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ABSTRACT Nongenetic variation in phenotypes, or bet-hedging, has been observed as a driver of drug resistance in both bacterial
infections and cancers. Here, we study how bet-hedging emerges in genotype–phenotype (GP) mapping through a simple interaction
model: a molecular switch. We use simple chemical reaction networks to implement stochastic switches that map gene products to
phenotypes, and investigate the impact of structurally distinct mappings on the evolution of phenotypic heterogeneity. Bet-hedging
naturally emerges within this model, and is robust to evolutionary loss through mutations to both the expression of individual genes,
and to the network itself. This robustness explains an apparent paradox of bet-hedging—why does it persist in environments where
natural selection necessarily acts to remove it? The structure of the underlying molecular mechanism, itself subject to selection, can
slow the evolutionary loss of bet-hedging to ensure a survival mechanism against environmental catastrophes even when they are rare.
Critically, these properties, taken together, have profound implications for the use of treatment-holidays to combat bet-hedging-driven
resistant disease, as the efficacy of breaks from treatment will ultimately be determined by the structure of the GP mapping.

KEYWORDS evolution; bet-hedging; genotype–phenotype map; bacterial persistence; drug resistance

TREATMENT resistance in many diseases is driven by the
pre-existence of resistant phenotypes within the popula-

tion. Why such phenotypes coexist (with sensitive pheno-
types), and persist in environments never exposed to drug
treatment, remains a significant unanswered question. Phe-
notypic heterogeneity has been observed within isogenic
populations of a number of organisms, and at many scales
(Balázsi et al. 2011), from the unicellular—bacteria (Veening
et al. 2008), fungi (Levy et al. 2012), or cancer cells (Gupta
et al. 2011)—through insects (Danforth 1999; Hopper

1999), plants (Childs et al. 2010), and even aspects of human
development (Tonegawa 1983). Importantly, this intercellu-
lar variation has been observed even in homogeneous and
constant environments, suggesting that aspects of organis-
mal phenotype may be stochastically determined.

In environments thatfluctuateunpredictably, this phenom-
enon can serve as a survival mechanism by increasing the
likelihood that at least some offspring are well-adapted to
future environments. Thus, nongenetic, nonenvironmentally-
driven variation in phenotypes has been termed bet-hedging,
as a species diversifies the phenotypes within the population
in order to “hedge its bets” against environmental change
[see Seger (1987) for justification of this naming, and de
Jong et al. (2011) for a discussion of what evolutionary phe-
nomena can be considered bet-hedging]. Oscillatory environ-
ments are common in a range of ecological settings, including
fluctuating climates, immune–pathogen interactions, or cy-
clic hypoxia within tumors, and the range of phenotypic traits
that are thought to display stochastic determination is just as
broad.

Bet-hedging can offer a survival mechanism in the event of
rare catastrophicenvironmental change.An important clinical
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example is that of persister cells that arise stochastically
within isogenic populations of infectious bacteria such as
Escherichia coli (Balaban et al. 2004; Lewis 2006; Veening
et al. 2008). These cells, which constitute a small fraction of
the population [, 1%; Lewis (2006)], have reduced metab-
olism, and shut down nonessential cellular functions. In this
dormant state, the persister cells are tolerant to the cyto-
toxic effects of a number of antibiotic agents. Although
dormant, these cells can retain the ability to proliferate (al-
though at a drastically reduced rate), and, when antibiotic
treatment ceases, persisters will proliferate, producing non-
persisters and driving the re-emergence of the bacterial
population. Hence, bet-hedging, by creating a small subpop-
ulation impervious to those therapies that act on proliferat-
ing cells, proves to be an effective survival mechanism
against antibiotic treatment. Indeed, bacterial persisters
are thought to be a contributing factor to multidrug resis-
tance in a number of diseases (Keren et al. 2004; Lewis
2006; Nikaido 2009), and are implicated in the dormancy
of chronic diseases, such as tuberculosis, which can be sup-
pressed but not eradicated (Zhang et al. 2012). Novel treat-
ment strategies capable of effectively killing persister cells are
desperately needed, and this need will continue to grow with
the increasing incidence of resistance to our presently most
effective antibiotics.

In cancer, bet-hedging has been minimally studied; how-
ever, a number of aspects of disease course suggest that bet-
hedging mechanisms may be important for understanding
how tumors evade therapy. Significant regression of tumors
post-therapy leads to a period of remission, followed by the
regrowth of aggressive, therapy-resistant lesions. These
dynamics can be explained by the clonal model of cancer
(Greaves andMaley 2012), wherein recurring drug-resistant
cells are those that have stochastically acquired resistance
mechanisms through genetic mutation. However, the high
frequency of tumor recurrence in many cancers suggests
that therapeutic escape cannot be based solely on muta-
tional “luck.” Experimental results have shown evidence of
transitory resistance (Kurata et al. 2004; Yano et al. 2005)
indicative of the existence of a small drug-resistant sub-
population that re-establishes a drug-sensitive cancer cell
population. Recent experiments have identified the exis-
tence of such populations of “cancer persister cells” in a
cell line of EGFR+ nonsmall cell lung cancer (Sharma
et al. 2010), indicating that bet-hedging may play a role
in the emergence of cancer drug resistance (Ramirez et al.
2016). Thus, an understanding of bet-hedging in normal
and abnormal (e.g., cancer) cell function may help us un-
derstand why certain types of therapies fail while others
succeed.

