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Objectives: The pharmacodynamics of polymyxin/carbapenem combinations against carbapenem-resistant
Acinetobacter baumannii (CRAB) are largely unknown. Our objective was to determine whether intensified mero-
penem regimens in combination with polymyxin B enhance killing and resistance suppression of CRAB.

Methods: Time–kill experiments for meropenem and polymyxin B combinations were conducted against three
polymyxin B-susceptible (MIC of polymyxin B¼0.5 mg/L) CRAB strains with varying meropenem MICs (ATCC
19606, N16870 and 03-149-1; MIC of meropenem¼4, 16 and 64 mg/L, respectively) at 108 cfu/mL. A hollow-
fibre infection model was then used to simulate humanized regimens of polymyxin B and meropenem (2, 4, 6 and
8 g prolonged infusions every 8 h) versus N16870 at 108 cfu/mL over 14 days. New mathematical mechanism-
based models were developed using S-ADAPT.

Results: Time–kill experiments were well described by the mathematical mechanism-based models, with the
presence of polymyxin B drastically decreasing the meropenem concentration needed for half-maximal activity
against meropenem-resistant populations from 438 to 82.1 (ATCC 19606), 158 to 93.6 (N16870) and 433 to
76.0 mg/L (03-149-1). The maximum killing effect of combination treatment was similar among all three strains
despite divergent meropenem MIC values (Emax¼2.13, 2.08 and 2.15; MIC of meropenem¼4, 16 and 64 mg/L,
respectively). Escalating the dose of meropenem in hollow-fibre combination regimens from 2 g every 8 h to 8 g
every 8 h resulted in killing that progressed from a .2.5 log10 cfu/mL reduction with regrowth by 72 h (2 g every
8 h) to complete eradication by 336 h (8 g every 8 h).

Conclusion: Intensified meropenem dosing in combination with polymyxin B may offer a unique strategy to kill
CRAB irrespective of the meropenem MIC.

Introduction
Acinetobacter baumannii is increasingly plaguing the global
healthcare system as a nosocomial pathogen responsible
for a myriad of infections including pneumonia, urinary
tract infections, meningitis and bacteraemia.1,2 Particularly
troubling are ventilator-associated pneumonias (VAPs) due
to A. baumannii, which are characterized by high bacterial

burdens and correspondingly high mortality rates. The frequency
of A. baumannii isolation during VAP treatment may range from
�20% to .50% of reported cases.3 – 6 Carbapenems were
traditionally the drug of choice for countering ESBL-producing
organisms such as A. baumannii. However, the acquisition of
non-chromosomally mediated oxacillinase enzymes and other
carbapenem resistance mechanisms has obscured the optimal
treatment for A. baumannii VAPs.2
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Although meropenem and imipenem are both approved for
use in VAP,7 meropenem has a lower affinity for certain oxacilli-
nase enzymes and a comparatively lower seizure threshold than
imipenem,8 – 14 making meropenem a rational choice for VAPs due
to A. baumannii. Unfortunately, rising MICs of meropenem sub-
stantially decrease the probability of achieving a %T.MIC of
≥40% [the target value of the relevant pharmacokinetic (PK)/
pharmacodynamic (PD) index correlating with bactericidal activ-
ity] with routine dosing regimens of 1 g every 8 h (q8h).15 – 18

Prior investigations suggest that a 2 g q8h regimen with a pro-
longed infusion is more likely to achieve the desired %T.MIC target,
but the spread of carbapenem-resistant A. baumannii (CRAB) fre-
quently necessitates the use of alternative antimicrobials.

Polymyxins now represent the drug class that most consistently
retains activity against CRAB.19–21 However, reports of polymyxin
heteroresistance and treatment failures have surfaced in the wake
of widespread colistin and polymyxin B utilization.22 In lieu of
newer agents with activity against CRAB, synergy achieved by pairing
a polymyxin with meropenem may encourage the use of combin-
ation therapy despite pre-existing b-lactam resistance mechan-
isms.23 Unlike colistin, polymyxin B is not converted from a
prodrug into an active moiety, resulting in plasma concentrations
of polymyxin B that more quickly reach target levels.24 Despite the
favourable PK of polymyxin B, dose-related nephrotoxicity (up to
60%) presents a dose ceiling that limits the concentration of poly-
myxin B used in combination therapy.25–27 In contrast, meropenem
has a wide therapeutic index that allows for comparatively safer
dose modulation to optimize killing during combination therapy.28

In the current study, we investigated the relationship between
the concentration of meropenem and the killing of CRAB during
combination treatment with polymyxin B in time–kill experiments.
A mechanism-based mathematical model was utilized to character-
ize the PD of combinations against three A. baumannii strains with
various levels of meropenem resistance to inform regimen selection.
A hollow-fibre infection model (HFIM) was then used to simulate
plasma concentrations of meropenem and polymyxin B achieved
in humans during combination therapy. In the HFIM, the dose of
meropenem was progressively increased to define the exposure
effect relationship of meropenem in combination with polymyxin
B. Such an understanding may help identify the optimal carbape-
nem and polymyxin B combination regimen that maximizes killing
and minimizes the emergence of resistance in CRAB.

