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ABSTRACT A typical genome-wide association study tests correlation between a single phenotype and each genotype one at a time.
However, single-phenotype analysis might miss unmeasured aspects of complex biological networks. Analyzing many phenotypes
simultaneously may increase the power to capture these unmeasured aspects and detect more variants. Several multivariate
approaches aim to detect variants related to more than one phenotype, but these current approaches do not consider the effects of
population structure. As a result, these approaches may result in a significant amount of false positive identifications. Here, we
introduce a new methodology, referred to as GAMMA for generalized analysis of molecular variance for mixed-model analysis, which is
capable of simultaneously analyzing many phenotypes and correcting for population structure. In a simulated study using data
implanted with true genetic effects, GAMMA accurately identifies these true effects without producing false positives induced by
population structure. In simulations with this data, GAMMA is an improvement over other methods which either fail to detect true
effects or produce many false positive identifications. We further apply our method to genetic studies of yeast and gut microbiome
from mice and show that GAMMA identifies several variants that are likely to have true biological mechanisms.
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OVERthepast fewyears, genome-wideassociation studies
(GWAS) have been used to find genetic variants that

are involved in disease and other traits by testing for corre-
lations between these traits and genetic variants across the
genome. A typical GWAS examines the correlation of a single
phenotype and each genotype one at a time. Recently, large
amounts of genomic data, including expression data, have
been collected from GWAS cohorts. This data often contains
thousands of phenotypes per individual. The standard
approach to analyzing this type of data involves performing
a single-phenotype analysis: a GWAS on each phenotype
individually.

The genomic loci that are of the most interest are the loci
that simultaneously affect many phenotypes. For example,

researchersoften seekgenetic variants thataffect theprofile of
gut microbiota, which encompass 10s of 1000s of species
(Lockhart et al. 1996; Gygi et al. 1999). Another example is
when researchers want to detect regulatory hotspots in ex-
pression quantitative trait loci (eQTL) studies. Many genes
are known to be regulated by a small number of genomic
regions called trans-regulatory hotspots (Wang et al. 2004;
Cervino et al. 2005; Hillebrandt et al. 2005), which strongly
indicate the presence of master regulators of transcription.
Moreover, current strategies for analyzing phenotypes inde-
pendently are underpowered. A more powerful approach
could capture the unmeasured aspects of complex biological
networks, such as protein mediators, together with many
phenotypes that might otherwise be missed when using an
approach that focuses on a single phenotype or a few pheno-
types (O’Reilly et al. 2012).

Many multivariate methods have been proposed that are
designed to jointly analyze large numbers of genomic pheno-
types. Most of the methods perform some form of data re-
duction, suchas cluster analysis and factor analysis (Alter et al.
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2000; Quackenbush 2001). However, these data-reduction
methods have many issues such as the difficulty of determin-
ing the number of principal components, doubts about the
generalizability of principal components, etc. (Nievergelt
et al. 2007). Aschard et al. (2014) discussed the performance
of different principal component analysis-based strategies for
multiple-phenotype analysis and showed that testing only
the top principal components often have low power, whereas
combining signals across all principal components can have
greater power in the analysis. Alternatively, Zapala and Schork
(2012) proposed a way of analyzing high dimensional data
called multivariate distance matrix regression (MDMR) anal-
ysis. MDMR uses a distance matrix whose elements are tested
for association with independent variables of interest. This
method is simple and directly applicable to high dimen-
sional multiple-phenotype analysis. In addition, users can
flexibly choose appropriate distance matrices (Webb 2002;
Wessel and Schork 2006).

Each of the previous methods is based on the assumption
that the phenotypes of the individuals are independently and
identically distributed (i.i.d.). Unfortunately, as has been
shown in GWAS, this assumption is invalid due to a phenom-
enon referred to as population structure. Allele frequencies
are known to vary widely from population to population,
because each population carries its own unique genetic and
social history. These differences in allele frequencies, along
with the correlation of a phenotype with its populations, may
cause spurious correlation between genotypes and pheno-
types and induce spurious associations (Kittles et al. 2002;
Freedman et al. 2004; Marchini et al. 2004; Campbell et al.
2005; Helgason et al. 2005; Reiner et al. 2005; Voight and
Pritchard 2005; Berger et al. 2006; Foll and Gaggiotti 2006;
Seldin et al. 2006; Flint and Eskin 2012). These errors poten-
tially compound when analyzing multiple phenotypes
because biases in test statistics accumulate from each phe-
notype, which is shown in our experiments. Unfortunately,
none of the previously discussed multivariate methods are
able to correct for population structure and may cause
a significant number of false positive results. Recently,
multiple-phenotypes analysis methods have been developed
that consider population structure (Korte et al. 2012; Zhou
and Stephens 2014). However, these methods are impractical
for cases with large number of phenotypes (.100) since their
computational time scales quadratically with the number of
phenotypes considered.