Müller et al. (2013), as well as others (Thattai and Van
Oudenaarden 2004; Kussell and Leibler 2005; Wolf et al.
2005), have demonstrated mathematically the selective
advantage of bet-hedging strategies in stochastically fluctu-
ating environments. Showing that fitness is maximized when
the probability of individuals taking certain phenotypes

matches the likelihood of the environment selecting for that
phenotype, provided that fluctuations are not sufficiently
slow that adaptation through genetic mutation can occur,
or so fast that no individuals of any phenotype can survive
and reproduce. Further theoretical work by Botero et al.
(2015) considers when bet-hedging can offer a greater fitness
advantage than phenotypic plasticity, where phenotypes are
modulated via the environmental variation (Via and Lande
1985). This previous work derives constraints on the cost of
sensing, predictability of environmental fluctuations, and
the fitness effects of environmental change to determine
when bet-hedging, plasticity, or determinism offers a selec-
tive advantage.

It has been suggested that drug-insensitive cells that arise
stochastically in an isogenic population can facilitate the
emergence of genetically driven resistance by providing a
window of opportunity in which resistance conferring mu-
tations can arise Brock et al. (2009). However, this window
is not indefinite as drug-insensitive cells will revert to a
sensitive state, and likely die in the presence of a drug.
Charlebois et al. (2011) explored this phenomenon through
a mathematical model that incorporates switching from a
drug-insensitive to a drug-sensitive phenotype as the sto-
chastic relaxation from a state of high to low gene expres-
sion. This latter study demonstrated that the timescale
of relaxation necessary to facilitate a high likelihood of
genetic resistance is comparable to timescales measured
for certain genes implicated in human cancers. In further
work, Charlebois et al. (2014) introduced a model of a feed-
forward transcriptional regulatory network to demonstrate
that the network architecture can extend the time that drug-
insensitive cells maintain their phenotype, and, thus, can
increase the likelihood of therapeutic escape occurring
through genetically driven mechanisms. This work high-
lights that, to understand bet-hedging-driven drug resis-
tance, it may be necessary to look beyond the genetic
scale, and toward the gene–gene interactions that comprise
genotype–phenotype (GP) mapping.

The mathematical results of Müller et al. (2013) and
others (Thattai and Van Oudenaarden 2004; Kussell and
Leibler 2005; Wolf et al. 2005) suggest a paradox when
compared to clinical observations of bet-hedging, for exam-
ple, bacterial persistence, as a survival mechanism against
rare catastrophic events. Specifically, in hospitable environ-
ments, bacterial persisters reproduce more slowly than
cells with a proliferative phenotype, reducing population
fitness. It follows that natural selection will act to remove
or minimize the number of persisters in the population.
Where catastrophic events are rare, we should expect
bet-hedging strategies to be lost before the event occurs,
resulting in extinction of the population when it eventually
does. In this work, we suggest, following a similar argument
to that provided by Charlebois et al. (2014), that the archi-
tecture of the molecular interactions networks may slow the
evolutionary loss of bet-hedging to preserve it as a survival
mechanism.
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The causes of bet-hedging

Anumber of causes of bet-hedging have been identified across
different species, but inmany cases the cause remains an open
question. Thedifficulty in identifying the precise drivers lies in
distinguishing between the variability (ornoise) introduced at
different biological scales. For example, gene promoter, tran-
scription, and translation dynamics are driven by inherently
stochastic molecular interactions that result in the expression
of gene products that vary both temporally and between
isogenic individuals (Elowitz et al. 2002; Kaern et al. 2005;
Blake et al. 2006; Raj and van Oudenaarden 2008). These
gene products interact in nonlinear, molecular networks, of-
ten forming feedback loops that have the potential to sup-
press (Becskei and Serrano 2000), or amplify, noise (Hasty
et al. 2000), or induce oscillations in the concentrations of
molecules (Cardelli and Csikász-Nagy 2012; Cardelli 2014).
This intracellular system is further modulated by variability
in environmental factors and intercellular signaling.

Current biological thought is that noise in the levels of
specific intracellular proteinsmay drive nongenetic phenotype
differentiation. Indeed, under certain regimes of promoter
switching, transcription, and translation, protein abundance
can followa bimodal distribution (Kaern et al. 2005), inducing
two distinct phenotypes in a population. Further, theoretical
modeling, coupled with experimental validation, has high-
lighted how bistable autoregulatory genetic motifs can induce
bimodal protein distributions (Hasty et al. 2000; Becskei et al.
2001; Isaacs et al. 2003).

