Muta’™Mouse whole lung tissue
and an immortalized lung cell line (FE1) derived from
Muta™Mouse lung (12), all against a universal reference
RNA standard. We test the hypothesis that gene expression
profiles will be determined by biology rather than technology,
evaluate the quality, reproducibility and sensitivity of data
produced by each of the platforms, and determine the correla-
tion among technologies.

METHODS AND MATERIALS
Sample collection

Muta™Mouse lung epithelial cells (FE1) were cultured in
a 1:1 mixture of DMEM:F12 nutrient mixture supplemented
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with 2% (v/v) fetal bovine serum (FBS), 2 mM glutamine,
100 U/ml penicillin G, 100 pg/ml streptomycin sulphate and
1 ng/ml murine epidermal growth factor (Invitrogen Life
Technologies, Burlington, ON, Canada). All incubations
were carried out at 37°C, 95% humidity and 5% COs,.
Total RNA from three replicates of confluent cells
(5-10 day incubation after 100% confluence) was isolated
using TriZol®™ LS reagent (Invitrogen Life Technologies)
and RNEasy Mini columns (Qiagen, Mississau auga, ON,
Canada). The transgenic mouse strain (Muta™Mouse),
from which the cell line was derived, was bred locally and
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maintained under conditions approved by the Health Canada
Animal Care Committee. Animals were euthanized by cervi-
cal dislocation, and saline-perfused lungs from five mature
males were homogenized using a PCR Tissue Homogenizer
(Omni International, London Scientific, London, ON,
Canada). Total RNA was extracted in TriZol®™ reagent fol-
lowed by clean up using RNEasy columns. High RNA quality
was verified using an Agilent Bioanalyzer (Agilent Technol-
ogies, Palo Alto, CA). The same three FEI cell line replicates
and two of the lung tissue replicates were used for all six
platforms (Figure 1).
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Cell/Tissue Type  Platform Type Sample

[ FE1 Cell Line Affymetrix FE1-1
Lung Tissue Agilent cDNA FE1-2
Agilent Oligo FE1-3

Codelink Lung 2

Academic cDNA Lung 4

Mergen Lung 5

| Lung 5g

Lung 6

Cell/Tissue Type

Platform

Sample

Agilent Oligo-Lung-4
Agilent cDNA-Lung-4
Agilent cDNA-Lung-5
Agilent cDNA-Lung-6

Academic cDNA-Lung-2
Mergen-FE1-2
Mergen-FE1-3

Mergen-Lung-2
Mergen-Lung-5
Mergen-Lung-6
Mergen-FE1-1
Academic cDNA-Lung-5
Academic cDNA-Lung-6

Figure 1. Cluster analysis was performed in GeneSpring using standard correlation on genes in common across all platforms.
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Probe labelling and hybridization

Two cDNA arrays and four oligonucleotide arrays were exam-
ined (Table 1). For one-colour arrays (Table 1), total RNA
from three biological replicates of each sample type and three
replicates of universal mouse reference RNA (Stratagene, La
Jolla, CA) were amplified, labelled and hybridized according
to the manufacturer’s recommendations (for a total of nine
microarray hybridizations per platform). For two-colour plat-
forms, cDNA or cRNA probes were hybridized against refer-
ence RNA according to the manufacturer’s specifications with
corresponding dye swaps (for a total of 12 microarray hybri-
dizations per platform). Labelled probes were made immedi-
ately prior to hybridization for all platforms. Both cDNA
arrays (Academic and Agilent Incyte) required optimization
of hybridization (a pre-hybridization step was added to reduce
background for the academic arrays; 3x SSC, 0.1% SDS,
2 ng/ml BSA at 65°C for 45 min) and wash protocols (Agilent
cDNA; added 1x SSC, 0.1% SDS wash at 40°C for 5 min and
0.06x SSC at room temperature for 5 min) to acquire useful
data over the manufacturer’s protocol. All other arrays were
hybridized overnight and washed according to the manufac-
turer’s specifications. All arrays except Affymetrix were
scanned on a VersArray ChipReader (Bio-Rad Laboratories
Ltd, Waterloo, ON, Canada). We found improved image qual-
ity for academic cDNA chips with the manufacturer’s hybri-
dization and wash conditions using an HS4800 liquid handling
system (TECAN, Research Triangle Park, NC) compared to
manual hybridizations (C. Yauk, L. Berndt, A. Williams and
G. Douglas, submitted for publication). Therefore, we used
data acquired from the automated station in the subsequent
analyses. Affymetrix arrays were outsourced to the Ontario
Genomics Innovation Centre (Ontario Health Research Insti-
tute, Ottawa, Canada; http://www.ottawagenomecenter.ca/
services/affymetrix_services/affymetrix_services_page).