Methods

Bacterial isolates and oxacillinases
One laboratory A. baumannii strain (ATCC 19606) and two clinical isolates
(N16870 and 03-149-1) were utilized for the investigation. N16870 and
03-149-1 were obtained from critically ill patients infected with
A. baumannii in a recently completed NIH study.29 MICs of polymyxin B
and meropenem were determined for all three strains in quadruplicate
per CLSI standards. In addition, a previously published methodology for
detecting oxacillinase enzymes in A. baumannii using PCR was used to
detect the presence of the chromosomal oxacillinase OXA-51, as well as
the plasmid-mediated oxacillinases OXA-23, OXA-24 and OXA-58.30

Time–kill experiments
To assess how bacterial killing is influenced by the concentration of mero-
penem present in combination regimens, time –kill experiments were

conducted over 48 h using all three A. baumannii isolates. Each strain
was grown overnight in Mueller–Hinton broth adjusted with magnesium
(12.5 mg/L) and calcium (25 mg/L), and the turbidity of the bacterial sus-
pension was adjusted to achieve a 108 cfu/mL starting inoculum that
approximated a difficult-to-treat high-burden infection.31 On the first
day of each experiment, a 1.55 mg/L solution of polymyxin B and merope-
nem solutions consisting of 50, 100, 200, 300, 400 and 500 mg/L was pre-
pared from analytical grade powder purchased from Sigma Aldrich
(St Louis, MO, polymyxin B lot number WXB734470V). All three strains
were exposed to the meropenem concentration array alone and in com-
bination with polymyxin B during constant shaking in a water bath at 378C.
To compensate for the degradation of meropenem, reaction vessels were
supplemented with meropenem at 8.5, 23.5 and 32.5 h to maintain static
drug concentrations. At 0, 1, 2, 4, 6, 8, 24, 28, 32 and 48 h, samples were
collected and plated onto Mueller–Hinton agar (MHA) after serial dilutions
with saline.32 Following 24 h of incubation, the number of colonies present
on the agar was enumerated to quantify total population counts (limit of
detection¼100 cfu/mL).

PK/PD analyses
An integrated PK/PD model was used to interpret the results of the time–
kill studies.32 Following the enumeration of bacterial counts over 48 h, the
log10 cfu/mL of each strain was plotted against time for each concentra-
tion of meropenem alone and in combination with polymyxin B. The area
under the cfu/mL curve (AUCFU0 – 48) was then calculated for each concen-
tration of meropenem alone and when combined with polymyxin B and
normalized by the AUCFU0 – 48 of the growth control to obtain the log
ratio area [LRA; Equation (1)]. In a separate analysis, the log ratio change
(LRC) was determined as the log10 change in cfu between 0 and 48 h for
each drug treatment [(Equation (2)].

LRA = log10

AUCFUdrug

AUCFUcontrol

( )
(1)

LRC = log10
cfu48

cfu0

( )
(2)

After plotting the LRA and LRC as a function of the meropenem concentra-
tion, combination treatments were fitted with a Hill-type model to charac-
terize the PK/PD of the combination (version 12, Systat Software Inc., San
Jose, CA, USA).32 Using Equation (3), E represents the LRA or LRC, E0 is the
LRA or LRC in the absence of drug, Emax is the maximum effect elicited by
the escalating concentration (C) of meropenem in combination with poly-
myxin B, EC50 is the meropenem concentration displaying half the max-
imum effect and H is the sigmoidicity constant. Data from experiments
involving meropenem alone were described by either a linear model or
Hill-type function to visualize the trends in dose escalation. The coefficient
of determination (R2) was used to gauge overall model fits.

E = E0 − Emax×(C)H

(EC50)H+(C)H
(3)

HFIM
An HFIM was utilized to simulate the time-course of polymyxin B and
meropenem concentrations expected in patients as previously
described.33 Against strain N16870 (MIC of meropenem¼16 mg/L), anti-
biotic combinations were administered over 14 days. Briefly, fresh
cation-adjusted Mueller–Hinton broth and meropenem were infused
into a central reservoir, while the outflow from the reservoir replicated a
2.5 h meropenem half-life that mirrored meropenem PK in critically ill
patients.34 Using cellulosic cartridges (C3008; FiberCell Systems Inc.,
Fredrick, MD, USA), a starting inoculum of 108 cfu/mL was introduced
into the extracapillary space of each cartridge. During each experiment,
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samples were collected at 0, 24, 48, 72, 96, 144, 192, 240, 288 and 336 h.
Total bacterial populations were quantified via plating on MHA, whereas
population analysis profiles (PAPs) were determined by plating on MHA
containing 16, 32, 64 and 128 mg/L meropenem or 0.5, 1, 2 and 4 mg/L
polymyxin B to profile less-susceptible subpopulations. Amplification of
meropenem or polymyxin B resistance during the PAP analysis was then
confirmed with MIC testing on isolates collected after 336 h of antibiotic
exposure in the HFIM. PK samples collected from the HFIM experiments
were placed in microcentrifuge tubes and immediately stored at 2808C
until analysis whereby polymyxin B concentrations were determined by
a liquid chromatography single quadrupole MS (LC-MS) method adapted
as detailed previously.35 Meropenem concentrations were quantified
using a liquid chromatography tandem MS (LC-MS/MS) method (Agilent
1200 and Agilent 6430, Santa Clara, CA, USA). The meropenem calibration
curve was linear with a R2 .0.999 with good reproducibility (relative
standard deviation ≤3.57%) and accuracy (99.7%–109.4%). The limit of
detection was 0.05 mg/L. The observed versus targeted concentrations
for both polymyxin B and meropenem were linear (R2.0.90).