The evolutionary origin of bet-hedging is unclear. It is not
known whether bet-hedging emerged as an adaptation to
unpredictable environments, or as a spandrel (Gould and
Lewontin 1979), arising from the inherently stochastic na-
ture of the biochemical reactions governing cellular behavior,
and later co-opted as a survival mechanism. What is clear is
that bet-hedging strategies, manifested as phenotypically
heterogeneous populations, are subject to natural selection.
Beaumont et al. (2009) demonstrated the de novo evolution
of bet-hedging in the phenotypic trait of colony morphology
of the bacterium Pseudomonas fluorescens by imposing sto-
chastically fluctuating environments through replating. The
genetic driver underpinning this switching behavior was par-
tially elucidated by Gallie et al. (2015), who identified a
single nucleotide change in the gene carB as responsible for
the emergence of phenotype switching; however, identifying
the precise molecular pathways through which this mutation
acts to produce bet-hedging remains an open problem. Fol-
lowing the recent development of persister isolation tech-
niques, a number of genetic drivers thought to contribute
to bacterial persistence in E. coli have been identified
(Lewis 2006). However, while overexpression, or deletion,
of these genes were shown to impact the proportion of bac-
terial persisters within a population, none was found to
completely inhibit the persister phenotype, suggesting that
bet-hedging may arise from the interactions of multiple gene
products.

To address the difficulty in identifying genetic drivers of
bet-hedging, we introduce a model GP mapping, wherein
phenotypes emerge through the stochastic interactions of
proteins in intracellular molecular pathways. Specifically,
we simulate minimal interaction networks encoding bistable
switches among two or three chemical species. The dynamics
of these switches are implemented as chemical reaction
networks (CRNs) simulated stochastically. Through this
model we explore bet-hedging, which arises naturally, from
the perspective of network intrinsic noise, as opposed to the
gene intrinsic perspective of previous modeling (Figure 1).
Under this model, stable configurations of a reaction network
are analogous to local minima in an epigenetic landscape
[for example, as used by Huang (2009, 2012) to study phe-
notypic heterogeneity in cancer].

There exist a number of regulatory motifs that induce
bistable switching; however, the evolutionary implications
of structural differences between these motifs have remained
unexplored. Specifically, what properties of the molecular
networks are likely to be selected for, and whether such
properties can be exploited to identify potentially novel
therapies, remain open questions. By considering simple,
minimalistic models of bistable switches built from direct
and indirect feedback mechanisms, we demonstrate that
the structure of the networks governing phenotype differen-
tiation can result in bet-hedging that is robust to major
alterations. We argue that this robustness offers a potential
explanation for the difficulty in identifying single genetic
drivers of bet-hedging. Further, we demonstrate that network
structure can alter the rate of evolutionary convergence to
fitnessoptima, reducingevolvabilityandpreventing the lossof
bet-hedging in fixed environments. This result suggests a
solution to the apparent paradox of bet-hedging: how can it
persist for long periods of time in environmentswhere natural
selectionacts to remove it? Finally,wediscuss the implications
of this result for the design of treatments for diseases which
display nongenetic phenotypic heterogeneity.

Materials and Methods

In this work we implement model GP mappings that stochas-
tically determine one of two phenotypes, A or B, from a single
genotype, g, encoding gene expression. The GP mapping can
be considered to determine a genotype–dependent probability,
pðgÞ; of an individual taking phenotype, A. We aim to investi-
gate the rate of evolutionary loss of bet-hedging by calculating
the probability that an individual mutant invades an otherwise
isogenic population. This probability is dependent on the dis-
tribution of phenotypes in the resident population. As such,
this section is structured as follows. First, we derive the distri-
bution of phenotypes, and average growth rate of a population
in which each individual has probability, p, of having pheno-
type A at birth (and 12 p of having phenotype B). Second, we
derive the probability of a single mutant individual with prob-
ability p9 (corresponding to genotype g9) invading this resident
population. Third, we outline the model for the GP map,
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wherein pðgÞ is determined from g by a bistable CRN. Finally,
we describe simulations of long-term evolution and drug ther-
apy that form the basis of our results.

Population dynamics

Assume a fixed GP map that determines a probability, p, of an
individual with genotype g having phenotype A at birth. This
phenotype is fixed throughout the life of the individual. As we
wish to study evolutionary loss of bet-hedging, we may as-
sume p 2 ð0; 1Þ; as when p ¼ 1 we will end our simulations.
We also assume a fixed environment. A discrete timemodel is
used to simulate the population dynamics as follows. Denote
by xðtÞ ¼ ½xAðtÞ; xBðtÞ�⊺ the number of individuals of pheno-
type A and B at discrete timestep t. We assumeWright-Fisher
sampling, wherein each individual in the population at time t
can contribute any number of individuals to the population at
time t þ 1: Denote by wA (respectively, wB) the expected
number of individuals in the population at time t þ 1 that
are descended from a single individual of phenotype A (re-
spectively, B) present in the population at t. We assume
wA;wB . 0: Each new offspring takes phenotype A with
probability p (and B with probability 12 p), where p is de-
termined by the genotype, g, and the GP mapping.