In this article, we propose a method, called GAMMA
(generalized analysis of molecular variance for mixed-model
analysis), which efficiently analyzes large numbers of pheno-
types while simultaneously considering population structure.
Recently, the linear mixed model has become a popular
approach for GWAS as it can correct for population structure
(Kang et al. 2008, 2010; Lippert et al. 2011; Segura et al.
2012; Svishcheva et al. 2012; Zhou and Stephens 2012;
Hormozdiari et al. 2015). The linear mixed model incorpo-
rates genetic similarities between all pairs of individuals,
known as kinship, into their model and corrects for popula-

tion structure. We take the key principles behind MDMR
(Nievergelt et al. 2007; Zapala and Schork 2012), which per-
forms multivariate regression using distance matrices to form
a statistic for testing the effects of covariates on multiple
phenotypes. To correct for population structure, we extend
the statistical procedure of MDMR to incorporate the linear
mixed model.

To demonstrate the utility of GAMMA, we use both sim-
ulated and real data sets and compared our method with
representative previous approaches. These approaches in-
clude the standard t-test, one of the standard and the simplest
method for GWAS; efficientmixed-model association (EMMA)
(Kang et al. 2008), a representative single-phenotype analysis
method that implements linear mixed model and corrects
for population structure (Lippert et al. 2011; Zhou and
Stephens 2012); and MDMR (Zapala and Schork 2012),
a multiple-phenotypes analysis method. In a simulated
study, GAMMA corrects for population structure and accu-
rately identifies genetic variants associated with pheno-
types. In comparison, the previous approaches we tested,
which analyze each phenotype individually, do not have
enough power to detect associations and are not able to
detect variants. MDMR (Zapala and Schork 2012) predicts
many spurious associations produced due to population
structure. We further applied GAMMA to two real data sets.
When applied to a yeast data set, GAMMA identified most
of the regulatory hotspots identified as related to regula-
tory elements in a previous study (Joo et al. 2014); while the
previous approaches we tested failed to detect those hot-
spots. When applied to a gut microbiome data set frommice,
GAMMA corrected for population structure and identified
regions of the genome that harbor variants responsible for
taxa abundances. In comparison, the previous methods we
tested either failed to identify any of the variants in the
region or produced a significant number of false positives.

Materials and Methods

Linear mixed models

For analyzing the ith SNP, we assume the following linear
mixed model as the generative model:

Y ¼ Xibþ Uþ E: (1)

Let n be the number of individuals and m be the number of
genes. Here, Y is an n3mmatrix, where each column vector
yj contains the jth phenotype values; Xi is a vector of length n
with genotypes of the ith SNP; and b is a vector of length m,
where each entry bj contains an effect of the ith SNP on the
jth phenotype. U is an n3m matrix, where each column
vector uj contains the effect of population structure of the
jth phenotype. E is an n3m matrix, where each column
vector ej contains i.i.d. residual errors of the jth phenotype.
We assume the random effects, uj and ej; follow multivariate
normal distribution, uj � Nð0;s2

gjKÞ and ej � Nð0;s2
ej IÞ;

where K is a known n3 n genetic similarity matrix and I is
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an n3n identity matrix with unknown magnitudes s2
gj and

s2
ej ; respectively.

Multiple-phenotypes analysis

Let us say we are analyzing associations between the ith SNP
and the jth phenotype. Traditional univariate analysis is
based on the following linear model:

yj ¼ Xibj þ ej: (2)

Here, yj is a vector of length n with the jth phenotype values,
Xi is a vector of length n with the ith SNP values, bj is a value
contains an effect of the ith SNP on the jth phenotype, and ej
is a vector of length n with i.i.d. residual errors of the jth
phenotype. To test associations, we test the null hypothesis
H0 : bj ¼ 0 against the alternative hypothesisHA : bj 6¼ 0:We
can perform an F-test for the analysis by comparing twomod-
els, model 1: yj ¼ ej andmodel 2: yj ¼ Xibj þ ej: The standard
F-statistic is given as follows:

F ¼ ðRSS1 2RSS2Þ=ðp2 2 p1Þ
RSS2=ðn2 p2Þ ; (3)

where RSS1 and RSS2 are the residual sum of squares (RSS)
of model 1 and model 2, respectively; and p1 and p2 are the
number of parameters in model 1 and model 2, respectively.