The following meropenem regimens were simulated with a 3 h pro-
longed infusion (regimens i– iv) alone and in combination with polymyxin
B (t1/2¼8 h, regimen v) using an approach described by Blaser.36 To simu-
late clinically relevant polymyxin B concentrations in critically ill patients,
the population PK study conducted by Sandri et al.24 was used to derive a
regimen using a median unbound polymyxin B fraction of 0.42 in human
plasma. A prior investigation utilizing a thigh infection model observed
that an fAUC/MIC of 20 resulted in a 2 log10 reduction in A. baumannii
counts.37 Monte Carlo simulations performed by Sandri et al.24 found
that a dosing scheme of �1.5 mg/kg every 12 h (q12h) of polymyxin B
results in an fAUC/MIC of 20 in �50% of patients if the causative organ-
ism’s MIC is 2 mg/L and that a loading dose is appropriate to achieve tar-
get concentrations more quickly.

(i) Meropenem 2 g q8h (fCmax¼49.0 mg/L, %fT.MIC¼88.9%,
fAUC24¼707 mg.h/L)

(ii) Meropenem 4 g q8h (fCmax¼98.0 mg/L, %fT.MIC¼100%,
fAUC24¼1410 mg.h/L)

(iii) Meropenem 6 g q8h (fCmax¼147 mg/L, %fT.MIC¼100%,
fAUC24¼2120 mg.h/L)

(iv) Meropenem 8 g q8h (fCmax¼196 mg/L, %fT.MIC¼100%,
fAUC24¼2830 mg.h/L)

(v) Polymyxin B 2.22 mg/kg×1 dose, then 1.43 mg/kg q12h
(fCmax¼2.41 mg/L, fAUC24¼35.9 mg.h/L)

Mechanism-based modelling of antibiotic combinations
We characterized the extent, time-course and potential synergy mechan-
isms for the combination of meropenem and polymyxin B by mechanism-
based models. Readers unfamiliar with the use of mathematical models to
describe the PD of antimicrobials may benefit from reading a well-written
review by Nielsen and Friberg.38 Bacterial growth and killing by merope-
nem and polymyxin B monotherapies and combinations of both agents
were described by models with two pre-existing populations (Figure 1).
As polymyxin B showed no bacterial killing in monotherapy at the studied
polymyxin B concentration, both populations were assumed to be poly-
myxin B-resistant at the high initial inoculum. The first population was
meropenem susceptible and the second population meropenem resistant
(Figure 1). Bacterial killing by meropenem was assumed to follow a
Hill-type function with different meropenem concentrations resulting in
50% of maximal killing for the meropenem-susceptible and meropenem-
resistant populations. We assumed that polymyxin B decreased the
meropenem concentrations required for 50% of maximal killing of
the meropenem-susceptible population (monotherapy: KC50MEM,SM; com-
bination: KC50MEM,SC) and of the meropenem-resistant population (mono-
therapy: KC50MEM,RM; combination: KC50MEM,RC). We estimated all PD

model parameters simultaneously based on the total population viable
counts of the respective strain. We used previously published procedures
and methods for estimation, model development and evaluation.33,39 – 49

Details on the modelling methods are available as Supplementary data at
JAC Online.

Results

Antibacterial MICs and oxacillinases

The MICs of polymyxin B and meropenem for each A. baumannii
strain and the type of oxacillinase enzymes detected are listed in
Table 1. All the strains demonstrated a susceptible polymyxin B

Mechanistic synergy

decreasing

KC50MEM,R 

MEMs/PMBr MEMr/PMBr

KmaxMEM
KC50MEM,S

KmaxMEM
KC50MEM,R

PMB 1.55 mg/LMechanistic

synergy

decreasing KC50MEM,S

First-order growth process

Bacterial killing by MEM

Mechanistic synergy due to 1.55 mg/L PMB

enhancing the target site penetration of MEM

Bacterial replication

Synergy model

Figure 1. Mechanism-based model for the synergy of meropenem and
polymyxin B against three A. baumannii strains studied at high bacterial
inocula of �108 cfu/mL. The model contained two populations: the first
population was meropenem susceptible and polymyxin B resistant (MEMs/
PMBr), whereas the second population was resistant to both antibiotics
(MEMr/PMBr). Bacterial killing terms (i.e. arrows) were only included for the
effect of meropenem as 1.55 mg/L polymyxin B displayed negligible killing
in time–kill experiments. Synergy was implemented by assuming
that polymyxin B permeabilized the outer membrane of A. baumannii and
thereby enhanced the target site concentration of meropenem. The
presence of 1.55 mg/L polymyxin B decreased the meropenem
concentration required to achieve half of maximal killing against the
meropenem-susceptible and meropenem-resistant populations as listed
in Table 2. MEM, meropenem and PMB, polymyxin B.