For a fixed population size, the dynamics of the population
can be modeled using mathematics from the theory of
quasispecies that describe a population in mutation–selection
balance (Wilke 2005). Specifically, if the average number of
individuals at time t þ 1 produced by a single individual at
time t is given by hwi, the population dynamics are governed
by the projection matrix,

P ¼ 1
hwi

�
wAp wBp

wAð12 pÞ wBð12 pÞ
�
: (1)

The population distribution after one discrete time step is
given by xðt þ 1Þ ¼ PxðtÞ: As p 2 ð0; 1Þ, the matrix P is pos-
itive, and the Perron-Frobenius theorem (Cushing 1998; Li
and Schneider 2002) tells us that the normalized eigenvector
corresponding to the dominant eigenvalue of P gives the
long-term stationary distribution of the two phenotypes A
and B. As we have only two phenotypes, we can easily de-
termine this dominant eigenvalue as

0¼ jP2 Ilj ¼

wAp
hwi 2 l

wBp
hwi

wAð12 pÞ
hwi

wBð12 pÞ
hwi 2 l

��������

��������
¼

�
wAp
hwi 2 l

��
wBð12 pÞ

hwi 2 l

�
2

wAwBpð12 pÞ
hwi2

¼ l

�
l2

wAp
hwi 2

wBð12 pÞ
hwi

�
:

Thus, l ¼ 1
hwi ½pwA þ ð12 pÞwB� It is easy to verify then that

x* ¼ ðp; 12 pÞ is the normalized eigenvector corresponding
to this eigenvalue as

P
�

p
12 p

�
¼ 1

hwi

"
p2wA þ pð12 pÞwB

pð12 pÞwA þ ð12pÞ2wB

#
(2)

¼ 1
hwi ½pwA þ ð12 pÞwB�

�
p

12 p

�
(3)

¼ l

�
p

12 p

�
(4)

Note that this is also the distribution of phenotypes in the case
where the population grows without bound (when the factor
of 1=hwi is omitted). From this stationary distribution, we can
derive hwi ¼ pwA þ ð12 pÞwB: This phenotype equilibrium
will be used in the next section to determine the invasion
probability of a different (i.e., mutant) bet-hedging popula-
tion into an existing one.

In reality, the valueswA andwB are dependent on a number
of stochastic processes, most importantly reproduction and
death. Later, we will consider the effect of an increased death
rate associated with drug treatment, so it is informative to
consider the relationship between parameters governing the
explicit processes of birth and death, and the offspring num-
bers wA and wB: Suppose individuals of type A (respectively,
B) die with probability dA (respectively, dB) over each time
step. Further, suppose that individuals of phenotype A
(respectively, B) that survive reproduce with probability fA
(respectively, fB) over the timestep. In this case

Figure 1 Schematic representation of the CRN model for determining phenotypes from genotypes. The gene expression profiles (g) are assumed to be
fixed for each genotype, and the dynamics of expression from the biological genotype (green dashed leftmost box) are ignored. These modeling
assumptions allow us to explore the implications of network-intrinsic noise (purple dashed centered box) independently of gene-intrinsic noise.
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wi ¼ ð12 diÞð1þ fiÞ  for  i 2 fA;Bg: (5)

Note thatmultiple pairs of values for fi and di can yield the same
wi: The population dynamics we present here, and the invasion
dynamics presented below, are identical for all such pairs.

Invasion dynamics

Our aim is to determine the long-term evolutionary dynamics
of bet-hedging populations endowedwith differingGP–maps.
It is intractable to determine these trajectories through ex-
plicit simulation alone. Instead we derive an analytic solution
for the probability of a mutant genotype invading an existing
isogenic population. Consider a large fixed-size population,
and assume that mutation is sufficiently rare (explicitly
that the mutation rate m and population size N satisfy
NmlogN � 1) that we may consider strong-selection weak
mutation (SSWM) evolutionary dynamics (Gillespie 1983,
1984). Under these assumptions, we can assume that the
population is isogenic, and that each time a new mutant
appears in the population it either fixes as the new population
genotype or becomes extinct before another can arise.

Suppose a single mutant of genotype g9 arises in an iso-
genic population of genotype g and denote by pðg9Þ, the prob-
ability that this mutant reaches fixation as the population
genotype. This probability is dependent on the phenotype
of this initial mutant, and is given by

p
�
g9
�
¼ p

�
g9
�
p
�
g9
��A�þ

h
12 p

�
g9
�i

p
�
g9
��B�: (6)

Denote p ¼ ½pðg9��AÞ;pðg9��BÞ�, and suppose that the popula-
tion size,N, is sufficiently large that wemay approximate it by
the limit N/N: As we assume Wright-Fisher sampling for
reproduction, the value of p can be determined from the
theory of branching processes. In particular, p can be calcu-
lated numerically as the solution to the equation

12p ¼ e2Pp (7)

where P is the matrix governing the population dynamics
defined above.