Applying this statistic (Equation 3) to our case, we find the
following:

RSS1 ¼ y9j yj;   RSS2 ¼ ðyj2XibbjÞ9ðyj2XibbjÞ
¼ y9j ðI2HiÞyj ¼ rb9j rbj

RSS1 2RSS2 ¼ y9j yj2 y9j ðI2HiÞyj ¼ y9jHiyj

¼ yb9j ybj; p1 ¼ 1; p2 ¼ 2 (4)

where bbj ¼ ðX 9
i XiÞ21X 9

i yj;Hi ¼ XiðX 9
i XiÞ21X 9

i and rbj ¼ yj 2 rbj ¼
yj 2XiðX 9

i XiÞ21X 9
i yj ¼ ðI2HiÞyj: Applying Equation 4 to Equa-

tion 3, we find the following F-statistic:

F ¼ yb9j ybj�ð22 1Þ
r̂9j r̂j
�ðn2 2Þ : (5)

Using the fact that the RSS statistics follow x2; we could
extend the univariate case into a multivariate case in the
following:

Y ¼ Xibþ E (6)

where Y is an n3m matrix, where each column vector yj
contains the jth phenotype values; b is a vector of length m,
where each entry bj contains an effect of the ith SNP on the

Figure 1 The results of different methods applied to a simulated data set. The x-axis shows SNP locations and the y-axis shows log10P-values of
associations between each SNP and all the genes. Blue Y shows the location of the true trans-regulatory hotspots. (A) The result of the standard t-test.
(B) The result of EMMA. For (A) and (B), we averaged the log10P-values over all of the genes for each SNP. (C) The result of MDMR. (D) The result of
GAMMA.
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jth phenotype; and E is an n3mmatrix, where each column
vector ej contains i.i.d. residual errors of the jth phenotype.
Here, we assume that the random effect ej follows multivar-
iate normal distribution, ej � Nð0;s2

ej IÞ; where I is an n3 n
identity matrix with unknown magnitude s2

ej : In the multi-
variate case, both RSS1 and RSS2 are m3m matrices, where
the diagonal element RSSj;j is RSS for the jth phenotype as
computed in the univariate case. Given this, if we take the
trace of this matrix, we obtain a sum of x2 statistics. Thus in

themultivariate case (Equation 6), we can estimate a pseudo-
F-statistic as follows:

trðbY′bYÞ=ð22 1Þ
trðbR′bRÞ=ðn22Þ

; (7)

where bR ¼ Y2 bY ¼ Y2XiðX 9
i XiÞ21X 9

iY ¼ ðI2HiÞY: The rea-
son why we call this a “pseudo” F-statistic is because it is not
guaranteed that we are summing independent x2 statistics,

Figure 2 An eQTL map of a real yeast data set. P-values are estimated from NICE (Joo et al. 2014). The x-axis corresponds to SNP locations and the y-
axis corresponds to the gene locations. The intensity of each point on the map represents the significance of the association. The diagonal band
represents the cis effects and the vertical bands represent trans-regulatory hotspots.
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andwhen they are not independent we do not expect that the
result is also x2:

Here we note that the trace of an inner product ma-
trix is the same as the trace of an outer product matrix:
trðbY′bYÞ ¼ trðbYbY′Þ and trðbR′bRÞ ¼ trðbRbR′Þ: The advantage of
this duality is that we can estimate the trace of bYbY′ and bRbR′

from the outer product matrix YY9 by using the fact thatbYbY′ ¼ HiðYY′ÞHi and bRbR′ ¼ ðI2HiÞðYY9ÞðI2HiÞ: The outer
product matrix YY9 could be obtained from any n3 n symmet-
ric matrix of distances (Gower 1966; McArdle and Anderson
2001). Let us say we have a distance matrix D with each ele-
ment dij: Let A be amatrix where each element aij ¼ ð21=2Þdij;
andwe can center thematrix by takingGower’s centeredmatrix
G (Gower 1966; McArdle and Anderson 2001):

G ¼
 
I2

1
n
119

!
A

 
I2

1
n
119

!
(8)

where 1 is a column of 1’s of length n. Then this matrixG is an
outer-product matrix and we can generate a pseudo-F-statistic
from a distance matrix as follows:

trðHiGHiÞ=ð22 1Þ
tr
�ðI2HiÞGðI2HiÞ

�
=ðn2 2Þ: (9)

Correcting for population structure

InGWAS, it iswidely known that genetic relatedness, referred
to as population structure, complicates analysis by creating
spurious associations. The linear model (Equation 6) does
not account for population structure, and applying themodel
to the multiple-phenotypes analysis may induce false posi-

tive identifications. Recently, the linear mixed model has
emerged as a powerful tool for GWAS as it could correct for
the population structure. GAMMA incorporates the effect of
population structure by assuming a linear mixed model
(Equation 1), which has an extra term U accounting for
the effects of population structure, instead of the conven-
tional linear model (Equation 6). This is an extension of the
following widely used linear mixed model for a univariate
analysis:

yj ¼ Xibj þ uj þ ej:

Based on the linear mixed model (Equation 1), each pheno-
type followsamultivariate normaldistributionwithmeanand
variance as follows:

yj � N
�
Xibj;

X
j
�
;

where Pj ¼ s2
gjK þ s2

ej I is the variance of the jth phenotype.
We compute a covariance matrix, bP ¼ ŝ2

gK þ ŝ2
e I; as de-

scribed in Implementation, and the alternate model is trans-
formed by the inverse square root of this matrix as follows:

bX21=2
yj � N

�bX21=2
Xibj;s

2I
�
:

Thus, to incorporate population structure, we transform
genotypes and phenotypes,

�
Xi ¼ bP21=2

Xi and
�yj ¼ bP21=2

yj;
and apply them to Equation 9 to get an alternative pseudo-
F-statistic as follows:

tr
�eHieGeHi

�.
ð22 1Þ

tr
h�

I2 eHi

�eG�I2 eHi

�i.
ðn2 2Þ

;

Figure 3 The results of MDMR and GAMMA
applied to a yeast data set. The x-axis corresponds
to SNP locations and the y-axis corresponds to
gene locations. The y-axis corresponds to 2log10
of P-values. Blue * above each plot shows puta-
tive hotspots that were reported in a previous
study (Joo et al. 2014) for the yeast data. (A)
The result of MDMR. (B) The result of GAMMA.
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where
�
Hi ¼ �

Xið�X
9

i
�
XiÞ21�X9

i and
�
G is a Gower’s centered matrix

estimated from ~D; in turn estimated from ~Y; where each col-
umn vector of ~Y is ~yj:

Efficiency of GAMMA

There are several multiple-phenotypes analysis methods con-
sidering population structure (Korte et al. 2012; Zhou and
Stephens 2014). These methods explicitly model the depen-
dencies of phenotypes to accurately estimate associations be-
tween a SNP and phenotypes. However, their computational
time is quadratic or cubic to the number of phenotypes; thus,
they are only applicable for data sets with no more than
100 phenotypes. These methods are impractical for data sets
with a large number of phenotypes such as eQTL studies,
which often contain 1000s of gene expressions. On the other
hand, the computational time forGAMMA increases linearly to
the number of phenotypes, which is useful for analyzing high
dimensional data. Let n be the number of samples, m be the
number of phenotypes, and p be the number of SNPs. The time
complexity of estimating a kinship matrix; variance compo-
nents; and transforming genotypes and phenotypes with
the inverse squared root of a covariance matrix,

P21=2; is
Oðn2pþ n3mÞ:However, this needs to be performed only once
for the complete analysis for the data set. The most computa-
tionally expensive part of GAMMA is the permutation step,
which we can get in Oðn3TÞ for each SNP, where T is the
number of permutations. To reduce the cost of permutations,
GAMMAperforms an adaptive permutationwherewe increase
the number of permutations from 100, increasing by 10 times.
As most of the SNPs are under the null, our adaptive permu-
tation reduces time dramatically. In addition, we note that the
time complexity of each step could be reduced using various
special mathematical techniques (Kang et al. 2010; Lippert

et al. 2011; Williams 2011; Davie and Stothers 2013; Gall
2014; Loh et al. 2015). On an Intel Xeon 2.5 GHz Linux ma-
chine, GAMMA takes 2.79 hr for the yeast data set, which has
6138 probes and 2956 genotyped loci in 112 segregants.

Distance matrix

GAMMA uses the Bray–Curtis measure (Bray and Curtis
1957; Gower 1966) to compute the distance matrix for
MDMR and GAMMA. The Bray–Curtis measures a distance
as the summation of absolute differences between abun-
dances of elements divided by the sum of the abundances.
Let us say n is the number of individuals and we have a
phenotype matrix Y with each element yij: Then, we derive
an n3 n distance matrix D with each element dij as follows:

dij ¼

Xn
k¼1

jyik 2 yjkj

Xn
k¼1

ðyik þ yjkÞ
: (10)

Permutation

The distribution of the pseudo-F-statistic is complex and does
not follow x2 distribution as described inMultiple-phenotypes
analysis in the Materials and Methods section. Therefore, to
assess statistical significance, we performed a permutation
test. Permutation tests can be pursued by permuting the
transformed genotypes ð~XiÞ or the transformed phenotypes
ð~yiÞ; or simultaneously permuting the rows and columns of
the ~Gi matrix. To reduce the cost of permutations, GAMMA
performs an adaptive permutation where we increase the
number of permutations from 100, increasing by 10 times.
Up to 105 permutations were performed for the simulated

Figure 4 The results of the standard t-test and
EMMA applied to a yeast data set. The x-axis cor-
responds to SNP locations and the y-axis corre-
sponds to gene locations. The y-axis corresponds
to sum of 2log10 of P-value over the genes. Blue *
above each plot shows putative hotspots that were
reported in a previous study (Joo et al. 2014) in the
yeast data. (A) The result of the standard t-test. (B)
The result of EMMA.
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data set and 106 permutations were performed for the yeast
and the microbiome data sets.