Normalization and statistical analysis

Raw intensity measurements and present/absent calls (present
when spot is significantly above the local background) were
derived in ImaGene 2.0 (BioDiscoveries Inc., Marina Del Rey,
CA, USA). All data are available through ArrayExpress
(http://www.ebi.ac.uk/arrayexpress/). Gene intensity deriva-
tion and pre-normalization was carried out in d-Chip for Affy-
metrix arrays (13). Median signal intensities for all arrays were
normalized in GeneSpring 6.1 (Silicon Genetics, RedWood
City, CA) using LOWESS and combined with dye swaps
(one data point per sample type producing a normalized
ratio to reference) for two-colour arrays and per chip to the
50th percentile and to reference samples for one-colour arrays
(producing a normalized ratio to reference). UniGene identi-
fiers (updated gene list from February 4, 2004) were used to
find common genes across platforms. This list contained 895
genes, with 821 genes with complete records (i.e. no missing
values or no signal on the reference channel). Of these, there
were 66 genes that were flagged as present on all platforms.
Data were post-normalized by shifting the log,(ratio) by the
median value, and scaling the variability to the geometric
average of the median absolute deviation from each array.
Post-normalizing standardizes the data, removes location
and scale differences between platforms. These normalized

Table 1. Mean correlation and variance among biological replicates (all three pairwise comparisons) within platforms and cell types were calculated
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Differential expression

using SAM"
FEI > lung

LUNG

FE1

Reporter

Microarray technology

Generalized Mean correlation Lung > FE1
(95% CI)

Mean correlation

(95% CI)*

Generalized

variance (95% CI)

variance (95% CI)*

176 (1.02%)

299 (1.93%)°

0.008 (0.005, 0.012)  0.932 (0.913, 0.943)

0.879 (0.855, 0.900)

0.025 (0.017, 0.035)

25mer oligonucleotide probe sets

U74Av2 GeneChip (Affymetrix)®.

printed by photolithography (16)

Single spotted 30mer

Number of reporters = 15099

Codelink Uniset I Bioarrays

294 (2.94%)

461 (4.6%)

0.856 (0.832, 0.877)  0.040 (0.028, 0.052)  0.880 (0.861, 0.901)

0.033 (0.023, 0.045)

oligonucleotides (17)

(Amersham BioSciences).

Number of reporters = 10012
22K Mouse development (Agilent

205 (1.01%) 157 (0.77%)

0.840 (0.812, 0.861)  0.068 (0.046, 0.090)  0.825 (0.793, 0.852)

0.056 (0.042, 0.075)

Single 60mer oligonucleotides

synthesized in situ (2)

Technologies)®. Number of

reporters = 20 000
10K Incyte (Agilent Technologies)®.

15 (0.16%)

0.114 (0.090, 0.145)  0.772 (0.741, 0.799) 41 (0.43%)

0.751 (0.708, 0.789)

0.083 (0.060, 0.112)

Spotted cDNA

Number of reporters = 8737

NIA 15K cDNA clone set

0 (0.00%)

20 (0.13%)

0.523 (0.427, 0.641)  0.389 (0.272, 0.474)

0.764 (0.726, 0.799)

0.138 (0.104, 0.179)

Spotted cDNA

(http://www.microarrays.ca/
products/types.html)
Single spotted 30mer

(Academic)®. Number of

reporters = 15264
MO3 ExpressChip (Mergen Ltd.) .