Table 1. MICs of polymyxin B and meropenem for each A. baumannii
strain, as well as the presence of the chromosomal oxacillinase OXA-51
and plasmid-mediated oxacillinase enzymes OXA-23, OXA-24 and OXA-58

Strain
Polymyxin B MIC

(mg/L)
Meropenem MIC

(mg/L)
Oxacillinases

present

ATCC 19606 0.5 4 OXA-51
N16870 0.5 16 OXA-51, OXA-23
03-149-1 0.5 64 OXA-51, OXA-23
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MIC of 0.5 mg/L, whereas the meropenem MICs were all non-
susceptible and included 4 mg/L (ATCC 19606), 16 mg/L (N16870)
and 64 mg/L (03-149-2). The chromosomally encoded oxacillinase
enzyme OXA-51 was present in all three A. baumannii isolates,
whereas the plasmid-mediated b-lactamase OXA-23 was detected
in N16870 and 03-149-2.

Time–kill experiments

The PD of meropenem alone and in combination with polymyxin B
against the three strains of A. baumannii are summarized in
Figure 2. Treatment with meropenem alone and in combination
with polymyxin B resulted in killing that was dependent on the
concentration of meropenem. When in combination with poly-
myxin B, meropenem concentrations of 50, 100 and 200 mg/L
resulted in the following respective net changes in bacterial
counts at 48 h (log10 cfu/mL): +0.71, 27.90 and 27.82 (ATCC
19606), +0.41, 22.38 and 25.11 (N16870), and 20.95, 21.36
and 25.58 (03-149-1). Meropenem concentrations of 50, 100
and 200 mg/L in the absence of polymyxin B resulted in regrowth
by 24 h in strains ATCC 19606 (MIC¼4 mg/L) and 03-149-1
(MIC¼64 mg/L), whereas 300 mg/L meropenem resulted in
regrowth by 48 h in both strains, 400 mg/L meropenem achieved
�1 log10 cfu/mL reductions by 48 h and 500 mg/L meropenem
achieved 2.17 and 3.33 log10 cfu/mL reductions at 48 h for ATCC
19606 and 03-149-1, respectively. For N16870 (MIC¼16 mg/L),
meropenem concentrations ≥200 mg/L resulted in a ≥3 log10

cfu/mL reduction by 48 h. Polymyxin B alone was unable to
achieve .0.5 log10 cfu/mL reduction in any strain, with counts
that largely paralleled the growth control (data not shown).

Although 100 mg/L meropenem in the combination regimen
achieved a ≥3 log10 cfu/mL reduction for all three strains,
200 mg/L meropenem was necessary for maximum activity
against N16870 and 03-149-1.

The mechanism-based model provided excellent curve fits for
the static time–kill experiments. The parameter estimates from
the synergy model indicated that meropenem activity was com-
parable in all three strains when meropenem was used in combin-
ation with polymyxin B (Table 2, all relative standard errors
≤33%). In the absence of polymyxin B, the concentration of mero-
penem required for half of maximal killing (KC50MEM) ranged from
43.0 to 199 mg/L against meropenem-susceptible A. baumannii
populations and from 158 to 438 mg/L against the meropenem-
resistant populations of all three strains. In the presence of poly-
myxin B, the KC50MEM values were very consistent across strains
and varied from 2.41 to 3.78 mg/L against meropenem-
susceptible populations and from 76.0 to 93.6 mg/L against
meropenem-resistant populations. Given the large disparity in
the meropenem MICs for each strain (4, 16 and 64 mg/L), the
activity of meropenem in combination with polymyxin B did not
appreciably relate to the individual meropenem MIC values for
each strain.

Figure 3 displays the results of the LRA and LRC analyses of the
data from the time–kill studies for meropenem alone. In the LRA
analysis (Figure 3a–c), strains ATCC 19606 and 03-149-1 each
exhibited a linear decrease in the LRAs as the meropenem con-
centration was increased. In contrast, a Hill-type function best
described both the LRA data of strain N16870 and the LRC data
for all three strains (Figure 3d–f). In the LRC analysis of merope-
nem alone, strain N16870 produced the lowest EC50 of 175 mg/L,
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whereas the EC50 values for ATCC 19606 and 03-149-1 were 399
and 626 mg/L, respectively.

For the meropenem and polymyxin B combinations, the
Hill-type function provided an excellent fit to the data analysed
using both the LRA and the LRC metrics (Figure 3), with R2 values
.0.97 for each model (parameter estimates listed in Table 3).
Despite a range of meropenem MICs (4, 16 and 64 mg/L), the
maximal activity of combination treatment was similar regardless
of the strain when using the LRA metric (Emax¼2.13, 2.08 and
2.15, respectively). Using the LRC metric the corresponding Emax

values were 8.25, 5.47 and 5.21; however, the LRC for the ATCC
19606 strain was confounded by counts that were below the
limit of detection. Whereas strains N16870 and 03-149-1 experi-
enced similar maximal reductions from baseline (5.47 and
5.21 log10 cfu/mL, respectively), ATCC 19606 was undetectable
at meropenem concentrations ≥100 mg/L in combination with
polymyxin B. The EC50 values of meropenem and polymyxin B
combinations did not appreciably relate to the MICs in the LRA
analysis (EC50¼58.7, 52.8 and 13.6 mg/L), but the EC50 values

did trend towards higher meropenem concentrations when apply-
ing the LRC metric (EC50¼84.3, 101 and 123 mg/L; MIC of
meropenem¼4, 16 and 64 mg/L, respectively).