Implementation

For running GAMMA, we need to compute the covariance
matrix bP ¼ ŝ2

gK þ ŝ2
e I: To do this, we need the estimates of

ŝ2
g and ŝ2

e : Let s
2
gj and s2

ej be the two variance components of
the jth phenotype, where j ¼ 1; . . . ;m: We follow the ap-
proach taken in efficientmixed-model association expedited
(EMMAX) (Kang et al. 2010) or factored spectrally trans-
formed linear mixed models (FaST-LMM) (Lippert et al.
2011) and estimate s2

gj and s2
ej in the null model, with no

SNP effect. As we take multiple phenotypes into account, a
median value of ŝ2

gj is used for ŝ2
g ; and amedian value of ŝ2

ej is
used for ŝ2

e ;which practically worked well in both of our real
data sets. R package vegan is used to perform permutational
multivariate analysis and the C package of EMMA is used to
perform mixed-model association test.

Simulated data set

We sampled data from a multivariate normal distribution
based on our generative model to generate a simulated data
set containing 1000 genes, 100 SNPs, and .96 samples
(Equation 1). SNPs are extracted from a Hybrid Mouse Di-
versity Panel (HMDP) (Bennett et al. 2010), which is a mouse
association study panel containing significant amounts of
population structure. Five randomly selected trans-regulatory
hotspots are simulated, and 20% of the genes in each hotspot
have trans effects of size 1. Cis effect is simulated with the
size of 2. s2

g = 0.8 and s2
e = 0.2 is used.

Real data sets

We evaluated our method using a yeast data set (Brem and
Kruglyak 2005). The data set contains 6138 probes and
2956 genotyped loci in 112 segregants. In addition, we eval-
uated our method using a gut microbiome data set (Org et al.
2015) collected from 592 mice representing 110 HMDP
strains. The study protocol has been described in detail by
Parks et al. (2013). Bacterial 16S ribosomal RNA gene V4
region was sequenced using the Illumina MiSeq platform
and data were analyzed using established guidelines
(Bokulich et al. 2013). The relative abundance of each taxon
was computed by dividing the sequences pertaining to a spe-
cific taxon by the total number of bacterial sequences for that
sample. We focused on abundant microbes, operational tax-
onomic units with at least 0.01% relative abundance; and for

GWAS we used 197,885 SNPs and 26 genus-level taxa. Be-
cause of the nature of meta-genomics data, the distributions
of abundances of species are often highly aggregated or
skewed (McArdle and Anderson 2001). Thus, we applied
arcsine transformation on the phenotype values. Minor allele
frequency ,5% and missing values .10% are filtered out.
We expect the data set contains a strong population structure
effect, because the mouse genome is known to contain a
significant amount of population structure.

Data availability

The HMDP data set (Bennett et al. 2010) is available at Gene
Expression Omnibus (GEO) accession number GSE16780,
yeast data set (Brem and Kruglyak 2005) is available at
GEO accession number GSE9376, and microbiome data set
(Parks et al. 2013) is available at Sequence Read Archive
under accession number SRP059760. The software, source
codes, installation package, and instructions are available at
http://genetics.cs.ucla.edu/GAMMA/.GAMMA is offeredunder
the GNU Affero general public license, version 3 (AGPL-3.0).
For the details of the license please see https://www.gnu.org/
licenses/why-affero-gpl.html.

Results

Correcting for population structure in
multivariate analysis

Unlike traditional univariate analyses that test associations
between each phenotype and each genotype, our goal is to
identify SNPs that are simultaneously associated with multi-
ple phenotypes. Let us say with n as the number of samples
and m as the number of phenotypes, we are analyzing an
association between the ith SNP andm phenotypes. The stan-
dard multivariate regression analysis assumes a linear model
as follows:

Y ¼ Xibþ E

where Y is an n3m matrix, where each column vector yj
contains the jth phenotype values; Xi is a vector of length n
containing genotypes of the ith SNP; b is a vector of lengthm,
where each entry bj contains an effect of the ith SNP on the
jth phenotype; and E is an n3mmatrix, where each column
vector ej contains i.i.d. residual errors of the jth phenotype.
Here, we assume that each column of the random effect E
follows a multivariate normal distribution, ej � Nð0;s2

ej IÞ;

Figure 5 The result of GAMMA
applied to a gut microbiome data
set. The x-axis corresponds to SNP
locations and the y-axis corresponds
to gene locations. The y-axis corre-
sponds to 2log10 of P-value.
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where I is an n3 n identity matrix with unknown magnitude
s2
ej :

To test an association between the ith SNP and m phe-
notypes, we test whether any of bj is 0 or not from the
linear model. The standard least-squares solution for b̂ is
ðX 9

i XiÞ21X9
i y: However, this is problematic when n � m;

which is often the case in genomics data as there could be
many solutions when there are more unknown variables
than observations. Alternatively, MDMR (Zapala and
Schork 2012) forms a statistic to test the effect of a variable
on multiple phenotypes by leveraging the sums of squares
associated with the linear model. These sums can be directly
computed from an n3n distance matrix D estimated from
Y, where each element dij reflects the distance between
sample i and j. This is because the standard multivariate
analysis proceeds through a partitioning of the total sum
of squares and cross products (SSCP) matrix, and the rele-
vant information contained in required inner product ma-
trices could be achieved by an n3 n outer-product matrix
YY9, which could be obtained from an n3 n distance matrix
estimated from Y.