A proof of this identity, modified from the theory of viral
quasispecies (Wilke 2003), is presented in Supplemental
Material, File S1. As the value of hwi can be calculated from
the population dynamics described above, this equation can
solved numerically. Figure 2 shows an example heatmap of in-
vasion probability for an invader with genotype corresponding
to probability p2 of phenotype A into a resident population with
probability p1: The parameters are wA ¼ 2:0 and wB ¼ 1:01:

CRNs as a model GP map

To study the evolutionof bet-hedging,we consider thegenetic
drivers of changes to the probability, p, of an individual having
phenotype A. We implement a model GP mapping in which
phenotypes emerge with proportions that are determined
from the interactions of expressed gene products. In this
model, the genotype, g, is represented in an abstracted way,

as the numbers of chemical species, labeled x and y, that are
present in the cell at birth. Thus, g ¼ ðx0; y0Þ 2 ℕ2:

The model relies on the stochastic resolution of a CRN
through the Gillespie algorithm (Gillespie 1977, 2001) to
determine a phenotype from the genotype g. CRNs are de-
fined by a collection of labeled chemical species and a list of
reactions, with associated rates, between these species. The
Gillespie algorithm determines a stochastic progression of
reactions within a CRN, and returns the sequence of reactions
that occur, along with the times at which they occur. We
consider the class of CRNs that encode bistable switches
(Cardelli and Csikász-Nagy 2012), wherein the sequence of
reactions will almost surely (in the probabilistic sense) ter-
minate in one of two stable configurations (see Figure 3).
These different final configurations can be considered differ-
ent states of a stochastic switch, and to represent the config-
urations that ultimately result in different phenotypes, A and
B. The probability that the CRN progresses to a specific switch
state is dependent on the initial conditions for the network.
Thus, we can define a model GP mapping according to

g/
GP

	
A; if   the  simulation  progresses  to  stable  state  1
B; if   the  simulation  progresses  to  stable  state  2:

(8)

A schematic representation of thismodel is shown in Figure 1.
In this model, an individual has a phenotype that is deter-
mined soon after birth and fixed until that individual repro-
duces. This model of the GP map can be considered to be a
stochastic, irreversible developmental program in the case
of differentiating cancer cells or higher organisms. In the

Figure 2 Invasion probabilities for a single mutant with genotype correspond-
ing to a probability p2 of producing phenotype A into a resident population
with probability p1: The probabilities are calculated from Equations 6 and
7 with parameters wA ¼ 2:0; wB ¼ 1:01: Note that deleterious and neutral
mutations cannot fix under our model of invasion dynamics; hence, invasion in
the case p2 #p1 (above the antidiagonal of the plot) is impossible.
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context of bacteria, the developmental perspective is less ap-
propriate, and the model can be justified by considering gene
expression bursts that are cell-cycle dependent (specifically,
bursts that occur at the start of the G1 phase).

Note that the genotype g corresponding to a stable gene
expression profile is the sole heritable determinant of pheno-
type in this model. The state of the molecular switch, i.e., the
phenotype, of a parent individual has no influence on the
phenotype of the offspring. This assumption can be justified
as follows. The bistable switches we discuss may represent
only a small subnetwork of the complex and dynamic interac-
tion network governing the GP mapping. Thus, we can expect
the chemical species comprising the molecular switch, x and y,
to be further transformed, or consumed, in additional unmod-
elled reactions that determine phenotype. Further, even when
this is not the case, we can expect the x and y molecules to

decay over time. Thus, the omission of epigenetic inheritance
of switch state can be considered an assumption that the time
scale of molecular decay is much faster than that of cellular
division. Weakening this assumption, and permitting epige-
netic inheritance, represents a potential extension of the
model that is briefly explored in our Discussion.

Finally,weassume that the series of chemical reactions that
result in a stable configuration for thenetwork all occurwithin
a sufficiently short time period (in comparison to the cell
cycle) that we may take them to have all occurred instanta-
neously. This assumption permits us to ignore the timing
information provided by the Gillespie algorithm. As such,
the abscissas of all figures showing stochastic simulations of
CRNs presented in this workmeasure time discretely, in terms
of the number of reactions that have occurred, instead of
continuously. The time between successive reactions in the

Figure 3 Example molecular switches as GP maps. Each column shows the characteristics of one of the four switches (DC, DCx, DCy, and AM)
introduced in the main text. The first row shows the name, CRN structure, and precise definition of each switch. The second row shows stochastic
trajectories of the number of molecule x in the system for four different simulations of each switch. The starting condition in all simulations is
x ¼ y ¼ 30; (b ¼ 0 for the AM network). Note that all of the switches are able to resolve to either of the stable conditions, x ¼ 60 or x ¼ 0; which
correspond to the phenotypes A and B, respectively. Row three shows contour plots displaying the probability of switching to phenotype A for each
possible initial condition with 0, x0; y0 #60 and x0 þ y0 6¼ 0 (b ¼ 0 for the AM switch). Contour lines show subspaces of genotype space of equal
hedging probability for hedges equal to 0:1; 0:2; . . . ;0:9:
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Gillespie algorithm is dependent on a propensity function that
accounts for reaction rates and the volume of the container
(i.e., cell cytoplasm). As we are only interested in the proba-
bility of finding each stable configuration, and not the precise
time taken to reach this configuration, wemay set the volume
to be an arbitrary constant, say 1.0 mm3, and also normalize
the reaction rates such that at least one reaction has rate
1:0  sec21:

Four model bistable switches that can serve as model GP
maps are shown in Figure 3, along with examples of stochas-
tic realizations of the switches (second row), and heatmaps
showing p½ðx0; y0Þ� ¼ ℙ½g/GPA� for x0; y0 2 f0; . . . ; 60g
(third row). The value of p½ðx0; y0Þ� is required to determine
the population and invasion dynamics as described above.
Estimating this value numerically through multiple samples
of the Gillespie algorithm is prohibitively slow. Instead, the
value can be determined analytically for the DC, DCx, and
DCy switches as they correspond to the classical “drunkard’s
walk” of probability theory. For the AM switch, no such ana-
lytic solution is possible. To determine p½ðx0; y0Þ� in this case,
we construct the Markov chain on the space of possible con-
figurations of ðx; y; bÞ and numerically solve for p½ðx0; y0Þ� The
details are provided in File S1.