HFIM

The results of the HFIM experiments conducted with strain
N16870 are presented in Figure 4 and include both the total popu-
lation and PAPs for each regimen. Although meropenem concen-
trations of 200 mg/L were able to achieve a ≥3 log10 reduction in
the time–kill study, all of the HFIM regimens involving merope-
nem alone, including the 8 g q8h regimen with an fCmax of
196 mg/L, were unable to prevent bacterial growth by 48 h. The
meropenem dose of 8 g q8h was the only monotherapy capable
of maintaining the total population at a static 108 cfu/mL bacter-
ial load for 24 h, then steady growth following the 24 h timepoint
occurred that plateaued at �1×1010 cfu/mL at 96 h. Despite
achieving an fAUC/MIC of 71.8 and utilizing a loading dose, the
polymyxin B monotherapy was unable to substantially reduce

Table 2. Parameter estimates for ATCC 19606, N16870 and 03-149-1 obtained from the mechanism-based model used to describe the static time–kill
and the HFIM data

Parameter Symbol Unit

Population mean (relative standard error)

ATCC 19606 N16870 03-149-1 N16870 (HFIM)

Mean generation time (MGT) MGT12 min 64.4 (4.0%)a 91.5 (4.5%)a 64.3 (4.7%)a 61.1 (6.6%)
MGT for the resistant population in the presence of

polymyxin B
MGT12 min 68.6 (6.3%)

Maximum population size log10(cfumax) 9.29 (1.9%) 9.02 (1.5%) 9.93 (2.6%) 10.2 (0.5%)
Initial inoculum log10(cfuo) 8.16 (1.0%) 8.30 (0.6%) 8.17 (0.5%) 8.23 (2.4%)
Mutation frequency for the meropenem-resistant

population
log10(MFMEM) 25.25 (3.5%) 24.01 (10.6%) 25.12 (3.5%) 24.67 (6.5%)

Maximum rate of bacterial killing by meropenem KmaxMEM 1/h 1.01 (6.9%)a 0.768 (4.3%)a 0.986 (4.9%)a 2.48 (8.1%)
KmaxMEM for the meropenem-resistant population KmaxMEM,R 1/h 1.28 (6.9%)

Meropenem resulting in 50% of maximal killing of the
susceptible population in monotherapy KC50MEM,SM mg/L 43.0 (9.2%) 50.9 (13.0%) 199 (9.7%) 101 (21.6%)
susceptible population in the presence of 1.55 mg/L

polymyxin B
KC50MEM,SC mg/L 3.64 (24.1%) 3.78 (13.3%) 2.41 (33.0%) 2.38 (14.9%)

resistant population in monotherapy KC50MEM,RM mg/L 438 (6.1%) 158 (9.0%) 433 (6.5%) 111 (24.8%)
resistant population in the presence of 1.55 mg/L

polymyxin B
KC50MEM,RC mg/L 82.1 (5.3%) 93.6 (8.4%) 76.0 (7.2%) 7.97 (18.4%)

Hill coefficient for bacterial killing by meropenem HillMEM 5.90 (8.2%) 4.97 (16.3%) 4.30 (24.0%) 1 (fixed)
Maximum fractional reduction in the growth rate at

high signal molecule concentrations
ImaxSig12 0.988 (8.8%) 0.755 (47.0%) 0.969 (20.1%) b

Signal molecule concentration associated with 50% of
maximal inhibition of bacterial growth rate

log10(IC50,Sig) 6.98 (1.8%) 6.87 (2.7%) 6.85 (2.4%) b

Mean degradation time of hypothetical signal
molecules

MTTSig h 1.76 (28%) 1.42 (22.7%) 2.17 (16.8%) b

Polymyxin B concentration yielding half-maximal
decrease of the KC50MEM

C50PMB,SYN
c c c 0.5 (fixed)

Hill coefficient for synergistic effect of polymyxin B HillSYN
c c c 5 (fixed)

Additive residual error on log10 scale SDCF 0.310 (8.4%) 0.158 (7.3%) 0.192 (7.5%) 0.346 (6.3%)

aEstimate applies to all populations in monotherapy and combination therapy.
bThe effect of signal molecules was estimated to be minimal in the dynamic HFIM. Thus, these parameters were removed from the model for the hollow-
fibre dataset.
cSynergy was handled via an IF condition for the static time–kill data.
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N16870 counts, with growth to 1×1010 cfu/mL observed by 24 h.
Surprisingly, the rise of polymyxin-resistant subpopulations was
not observed during polymyxin B monotherapy in the PAP analysis
and MIC testing conducted after 336 h of polymyxin B exposure
confirmed that the polymyxin B MIC only shifted a single dilution
from 0.5 to 1.0 mg/L. The amplification of polymyxin B resistance
may have been relatively minor due to the inability of polymyxin B
to kill enough of the A. baumannii to shift the population toward a
resistant phenotype.