However, in GWAS, it has been widely known that genetic
relatedness, referred to as population structure, compli-
cates the analysis by creating spurious associations. The
linearmodel does not account for population structure and
may induce numerous false positive identifications. More-
over, these problemsmay compound inmultiple-phenotypes
analysis where biases accumulate from each phenotype
as their test statistics are summed over the phenotypes
(see details in Material and Methods.). Recently, the
linear mixed model has emerged as a powerful tool
for GWAS as it could correct for population structure. To
incorporate effects of population structure, GAMMA as-
sumes a linear mixed model instead of the linear model as
follows:

Y ¼ Xibþ Uþ E;

which has an extra n3mmatrix term U, where each column
vector uj contains effects of population structure of the jth

phenotype. This is an extension of the following widely used
linear mixed model for univariate analysis:

yj ¼ Xibj þ uj þ ej

where uj � Nð0;s2
gjKÞ and K is the kinship matrix that en-

codes the relatedness between individuals, and s2
gj is the

variance of the phenotype accounted for by the genetic
variation in the sample. To estimate a test statistic for the
multiple-phenotype analysis, we perform a multivariate re-
gression analysis through partitioning of the total SSCP
matrix based on the linear mixed model. Details of how
we perform the inference including test statistics, distance
matrix, and permutations are described in Materials and
Methods.

GAMMA corrects for population structure and
accurately identifies genetic variances in a
simulated study

Our goal is to detect an association between a variant and
multiple phenotypes. A trans-regulatory hotspot is a variant
that regulates many genes, thus, detecting trans-regulatory
hotspots is a good application for GAMMA. In testing the
accuracy of GAMMA, we assessed the approach’s potential
for eliminating effects of population structure and identifying
true trans-regulatory hotspots. We created a simulated data
set that has 96 samples with 100 SNPs and 1000 gene ex-
pression levels. To incorporate the effects of population struc-
ture, we took SNPs from a subset of an HMDP (Bennett et al.
2010) containing significant amounts of population struc-
ture. To incorporate the effects of trans-regulatory hotspots,
we simulated five trans-regulatory hotspots on the gene ex-
pression. For each of the trans-regulatory hotspots, we added
trans effects to 20% of the genes. In addition, we added cis
effects (Michaelson et al. 2009), which are associations be-
tween SNPs and genes in close proximity, as they are well-
known eQTLs that exist in real organisms.

We applied the standard t-test, EMMA (Kang et al. 2008),
MDMR (Zapala and Schork 2012), and GAMMA on the sim-
ulated data set. We visualized results in a plot (Figure 1),

Table 1 The list of significant associations with a gut microbiome data set

Chr Peak SNP Position (Mb)
Associated
region (Mb)

Number
of genes Clinical QTL cis-eQTL

Overlapping with
single genus GWAS

1 rs31797108 182,072,111 18.1–18.2 21 Body fat percentage increase
2 rs27323290 157,697,578 11.4–15.8 7 Food intake, weight Ctnnbl1 Akkermansia muciniphila
4 rs28319212 95,462,396 82.1–10.5 74 Food intake Caap1, Ift74 Oscillospira spp.
6 rs50368681 38,026,365 37.5–38.0 16 Atp6v0a4, Replin1, Zfp467 Sarcina spp.
7 rs33129247 68,944,648 68.5–71.4 3 TG, Gonadal Fat Nr2f2, Igf1r Akkermansia muciniphila
11 rs3680824 104,011,091 10.2–10.4 47 Ccdc85a, Efemp1
14 rs30384023 120,051,254 11.9–12.1 5 Dnajc3, Uggt2, Farp1
16 rs4154709 6,236,151 62.3–75.0 1
X rs29064137 87,504,122 87.2–88.6 1