Simulating evolutionary loss of bet-hedging

To investigate the impact of GP mapping on the evolutionary
loss of bet-hedging, we implement a stochastic simulation of
mutation and selection. We consider mutations to a genotype
g ¼ ðx0; y0Þ as changes to the initial abundances x0 and y0:
The possible mutations are thus modeled by

m½ðx0; y0Þ� ¼ fðx061; y061Þj  provided  x0 þ y0 ¼ gmaxg:
(9)

Note that we have restricted mutations such that total ex-
pression is conserved, and thegenotype is determinedentirely
by the value x0ðy0 ¼ gmax 2 x0Þ: For the remainder of this
work, we omit reference to y0, and equate g with x0: Owing
to the computational complexity of our simulations, we take
gmax ¼ 60: Changes to the value of gmax do not change the
qualitative results, but will change them quantitatively as the
time of evolutionary convergence to a nonhedging strategy
increases as gmax is increased (see File S1).

The mutations defined by Equation 9 differ from previous
network models of the GP mapping; for example, the models
of Huang (2009) or Gerlee and Anderson (2009), as they
modify the initial conditions of a network-defined dynamical
system, as opposed to the system itself. This choice of muta-
tion is appropriate to the level at which genotypes are mod-
eled. For example, the phenotypes of the gene regulatory
network model studied by Huang (2009) are stable gene
expression profiles. By contrast, in our model, expression
profiles are taken as the genotypes, the initial expression
levels of x and y. This notion of genotype is chosen to allow
us to investigate the impact of network-intrinsic noise on the
evolution of bet-hedging (see Figure 1).

As discussed above, we assume a large asexually reproduc-
ing bet-hedging population exists under SSWM dynamics
(Gillespie 1983). Our evolutionary simulation proceeds by
repeatedly generating a mutant of the population genotype
g according to Equation 9, computing the probability p that
this mutant fixes as the new population genotype according
to Equation 7, and then stochastically deciding whether the
mutation fixes [by sampling q � Unifð0; 1Þ and comparing
the value to p]. The simulation terminates when the geno-
type satisfies x0 ¼ gmax, and the total number of mutations
that are sampled in the simulation (including those that do
not fix) is returned as a proxy for the time until evolutionary
loss of the bet-hedging. The initial population genotype, g0; is
chosen such that pðg0Þ � 0:5:

Simulating treatment holidays

To explore the clinical impact of treatment holidays on treat-
ing disease with bet-hedging driven resistance, we imple-
mented a simulation comprising two parts. In the first, an
evolutionary simulation similar to the one described above is
performed to determine the population genotype following a
treatment holiday. From an initial genotype g0 with
pðg0Þ � 0:5, the expected population genotype g following
a treatment holiday of length T (measured in mutational
events) is computed. The expected time, in mutational
events, taken for the genotype gþ 1 to arise by mutation
and fix in the population is 1=½0:5pðgþ 1Þ�: Here, the factor
of 0.5 arises as only half of mutations are beneficial (g/g2 1
is not). Using this fact, an expected postholiday genotype can
be easily determined by repeatedly incrementing g, while
keeping a sum of the expected number of mutational events
required for that new g to fix in the population. This process is
terminated when this number of events exceeds T.

Using this postholiday genotype, and the associated
GP-map-dependent hedging probability pðgÞ; a stochastic
death–birth process without mutation was performed to de-
termine an approximate time to extinction. A population of
size 1010 was initialized with a proportion pðgÞ of phenotype
A and ½12 pðgÞ� of phenotype B. The simulation proceeds as
depicted in Figure 4, and is terminated when the population
is extinct, or 20,000 simulated hr has elapsed. Each time step
corresponds to 1 hr. Unlike the simulation of evolutionary
timescales, the treatment simulation is dependent on the
parameters of per-hour probability of death, ddrugi ; and repro-
duction fdrugi ; for individuals of each phenotype in the drug-
treated environment. This environment is different to the
hospitable environment taken for evolutionary simulation.

This simulation was performed 2000 times for each treat-
ment holiday length T2 (0, 3000, 5000, 50,000, and 100,000),
and each molecular switch from Figure 3. The extinction times
were collated to form the histograms shown in Figure 8.

Data availability

All models described in this work were implemented in
Python. All scripts are available from D.N. upon request.
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Results

We have implemented a model GP mapping in which pheno-
types emerge with proportions that are determined from a
genotype and molecular switch. It is infeasible to explicitly
model the full array of chemical interactions comprising the
translation from genes to phenotypes. However, investigation
of smaller network motifs can provide insight into the prop-
erties of the full molecular network. A similar approach was
taken by Cardelli (2014), who studied emulation between
CRNs, the phenomenon where one network is capable of
reproducing the exact mass-action kinetics of another. Iden-
tifying emulations provides a method to extend results
gained from studying of simple CRN motifs to larger molec-
ular pathways.