In contrast to the monotherapies investigated in the HFIM, the
high-dose combination regimens were able to achieve extensive
killing that was largely maintained for the duration of the experi-
ment. The combination regimen of 2 g q8h meropenem with poly-
myxin B reduced bacterial counts by .2.5 log10 cfu/mL at 24 h,
followed by complete regrowth by 72 h. Increasing the merope-
nem dose in the combination regimen to 4 g resulted in a .

5 log10 cfu/mL reduction by 24 h and full regrowth did not occur
until 144 h. In both the 2 g and 4 g q8h combination regimens,
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Figure 3. PK/PD analyses from the time–kill experiments for each strain plotted as LRA (a–c) or LRC (d–f) as a function of meropenem concentration.
Data for meropenem alone are represented by black circles, whereas data for meropenem in combination with 1.55 mg/L polymyxin B are represented
by white diamonds. Each plot was fitted with a Hill-type function or linear equation (panels a and c for LRA). Parameter estimates for combination
treatments are listed in Table 3. MEM, meropenem; PMB, polymyxin B.

Table 3. Parameter estimates for combinations evaluated in the time–kill studies (standard estimates are listed parenthetically); the data were analysed
using LRA and LRC

Strain

ATCC 19606 N16870 03-149-1

Meropenem MIC (mg/L) 4 16 64
PK/PD metric LRA LRC LRA LRC LRA LRC
Emax 2.13 (4.19) 8.25 (3.96) 2.08 (3.84) 5.47 (4.40) 2.15 (3.40) 5.21 (7.29)
EC50 (mg/L) 58.7 (5.22) 84.3 (.100.0) 52.8 (6.45) 101 (37.4) 13.6 (82.6) 123 (17.3)
R2 0.992 (8.04) 0.995 (29.4) 0.993 (7.16) 0.993 (22.6) 0.996 (5.01) 0.976 (41.5)
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Figure 4. HFIM counts for the total bacterial population of N16870, as well as polymyxin B- and meropenem-resistant subpopulations, during 14 days of
antibiotic exposure in monotherapy and in combination. A polymyxin B regimen simulating 1.43 mg/kg q12h alone was investigated. Meropenem dosing
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the proportion of the population capable of growing on 4 mg/L
polymyxin B was .40 times higher relative to the corresponding
meropenem monotherapies by 336 h. The amplification of poly-
myxin B resistance was also confirmed by polymyxin B MICs
that shifted from 0.5 mg/L at baseline to 4 mg/L by 336 h in the
2 g and 4 g q8h combination regimens. The 6 g q8h meropenem
combination regimen was able to maintain the bacterial load at
�104 cfu/mL for the majority of the experiment, until the total
count re-stabilized at �105 cfu/mL at 288 h and consistent
growth on plates containing meropenem 16 mg/L was observed.
Finally, the combination regimen with 8 g q8h meropenem main-
tained the bacterial load at the limit of detection until no colonies
were observed past 192 h. The 8 g q8h regimen also completely
suppressed the emergence of resistance, with no growth occur-
ring on MHA imbued with meropenem or polymyxin B beginning
at 24 h.

Similar to the time-killing experiments, the mechanism-based
model provided excellent curve fits for the HFIM dataset
(Figure 5). The maximal rate of N16870 killing in the HFIM was
nearly twice as fast comparing the meropenem-susceptible versus
meropenem-resistant populations (KmaxMEM 2.48 and 1.28 1/h).
The KC50MEM for meropenem in the presence of polymyxin B was
also .13.9 times lower for the combination versus monotherapy
for both the meropenem-susceptible population (KC50MEM 2.38 ver-
sus 101 mg/L) and meropenem-resistant population (KC50MEM 7.97
versus 111 mg/L).

In place of the traditional %T.MIC index used to describe and
predict bacterial killing ofb-lactam monotherapy, the performance
of each combination regimen paralleled the AUC of meropenem
over 24 h (R2¼0.953, Figure 6a). Without concomitant polymyxin
B, total bacterial populations were largely constant in the face of
escalating meropenem concentrations, whereas meropenem
AUCs of 2120 and 2830 mg.h/L conferred log10 AUCFU reductions
of 3.58 and 3.61 cfu.h/mL in combination therapy. The meropenem
AUC that achieved half of the maximal effect when used in combin-
ation was 1590 mg.h/L in the HFIM (Figure 6), which was similar to
the meropenem AUC of 1270 mg.h/L (51.8 mg/L×24 h) that pro-
duced half of the maximal effect for the combination in the LRA
analysis of the time–kill data for strain N16870. In addition to

the meropenem AUC, killing of A. baumannii in combination regi-
mens was also well described by the percentage of time that mero-
penem concentrations were .4× the MIC (Figure 6b). In the
time-dependent killing analysis, achieving a %T.4× the MIC of
45.1% resulted in half-maximal killing.