FaST-LMM (Lippert et al. 2011) is used for single genus GWAS. Chr, chromosome; Ctnnbl1, catenin, b-like 1; Capp1, caspase activity and apoptosis inhibitor; Ift74,
intraflagellar transport 74; Atp6v0a4, ATPase, H+ transporting, lysosomal V0 subunit A4; Zfp467, zinc finger protein 467; TG, thyroglobulin; Nr2f2, nuclear receptor
subfamily 2, group F, member 2; Igf1r, insulin-like growth factor 1 receptor; Ccdc85a, coiled-coil domain containing 85A; Efemp1, EGF containing fibulin-like extracellular
matrix protein 1; Dnajc3, DnaJ (Hsp40) homolog, subfamily C, member 3; Uggt2, UDP-glucose glycoprotein glucosyltransferase 2; Farp1, FERM, RhoGEF (ARHGEF) and
pleckstrin domain protein 1.
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where the x-axis shows SNP locations and the y-axis
shows 2log10 P-values. For the t-test and EMMA, we aver-
aged the P-values over all of the phenotypes for each SNP,
because they give a P-value for each phenotype. In each plot,
we marked the locations of true trans-regulatory hotspots
with blue arrows. As a result, the plot clearly indicates that
GAMMA successfully identifies the true trans-regulatory hot-
spots without producing false positive identifications induced
by population structure (Figure 1D). However, the standard
t-test and EMMA fail to identify the true trans-regulatory
hotspots, because they lack sufficient power to detect the
associations (Figure 1, A and B). As it does not account for
population structure, MDMR results in many false positive
identifications induced by spurious associations (Figure 1C).

GAMMA identifies regulatory hotspots related to
regulatory elements of a yeast data set

Yeast is one of themodel organisms that are known to contain
several trans-regulatory hotspots. For example, in a compre-
hensively characterized yeast data set, validation with ad-
ditional lines of evidence, such as protein measurements,
identified multiple hotspots as having true genetic effects
(Foss et al. 2007; Perlstein et al. 2007). Unfortunately, ex-
pression data are known to contain significant amounts of
confounding effects stemming from various technical arti-
facts, such as batch effects. To correct for these confounding
effects, we applied NICE (Next generation Intersample Cor-
relation Emended) (Joo et al. 2014), a recently developed
method that corrects for the heterogeneity in expression
data, to the yeast data set and drew an eQTL map (Figure
2). On the map, the x-axis corresponds to SNP locations, and
the y-axis corresponds to gene locations. The intensity of each
point on the map represents the significance of the associa-
tion between a gene and a SNP. There are some vertical
bands in the eQTL map that represent trans-regulatory hot-
spots. However, the eQTL map does not visually indicate
which bands are the trans-regulatory hotspots as it only de-
picts associations between each SNP and a single gene.

We applied the standard t-test, EMMA (Kang et al. 2008),
MDMR (Zapala and Schork 2012), and GAMMA to the yeast
data set to detect the trans-regulatory hotspots. To remove
the confounding effects and other effects from various tech-
nical artifacts, we applied genomic control l, which is a stan-
dard way of removing unknown plausible effects (Devlin
et al. 2001). The inflation factor l shows how much the
statistics of obtained P-values are departed from a uniform
distribution; l. 1 indicates an inflation and l,1 indicates a

deflation. The l values are 1.20, 0.86, 3.64, and 0.98 for the
t-test, EMMA,MDMR, andGAMMA, respectively. As the yeast
data set does not contain a significant amount of population
structure, the l value is not very big even for the t-test. How-
ever, the l value is very big for MDMRwhich shows that even
a small amount of bias could cause significant problems in
multiple-phenotypes analysis. GAMMA could successfully
correct for the bias, and the l value for GAMMA is close
to 1. Figure 3, A and B, shows the results of MDMR and
GAMMA, respectively. The x-axis shows locations of the SNPs
and the y-axis shows 2log10 P-values. The blue stars above
each plot show hotspots that a previous study (Joo et al.
2014) identified as putative trans-regulatory hotspots for
the yeast data. As a result, GAMMA (Figure 3B) shows sig-
nificant signals on most of the putative hotspots. Details of
the functions of the hotspots are described in Yvert et al.
(2003). However, MDMR (Figure 3A) does not show signif-
icant signals on those sites. The t-test and EMMA fail to iden-
tify the trans-regulatory hotspots, because each phenotype is
expected to have a genetic effect too small to detect with
single-phenotype analysis (Figure 4).

GAMMA identifies variants associated with a
gut microbiome

An increasingbodyofevidence supports the idea thatbothdiet
and host genetics affect the composition of gut microbiota,
and that shifts in microbial communities can lead to cardio-
metabolic diseases such as obesity (Ley et al. 2005), diabetes
(Ley et al. 2005), and othermetabolic diseases (Karlsson et al.
2013). The ecosystem of gut bacteria is comprised of many
complex interactions that remain largely unidentified. Ac-
counting for the relationship between gut microbiota and
disease mechanisms is a challenge, as some taxa could be
coexpressed and there could be clinical overlap between
the taxa. Our incomplete understanding of how the gut
microbiota network poses a challenge to characterizing
how a SNP simultaneously affects multiple gut microbiome
taxa. Performing a multiple-phenotypes analysis with micro-
biome data may produce results that allow more complete
reconstruction of these networks. We applied the standard t-
test, EMMA (Kang et al. 2008), MDMR (Zapala and Schork
2012), and GAMMA on a gut microbiome data set (Org et al.
2015) fromHMDP that contains 26 common genus-level taxa
identified from 592 mice samples, including 197,885 SNPs.