0 (0.00%)

0 (0.00%)

0.493 (0.440, 0.543)  0.029 (0.022, 0.037)  0.888 (0.875, 0.903)

0.256 (0.217, 0.294)

oligonucleotides

Number of reporters = 9248

SAM was used to determine the number of genes differentially expressed between the cell line and lung.

parametric Bootstrap percentile confidence intervals (895 genes, 2000 bootstraps) were obtained for each estimate.
a of 3.0 and ignoring fold change on all genes within a platform detected in two of the six biological samples.

“Proportion of whole chip.
40ne-colour array only.

“Non-
"Delt
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¢Two-colour arrays (sample versus reference RNA; dye swaps performed).
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data were used for comparisons across all platforms when
genes in common were used.

Correlation matrices for each sample type within platforms
were generated for common genes using SAS 8.2 (SAS Insti-
tute Inc, Cary, NC). The determinant of the correlation matrix
is presented as a measure of the generalized variance of the
standardized variables. This statistic is one method to assign a
single numerical value for the variation expressed within the
platform.

Significance analysis of microarrays [SAM; (14)] was
applied to determine the number of genes that were differen-
tially expressed between the FE1 cell line and the Muta™
Mouse whole lung on genes that were called present in at least
two of the six samples. Delta was set to 3.0 for all platform
comparisons, ignoring fold change for all SAM analyses.

Cross-platform comparisons based on common genes were
made using Pearson product-moment correlations of the aver-
age logy(ratio) (FE1:Reference or Lung:Reference) in SAS 8.2
(SAS Institute Inc.). This analysis was carried out in four ways.
First, the data were plotted using all genes that were common
between two platforms. The second analysis plotted the aver-
age expression between the two platforms using only those
genes that were flagged as present. The third and fourth com-
parisons were similar to the first two except that only genes
that were common among all platforms were used (942 and
490 genes, respectively; in this analysis, genes with one or two
missing values within a platform were included). Canonical
correlation (15) was also used to analyse the relationship
between all the pairwise combinations of the platforms.
This analysis focuses on identifying a pair of linear combina-
tions of samples within platforms that have the largest correla-
tion between the two canonical variables.

A condition tree was performed in GeneSpring 6.1 (Silicon
Genetics) using a standard correlation to examine the overall
clustering of gene expression data and its relationship to the
parameters platform type, sample number and biological sam-
ple (FEI versus lung) for genes in common across all plat-
forms. Factor Analysis (15) was used to describe the
covariance relationships among the platforms and tissue
types and was conducted on the 821 genes that were in com-
mon across the six platforms.

RESULTS
Platform variability and sensitivity

Correlation matrices within sample types (within FE1 or
within lung) for each platform were generated for common
genes to determine the correlation among replicates within a
platform (reproducibility); the determinant of the correlation
matrix represents a measure of the generalized variance of the
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standardized variables. The generalized variance is near zero
when two or more of the variables are highly correlated and is
near one when the correlations between replicates are very
low. We expect low levels of variation and high correlation
among FEI1 samples as all replicates were produced at the
same time under identical culturing conditions. Therefore, a
platform that tends to be more reproducible will have a gen-
eralized variance near zero. Affymetrix, Agilent oligonucleo-
tide and Codelink oligonucleotide arrays showed the lowest
generalized variance among replicates in both FE1 and lung,
varying from 0.008 to 0.068 (Table 1). In contrast, the range of
variance for the academic cDNA and MO3 arrays increase to
0.255 and 0.523, indicating that these platforms showed higher
variance within gene variability across replicates for the same
samples. MO3 data were highly variable possibly due to sub-
optimal hybridization conditions. The same nine samples were
also sent to Mergen for hybridization but yielded similar find-
ings (data not shown). We examined mean correlation among
biological replicates within each platform type. Both FEI and
lung biological replicates of Affymetrix, Agilent and Code-
Link arrays were highly correlated (from 0.76 to 0.93) com-
pared to the academic cDNA and MO3 platforms (Table 1).