Unlike regimens with meropenem alone and combination regi-
mens utilizing meropenem doses of 2 g or 4 g q8h, meropenem
doses of 6 g and 8 g q8h suppressed carbapenem-resistant sub-
populations when in combination with polymyxin B. Increasing
the dose of meropenem alone amplified carbapenem-resistant
subpopulations by 48 h, with .90% of the population growing
on 16 mg/L meropenem in the 6 g treatment arm, whereas
,0.4% of the population exposed to the 2 g q8h regimen grew
on 16 mg/L meropenem by 48 h. MIC testing conducted on
A. baumannii exposed to meropenem monotherapy for 336 h veri-
fied that meropenem MICs shifted from 16 mg/L at baseline to
128 mg/L at 336 h regardless of the meropenem dose. The ability
of A. baumannii to augment carbapenem resistance upon expos-
ure to meropenem was confirmed in an analysis that tracked
the LRAs of meropenem-resistant subpopulations (Figure 7). As
exposure to meropenem in the HFIM increased from 0 to
2830 mg.h/L in monotherapy, the LRA of subpopulations growing
on 16 and 32 mg/L meropenem increased by 2.52 and 4.13,
respectively. Similar to the meropenem monotherapies, a mero-
penem dose of 2 g q8h in combination with polymyxin B amplified
the growth of meropenem-resistant subpopulations by 2.20 and
3.40 (meropenem PAPs, 16 and 32 mg/L), which exceeded the
LRA increases of 1.17 and 2.37 observed during the corresponding
monotherapies. However, intensified meropenem doses of 6 g
and 8 g q8h in combination with polymyxin B suppressed carba-
penem resistance, with LRA reductions of 1.34 and 1.48 conferred
by the 6 g q8h combination regimen (meropenem PAPs, 16 and
32 mg/L, respectively).

Discussion
A paucity of agents active against CRAB are available. Here, we
investigated approaches to combat carbapenem resistance by
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increasing the dose intensity of meropenem alone and in combin-
ation with polymyxin B. Although achieving a high %T.MIC during
carbapenem monotherapy is widely accepted for obtaining
bactericidal activity,50 neither the time-killing studies nor the
HFIM data support the use of %T.MIC for the investigated
A. baumannii strains. Indeed, in time–kill experiments a merope-
nem concentration of 100 mg/L (%T.MIC¼100% for all three
strains) was unable to cause a reduction in bacterial counts by
48 h for the two meropenem-resistant strains (MIC¼16 and
64 mg/L) or the meropenem-intermediate strain (MIC¼4 mg/
L).51,52 In the HFIM analysis, meropenem monotherapies of 4, 6
and 8 g q8h achieved a %T.MIC of 100% but produced negligible
killing by 24 h, demonstrating that simply increasing the dose of a
carbapenem relative to the MIC for the strain may not be enough
to overcome A. baumannii resistance mechanisms. Given the
inability of the current study to distinguish between AUC and
%T.4×MIC as predictive indices for bacterial killing achieved by
meropenem in combination with polymyxin B, dose fractionation
studies are needed to help clarify whether AUC, time or a hybrid
index best describes the combinatorial PD.

Despite the limited bacterial killing of meropenem monother-
apies in the HFIM, the addition of polymyxin B resulted in bacterial
killing in a meropenem dose-dependent manner. A. baumannii
infections are commonly treated with empirical meropenem
doses of 0.5–1 g q8h,7,53 with 2 g q8h being the most aggressive
regimen utilized during life-threatening infections.54 There have
also been reports of clinicians escalating meropenem regimens
beyond the traditional 2 g q8h limit to combat organisms with
elevated meropenem MICs,55,56 including a 3 g every 6 h regimen
that utilizes the same daily dose (12 g/day) as the 4 g q8h regi-
men.57 In the present study, the lowest meropenem dose used
in the HFIM was 2 g q8h, which corresponds to the highest

meropenem dose investigated in a clinical trial,54 and resulted
in full regrowth of A. baumannii by 72 h when combined with poly-
myxin B. Although the 6 and 8 g meropenem combination regi-
mens produced the most killing, a 4 g combination regimen may
be sufficiently bactericidal to an A. baumannii isolate to allow the
host immune system to clear the infection. The meropenem con-
centration dependency supports the notion that regardless of the
magnitude of a dose increase, amplifying the amount of merope-
nem used in combination with polymyxin B against CRAB infections
may increase the likelihood of bacterial eradication.

Not only were the combination regimens with elevated mero-
penem doses capable of substantial killing of CRAB, but the 6 and
8 g q8h regimens also suppressed the emergence of carbapenem
resistance. In monotherapy, increasing the dose of meropenem
was counterproductive, with more extensive meropenem expos-
ure leading to the increased amplification of meropenem-
resistant subpopulations. When the meropenem dose was
escalated in combination with polymyxin B, an ‘inverted-U’ rela-
tionship was observed in which suboptimal meropenem exposure
amplified carbapenem resistance and more extreme meropenem
exposures killed the entire CRAB population.58 Unexpectedly, the
combination regimen utilizing the lowest meropenem dose of 2 g
q8h amplified more carbapenem resistance than its correspond-
ing monotherapy. Combination regimens that use inadequate
carbapenem doses may therefore be at the highest risk for aug-
menting carbapenem resistance, emphasizing the potential
value of intensified carbapenem dosing schemes.