Meta-genomics data arehighly heterogeneous, and studies
frequently produce highly aggregated or skeweddistributions
of species abundance (McArdle and Anderson 2001). In

Figure 6 The result of MDMR ap-
plied to chromosome 19 of a gut
microbiome data set. The x-axis cor-
responds to SNP locations and the
y-axis corresponds to gene locations.
The y-axis corresponds to 2log10
of P-value.
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addition, many of the individuals have no abundance for
specific taxa, which further affects the distribution. There-
fore, when we integrate all of the taxa together, the taxa with
these distribution problems drive very high l values (.5) in
our combined statistic, except EMMA, which is known to
have a deflation problem (Lippert et al. 2011; Joo et al.
2014). For this reason, we did not apply the genomic control
on the data. Figure 5 shows the result of GAMMA applied on
the data set. We defined the peaks with P-value # 531026

as significant peaks, and in mouse genomewe found nine loci
that are likely to be associated with the genus-level taxa.
Many of the identified loci contain a number of strong can-
didate genes based on the literature and overlap with signals
of clinical traits and functional variations such as cis-eQTL
(see Table 1 for a list of loci). For example, chromosome
1 and 2 loci are the same regions detected with obesity traits
in our previous study using the samemice (Parks et al. 2013).
In addition, global gene expression in epididymal adipose
tissue and liver showed a significant cis-eQTL with genes re-
siding in six out of nine detected loci. On the other hand,
MDMR predicts many false positives as mouse data are
known to contain significant amounts of population struc-
ture.We appliedMDMRon one of the smallest chromosomes,
chromosome 19. Even in this small region, MDMR produces
1989 significant peaks out of 5621 loci, which demonstrates
that MDMR is not advantageous for data sets with population
structure (Figure 6). The t-test and EMMA both fail to detect
significant signals due to the low power (Figure 7).

Discussion

In this article we present GAMMA, an accurate and efficient
method for identifying genetic variants associated with
multiple phenotypes while simultaneously considering pop-

ulation structure. Population structure is a widespread con-
founding factor that creates genetic relatedness between
samples. This confounding factor makes both genotypes
and phenotypes dependent on each other. In these cases,
previous multivariate methods that assume i.i.d. between
samples will produce erroneous results. Moreover, the bias
accumulates for each phenotype, thus, even a small degree
of population structure may produce significant errors in
multiple-phenotypes analysis.

GAMMAsuccessfully identifies thevariantsassociatedwith
multiple phenotypes in both simulated and real data sets,
including yeast andgutmicrobiomes frommice.GAMMA is an
improvement over other methods (Kang et al. 2008; Zapala
and Schork 2012) that either fail to identify true signals or
produce many false positives. We used a pseudo-F-statistic
that Brian et al. (2001) introduced as a test statistic. This
method quickly and efficiently estimates a test statistic and
is especially useful in cases with a larger number of pheno-
types than total number of samples, which is often the case in
genomics data. However, other appropriate multivariate sta-
tistics could be applied to GAMMA as well.

We further tailoredourmethod toaddress several potential
problems. First, in the single-phenotype analysis, we use the
average P-value of all the phenotypes for each SNP. This
method could be a naive way of comparing the results of a
single-phenotype analysis and multiple-phenotypes analysis.
Second, we use a median value of variance components that
are estimated from genes to compute a covariance matrix
when transforming phenotypes and genotypes. Empirically,
median values give good results in both of our experiments
with real data sets. However, variance components could be
widespread across genes and median values may not be suit-
able in some data sets. Finding an appropriate value could be
an excellent direction for future work. Third, GAMMA does

Figure 7 The results of the stan-
dard t-test and EMMA applied to
a gut microbiome data set. The
x-axis corresponds to SNP locations
and the y-axis corresponds to gene
locations. The y-axis corresponds
to sum of 2log10 of P-value over
the genus. (A) The result of the
standard t-test. (B) The result of
EMMA.
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not provide information that allows us to assess whether in-
dividual phenotypes in a set are associated with the SNP;
GAMMA results only suggest whether a set of phenotypes is
or is not associated with a SNP. There are several methods
for determining which individual phenotype the SNP is asso-
ciated with, including them-values of Han and Eskin (2012).
Lastly, GAMMAuses the Bray–Curtis measure (Bray and Curtis
1957; Gower 1966) to compute the distance matrix, but other
distance matrices could be used. There are various potential
distance measures that could be used to construct the distance
matrix (Webb 2002). Unfortunately, very little investigative
work has been published that guides selection of a distance
measure most appropriate for a given case. Zapala and Schork
(2006) discussed the influences of a distance measure by
comparing distance matrices derived by various distance
measures. The choice of a distance matrix explains the pro-
portion of variation in the distance matrix, but does not
necessarily explain the significance of the relationship be-
tween the predictor variables and the distance matrix en-
tries. A more exhaustive study may be needed to thoroughly
understand the effects of the distance matrix.
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