Differential expression between the FE1 and lung samples
was determined using SAM (14). More genes were found to be
differentially regulated using Codelink, Affymetrix and Agi-
lent oligonucleotide arrays (Table 1) than the other three plat-
forms. There was a significant difference in the number of
changing genes detected between the platforms (Fisher’s exact
value, P < 0.001 for all comparisons). This difference was
consistent when only genes in common across all platforms
(895 genes based on UniGene ID) were used in SAM (Table 2).
The two cDNA platforms and the MO3 platform did not show
any genes differentially expressed of the 895 examined. We
show that among the genes showing a significant response,
there is a fair amount of overlap in the platforms (Table 2).
Arrays showing low variance among replicates and high sen-
sitivity will have an increased ability to detect differential
expression. High variance limited the ability of MO3 and
the academic cDNA arrays to detect differences among bio-
logical samples using SAM.

Cross-platform comparisons

Pearson product-moment correlations of the average
log,(ratio) (FE1:Reference or Lung:Reference) for ‘present’
genes were generated for platform pairs. Reasonably high
correlations were found for Affymetrix, CodeLink and Agilent
despite very different types of reporters and spotting protocols
(2,16,17) (Table 3) for both (i) genes in common and present
between the pairs of platforms and (ii) genes that are common
and present on all platforms. Academic cDNA and MO3

Table 2. SAM analysis on all genes in common by UniGene across the platforms

Affymetrix versus Agilent oligonucleotide

Affymetrix versus Codelink

Agilent oligonucleotide versus Codelink

Total in Total in Number in Total in Total in Number in  Total in Total in Number in

Affymetrix Agilent common Affymetrix  Codelink  common Agilent Codelink common
Overexpressed 35 8 5 35 18 12 8 18 4
Underexpressed 38 20 9 38 6 3 20 6 1

SAM was carried out using a delta of 3.0 and ignoring fold change. The cDNA and the MO3 platforms did not show any genes exhibiting differential expression at this
conservative cut-off. Numbers in common indicate how many genes were found to be differentially expressed on both of the platforms.



PAGE 5 oF 7

Nucleic Acids Research, 2004, Vol. 32, No. 15

el24

Table 3. Pearson product-moment correlations: pairwise comparison of genes giving detectable signals that were common between (a) the two platforms or

(b) across all platforms

Cell line lung Agilent Affymetrix Codelink Agilent Academic Mergen
oligonucleotide U74Av2 oligonucleotide cDNA cDNA oligonucleotide

(a) Genes in common and ‘present’ for pairwise platform comparisons
Agilent oligonucleotide - 0.70 (3682)" 0.72 (3868) 0.70 (3056) 0.45 (5723) 0.49 (2644)
Affymetrix U74Av2 0.75 (3349) - 0.73 (2634) 0.66 (1990) 0.58 (2524) 0.45 (2092)
Codelink Uniset 1 0.74 (3225) 0.69 (2529) - 0.74 (2908) 0.58 (3044) 0.48 (2503)
Agilent cDNA 0.73 (4118) 0.72 (1972) 0.71 (2740) - 0.62 (2614) 0.50 (1785)
Academic cDNA 0.44 (3864) 0.52 (2392) 0.49 (2787) 0.56 (2454) - 0.43 (1728)
MO3 0.49 (2177) 0.46 (1919) 0.46 (2160) 0.48 (1601) 0.39 (1523) -

(b) Genes in common and present across all platforms (490 in total)
Agilent oligonucleotide - 0.79 0.78 0.80 0.64 0.43
Affymetrix U74Av2 0.72 - 0.75 0.74 0.61 0.40
Codelink Uniset I 0.78 0.75 - 0.74 0.57 0.38
Agilent cDNA 0.74 0.65 0.73 - 0.63 0.39
Academic cDNA 0.63 0.61 0.58 0.62 - 0.35
MO3 0.46 0.45 0.46 0.46 0.38 -

Above the diagonal are mean correlation scores among replicates of the FE1 cell line and below are mean correlations among lung samples.

“Number of genes used in the analysis.