We consider four different bistable switches that can serve
as model GP mappings. These switches are constructed
from minimal interaction encoding direct and indirect feed-
back among two or three chemical species, and represent the
simplest possible implementations of bistable networks. The
switches, along with examples of their dynamics, are pre-
sented in Figure 3. TheDirect Competition (DC) switch (along
with DCx, DCy) consists of a pair of autocatalytic reactions.
The Approximate Majority switch, studied by Angluin et al.
(2008) and later Cardelli and Csikász-Nagy (2012), consists
of two catalytic and two autocatalytic reactions. A biological
implementation of the AM switch is presented by Dodd et al.
(2007) as a potential mechanism for epigenetic cell memory.
By picking appropriate genotypes (i.e., initial conditions for
the molecular network), any switching probability, and,

equivalently, any ratio of phenotypes A and B, can be closely
approximated using any of the switches (Figure 3, Row 3). It
follows that bet-hedging can arise solely from network-
intrinsic noise introduced by the stochastic interactions
among as few as two chemical species. Here, we explore
how the topology of simple stochastic networks influences
the evolutionary fate of bet-hedging.

Robustness and redundancy in molecular switches

By introducing redundancy,wedemonstrate howbet-hedging
can be robust to major perturbations to the underlying net-
work. Figure 5A shows a version of the DC switch from Figure
3 in which the species x and y are duplicated. In this network,
which we call DCdup, the set of stable configurations are
determined by x þ x9 ¼ 0 or y þ y9 ¼ 0: If we associate the
phenotypes A and B with these two configurations, respec-
tively, then the switching probability on initial conditions
ðx0; x90; y0; y90Þ is identical to the switching probability of DC
with initial conditions ðx0 þ x90; y0 þ y90Þ (a simple mathemat-
ical argument to establish this proceeds by symmetry and
relabeling the species). The potential benefit of DCdup is that
it maintains its switching properties, even if chemical species
are removed. Figure 5A shows numerical solutions for the
CRN switching probability when the species x is deleted
(middle network), and then when both x and y are deleted
(right hand network). These induced CRNs maintain switch-
ing behavior similar to the original network DCdup. The net-
work induced by deleting x (or by symmetry y) behaves
precisely as DCdup with initial condition ðx0; 0; y0; y90Þ [by

Figure 4 The model for simulating treatment holidays. (A) The overall model consists of first determining a post-treatment holiday genotype, g, and
then simulating drug treatment on a population with bet-hedging determined by that genotype. (B) The expected postholiday genotype is determined
from the invasion probabilities pðgÞ, which are, in turn, dependent on the molecular switch. (C) A stochastic death–birth process is used to determine an
extinction time, text:
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symmetry ðx0; x90; 0; y90Þ]. Further, removing both x and y from
DCdup creates a version of the DC switch in the species x9 and
y9 that behaves precisely as the DCdup switch on initial con-
ditions ð0; x90; 0; y90Þ: It follows that deletion of chemical spe-
cies will change the likelihood of switching (and thus the
proportion of phenotypes A and B) if initial numbers of all
other proteins remain fixed. An example is shown by the red
circles in Figure 5A, where deletion of chemical species shifts
the switching probability, but does not inhibit bet-hedging
entirely. Hence, the DCdup switch is robust to the removal
of chemical species—a mutational event that, in our model,
can be interpreted as deletion or downregulation of a gene.
Reversing this argument, the switching behavior of the CRNs
in Figure 5A demonstrate how bet-hedging is robust to gene
duplications or upregulating mutations.

A similar redundant implementation of the AM molecular
switch is shown in Figure 5B, and is robust to the removal of
species, x, y, and b in any order. As with the DCdup network,
the removal of any chemical species will change the switch-
ing probability, and shift the proportions of phenotypes in the
population, but will not inhibit one phenotype entirely. Fur-

ther, we note that the switching is not only robust to muta-
tions that remove chemical species, but also to alterations in
the rates of reaction between them. For example, each of the
switches presented in Figure 3 can be derived from the larger
network shown in Figure 5C by inhibition of specific reac-
tions. Removal of the autocatalytic reactions x þ y/x þ x
and x þ y/y þ y yields the AM switch. Alternatively, remov-
ing the four reactions involving the chemical species b yields
the DC switch.

Evolutionary loss of bet–hedging

For fixed gene expression, the specific switching mechanism
responsible for producing multiple phenotypes is irrelevant,
as the proportion of phenotypes remains fixed. However,
over longer timescales, the structure of themolecular switch
has a significant impact on the evolution of bet-hedging.
Throughout the remainder of this work, we take the two
phenotypes A and B to correspond to a high fitness, prolif-
erative phenotype, and a low fitness, slow proliferating phe-
notype, respectively, mirroring the phenomenon of bacterial
persistence.