Taken together, these data support the use of a meropenem
and polymyxin B combination against CRAB in which the merope-
nem dose is optimized to increase the bacterial killing. While the
dose-dependent nephrotoxicity of polymyxin B may prevent
substantial exposure increases over a long duration,25,59 the
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concentration of polymyxin B was sufficient to confer synergistic
killing with meropenem. Due to the favourable safety profile of
meropenem, modulation of the meropenem dose may be a prac-
tical solution to increase the activity of the combination.54 It is
also noteworthy that the meropenem combination performed
similarly against three strains of A. baumannii with varying levels
of nominal carbapenem resistance as indicated by the MIC.
Considering the absence of plasmid-mediated oxacillinases in
the ATCC 19606 strain, the similar killing profiles observed in
time–kill experiments cannot be ascribed to the presence of spe-
cific b-lactamase enzymes. Due to the inability of MIC measure-
ments to accurately forecast the susceptibility of drug-resistant
subpopulations that emerge during antibiotic treatment, empir-
ical doses of intensified meropenem may be warranted whenever
carbapenem resistance mechanisms are suspected. However, the
safety and tolerability of intensified regimens must be validated
prior to clinical utilization. The use of only three A. baumannii
strains may also prevent an accurate prediction of how intensified
combination regimens will perform against other clinical strains.
In the mechanism-based modelling, we conservatively assumed
near-maximal (.99%) synergy was achieved by �1.5 mg/L poly-
myxin B. Further studies are needed to determine whether higher
polymyxin B concentrations achieve more extensive synergy.

While the activity of elevated meropenem doses in combin-
ation with polymyxin B may offer a new approach to combating
multidrug-resistant A. baumannii infections, the hypothetical
risk of carbapenem-induced seizures may jeopardize any mortal-
ity benefit afforded by an intensified meropenem regimen.28

However, a meta-analysis of seizure risk in carbapenems found
the odds ratio of a seizure was 1.04 (95% CI 0.61, 1.77) for

meropenem compared with ceftazidime or cefotaxime, suggest-
ing that high meropenem doses may be tolerable.28 Also, because
convulsions induced by b-lactams are associated with peak drug
concentrations,60 administering meropenem as a 3 h prolonged
infusion reduces peak meropenem concentrations and minimizes
the likeliness of a seizure. According to the manufacturer of mero-
penem, healthy volunteers given 1 g of meropenem as a 5 min
infusion experienced a mean peak plasma concentration of
112 mg/L, with a maximum value of 140 mg/L.61 In the present
study, fCmax concentrations for the 4 g q8h and 6 g q8h regimens
were 98.0 and 147 mg/L, respectively, which are comparable to
plasma concentrations observed during meropenem boluses of
traditional doses. In an animal study, an extreme dose of
100 mg/kg meropenem was quickly infused intravenously into
rats and intracerebroventricularly into mice and did not result in
EEG changes or convulsions, whereas intracerebroventricular
injections in dogs resulted in a localized hippocampal discharge
with no corresponding behavioural changes or convulsions.60 If
a patient is at a high risk for a seizure, phenytoin and phenobar-
bital are options for seizure prophylaxis as neither agent shares a
PK interaction with carbapenems and both have demonstrated
anticonvulsant activity in rat models of imipenem-induced
seizures.62

In addition to the hypothetical seizure risk of intensified mero-
penem regimens, doses of meropenem that exceed 2 g q8h may
carry other unforeseen risks for patients. As the objective of the
current investigation was to fully define the PD of meropenem in
combination with polymyxin B, it was necessary to escalate the
dose of meropenem beyond traditional limits to explore whether
additional bacterial killing was conferred by the intensified dosing
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schemes. The meropenem regimens of 4, 6 and 8 g q8h therefore
represent theoretical regimens that have unknown applicability in
the clinical setting. The safety and tolerability of such intensified
regimens was not assessed in the current in vitro investigation
and meropenem doses above 2 g q8h must first be validated
with preclinical studies to fully characterize potential side effects
and risks for patients before intensified meropenem regimens can
be advocated in the clinic.

In closing, combination therapy of polymyxin B with merope-
nem doses that exceed 2 g q8h may offer an intensified dosing
strategy for combating life-threatening infections caused by
CRAB. Mechanism-based modelling suggested that synergy was
achieved due to polymyxin B greatly increasing the target site con-
centrations of meropenem, which was consistently observed
across three strains. In lieu of a well-designed dose-fractionation
study that identifies an index adequately predictive of the perform-
ance of the combination, clinicians should use caution when dosing
meropenem based on the reported MIC for a clinical CRAB strain. It
is important to note that intensified meropenem regimens have
not yet been evaluated in humans and the clinical use of merope-
nem doses exceeding 2 g q8h cannot be advocated without fully
understanding the safety of meropenem at elevated doses. The
A. baumannii killing observed in the HFIM was also based on a sin-
gle strain and requires further confirmation. Future investigations in
animal models evaluating the toxicology of high-dose meropenem
in combination with polymyxin B are needed before the
risk-to-benefit of such a regimen can be fully appreciated.
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