Table 4. Canonical correlations for pairwise combinations of the platforms

Cell line lung Agilent Affymetrix Codelink Agilent Academic Mergen

oligonucleotide UT74Av2 oligonucleotide cDNA cDNA oligonucleotide

Agilent oligonucleotide - 0.74 (23610)
Affymetrix U74Av2 0.70 (23514)
Codelink Uniset I 0.72 (23 128)
Agilent cDNA 0.69 (23333)
Academic cDNA 0.47 (19597)

MO3 0.50 (24 355)

0.72 (24384)
0.67 (24821)
0.60 (24 469)
0.49 (24932)

0.71 (23253)
0.70 (24 414)

0.71 (23103)
0.57 (23614)
0.52 (24263)

0.70 (23413)
0.74 (24 822)
0.67 (23082)

0.61 (23638)
0.52 (24791)

0.34 (19824)
0.53 (24 497)
0.49 (23657)
0.52 (23 666)

0.47 (25228)

0.49 (24461)
0.54 (24982)
0.53 (24289)
0.49 (24.806)
0.46 (25250)

Above the diagonal are mean correlation scores among replicates of the FE1 cell line and below are mean correlations among lung samples.

showed lower correlations against all other platforms, most
probably due to the higher variance associated with these
microarrays. Canonical correlation was also used to analyse
the relationship between pairwise combinations of the plat-
forms. The canonical correlations by tissue type showed very
similar correlations to Pearson product-moment correlations
(Table 4).

A condition tree of the common genes was performed using
standard correlation to examine microarray clustering
(Figure 1). The main branch split the FE1 and lung samples
into two groups with MO3 and academic cDNA slides visible
as outliers. Within the main branches, platform types clustered
together. The structure of the tree was supported by a factor
analysis. Covariance relationships among platforms were
examined; the top six factors accounted for 76.6% of the
variability (Table 5). The first two factors represented cell
type, FE1 and lung, respectively. Factors three to six repres-
ented individual platforms (MO3, Affymetrix, academic
cDNA and Codelink, respectively).

DISCUSSION

As efforts build to make publicly available microarray data
compulsory for many journals, questions remain regarding the
importance of technology choice in evaluating the data gen-
erated and comparing among experiments from different
laboratories. The objective of this comparative study is to

Table 5. Factor analysis examining the variables that account for variability in

the dataset

Factors Variable Variance Cumulative
represented explained proportion of total
sample variance (%)
Factor 1 FE1 9.18 25.5
Factor 2 Lung 7.94 47.6
Factor 3 MO3 3.71 57.9
Factor 4 Affymetrix U74Av2 2.55 65.0
Factor 5 Academic cDNA 2.48 71.9
Factor 6 Codelink Uniset 1.68 76.6

elucidate whether gene expression profiles are more influenced
by biology or by artefacts of technology. We present a
comprehensive evaluation of six platform types ranging
from two-colour cDNA spotted arrays to short in situ synthe-
sized oligonucleotide chips, and characterize variability, sen-
sitivity and correlation among these platforms.

We first evaluated variance among replicates within each of
the platforms and found low levels of variance and high cor-
relation among replicates for four platforms: Agilent oligonu-
cleotide, Agilent cDNA, Codelink Uniset and Affymetrix
U74Av2 (Table 1). Using SAM, we found significant differ-
ences among platform types in their ability to detect differ-
ential expression between the two very different cell types
(Tables 1 and 2). The most differential gene expression was
found using CodeLink Uniset, Affymetrix U74Av2 and
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Agilent mouse development microarrays. All of these plat-
forms are oligonucleotide rather than cDNA-based (Agilent
development chips were hybridized in two-colour arrays while
the former two were one-colour arrays). The increased ability
to detect the differential expression likely results from a com-
bination of low variance within replicates and high sensitivity
to fluctuations in messenger copy number. The MO3 platform
is also composed of short oligonucleotide sequences. How-
ever, due in part to sub-optimal hybridization, the MO3 data
were highly variable (Table 1). This increased variance limited
the ability of this platform to detect differences between bio-
logical samples using SAM. The cDNA platforms showed
lower variability than the MO3 platform, and variance of
cDNA platforms was more similar to the top three oligo-
nucleotide platforms. It has previously been suggested that
cDNA are less sensitive than the oligonucleotide platforms,
which may lead to an apparent decreased response of genes
(2,3). Validating exercises using northern blotting and
RT-PCR against cDNA or oligonucleotide platforms support
the observations found in this study (3,10). Finally, there was a
remarkable degree of overlap in the genes that were found to
be differentially expressed among the Affymetrix, Agilent
oligonucleotide and Codelink platforms (Table 2) when apply-
ing SAM only to genes in common across all platforms. This
redundancy among platforms is an independent validation of
the response of these genes, and is indicative of consistencies
in the detection of differential expression among these
technologies.

In the past year, different statistical strategies have been
introduced to analyse expression data across arrays regardless
of platform, protocol and hybridization procedures. The the-
oretical argument is that a sufficiently powerful mathematical
method should successfully cope with comparisons across
technologies. For example, Culhane et al. (18) described a
multivariate method of analysis called co-inertia analysis.
This application identifies trends, or co-relationships, in multi-
ple datasets that contain the same samples. It finds successive
axes from two datasets with maximum covariance. Using a
panel of 60 tumour cell lines, they demonstrated the utility of
the approach in examining consensus and divergence between
gene expression profiles from Affymetrix and cDNA arrays,
and show a high correlation between the two platforms.
Wright et al. (19) introduced a statistical method based on
a linear predictor score applied to hierarchical clustering
results. They were able to classify samples into subgroups
based on data obtained from spotted cDNA microarrays and
used the calculated predictor to discover these same subgroups
within a second set of samples profiled using oligonucleotide
chips. The data suggest that biological condition, rather than
technological approach, determines expression profiles.

In this study, we performed Pearson product-moment cor-
relations on common genes across six platforms, based on
comparisons of UniGene identity for the reporter. The result-
ing correlation coefficients provide a simple indicator of
agreement between platform pairs. Recently, a study by
Mecham et al. (20) demonstrates that correlation among plat-
forms can be significantly increased by matching probes based
on sequence rather than gene name or UniGene number. As
some companies are still not making probe sequence informa-
tion available, we were not able to carry out this type of
analysis. Nevertheless, using our statistical calculations,
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oligonucleotide arrays appear to be highly correlated with
each other and moderately correlated with Agilent cDNA
chips (Table 3a and b). We also performed canonical correla-
tions similar to those performed by Culhane et al. (18) as
described above and found very similar results (Table 4).
Therefore, the two different approaches yield nearly identical
findings. Furthermore, we demonstrate, using a standard con-
dition tree, that tissue type primarily accounts for the measured
differences in gene expression among microarray slides
regardless of platform type (Figure 1). The condition tree
shows FE1 and lung samples split on two main branches,
with MO3 and academic cDNA platforms falling outside
these clusters. Within these main branches, biological repli-
cates cluster within a platform type. The structure of the cluster
analysis is supported by the factor analysis showing the top
responding factors to be the two tissue types (Table 5). Within
tissue types the primary determinant of clustering is platform,
with biological replicates primarily grouping together within a
platform. The data support the hypothesis that for broad com-
parisons between two sample types, run on different commer-
cial and homemade platforms at different times, the primary
determinants of microarray gene expression changes result
from true biological differences, rather than artefacts of plat-
form choice. These data are encouraging given the diversity of
platforms used in the literature and suggest that datasets
among laboratories may be more comparable than suggested
previously (7).

Technological differences may influence the results of tran-
scriptional profiling and are important to consider while using
published results. However, given high-quality arrays and the
appropriate normalization, the primary factor determining
variance is biological rather than technological. Such a finding
is reassuring with respect to comparison of data from different
microarray platforms, and lends credence to large efforts
aimed at obtaining and curating gene expression data in
order for laboratories around the world to compare and
share results. The findings are critical to the usefulness of
publicly available databases like ArrayExpress run through
the European Bioinformatics Institute (http://www.ebi.ac.uk/
microarray/index.html).
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