Figure 5 Redundancy results in bet-hedging that is robust to mutation. (A) Redundancy in the CRN implementing the DC switch maintains molecular
switching when chemical species are deleted. Marked in red is the switching probability for initial conditions ð20;30;30; 20Þ before deletion (0), after
the deletion of x (1), and after the deletion of x and y (2). Contour lines show initial conditions of equal switching behavior. (B) Redundancy in the CRN
implementing the AMmolecular switch. Switching is maintained if the species x, y and b are removed in any order. We omit the case where y is removed
before x due to symmetry. (C) A molecular switch that can reduce to either AM or DC when specific reactions are inhibited.
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The invasion probability is computed independently of the
(assumedtobe large)populationsize,and isdependentonlyon
the (stable) distribution of phenotypes in the population at
equilibrium. This distribution can be computed from the values
wA and wB:We parametrize the model determined as follows.
The discrete timesteps are taken to be t ¼ 60mins, mirroring
an expected division time of E. coli. The time from birth until
reproduction for a phenotype A individual is distributed expo-
nentially, with rate parameter lA ¼ 1:0 per 60 min. The num-
ber of reproductions of a single individual is then Poisson
distributed with parameter lA ¼ 1:0: Hence, on average, each
phenotype A individual present at time t reproduces once in
the 60 min, and produces two individuals at time t þ 1 (itself
and its offspring). It follows, wA ¼ 2:0: The reproductive rate
of persister-type cells is unknown. To match their behavior
qualitatively, we take our persister-like phenotype B cells to
have an expected reproduction time 100 times slower than
phenotype A individuals, at 6000 min. Thus, reproduction
time for phenotype B cells is distributed exponentially with
rate parameter lb ¼ 0:01 per 60 min. The expected number
of reproductions over the 60 min timestep is then 0.01 and
wB ¼ 1:01: The environment remains fixed (wA;wB are un-
changed) throughout the evolutionary simulation. Although
this parametrization is only an approximation, it is sufficient
as an illustrative model demonstrating the importance of the
structural properties of GP mapping. The effects of changing
wA and wB are discussed in File S1.

Figure 6A shows how changes in the population genotype
manifest themselves as changes in the average population
fitness. The expected population fitness increase associated
with a mutation from x0 to x0 þ 1 is not constant, and instead
is dependent on the underlying molecular switch. As a result,
invasion probabilities are dependent on both the population
genotype, invading genotype, and the form of the molecular
network. Figure 6C shows the probability of a single mutant
genotype, x90, invading a resident population of genotype x0:
Note that only mutations that increase the proportion of phe-
notype A are beneficial, and, hence, as our invasion probabil-
ities are determined from the theory of branching processes,
are the only mutations that can fix. Figure 6B shows the
probability of successive beneficial mutations, x0 þ 1; invad-
ing a resident population of genotype x0: In this figure, we see
the impact of the GP map on the evolutionary dynamics. For
the DC, DCx, and AM switches, the probability of the next
beneficial mutation fixing reduces for each successive muta-
tion. The magnitude of this decrease is dependent on the
switch, and, in the case of DCx and AM, approaches zero.
Conversely, for the DCy switch, each successive mutation is
more likely to fix.

Consider the evolutionary trajectories of phenotype propor-
tions determined by each of the molecular switches from an
initial gene expression profile corresponding closely to a pop-
ulation consisting of �50% of each phenotype. As the DC and
AM switches are symmetric, the genotype corresponding to a
0.5 hedging probability is x0 ¼ 30: For DCx, the closest geno-
type to a 50% hedge is x0 ¼ 7, which corresponds to a prob-

ability of 0.49. For DCy, the closest genotype to a 0.5 hedging
probability is x0 ¼ 53, and corresponds to a probability of
0.51. As deleterious and neutral mutations cannot fix under
our model of population dynamics, the population genotype
will be periodically incremented until x0 ¼ 60, at which point
the bet-hedge is lost. Figure 7 shows the evolutionary trajec-
tories toward this loss of bet-hedging, highlighting consider-
ably different convergence dynamics. For the DC, DCx, and
DCy switches, the expected convergence times can be deter-
mined as the expectation of a sumof nonidentical independent
geometric distributions. We find that the expected number of
mutational events required for a complete loss of bet-hedging,
as highlighted in Figure 7, are given by

E½time  to  loss  of   bet-hedgejDCy   switch; x0 ¼ 53� ¼ 195:8
E½time  to  loss  of   bet-hedgejDC  switch; x0 ¼ 30� ¼ 3382:8
E½time  to  loss  of   bet-hedgejDCx  switch; x0 ¼ 7� ¼ 68; 000:1
E½time  to  loss  of   bet-hedgejAM  switch; x0 ¼ 30� ¼ N

In the case of the AM network, each subsequent mutation
provides a diminishing increase in fitness until mutations are
approximately neutral. The probability of neutral mutations
fixing within our model of invasion dynamics, which models
the population size as tending to infinity, is zero. In reality, the
actual convergence times in the AM will depend on the
population size. For large populations, as is our assumption,
the timescales will be sufficiently long that we take it as
equivalent to the evolutionary trajectory never converging.
(This assumption can be justified by the observation that over
these time scales either unmodelled mutations [such as mu-
tations to the GP map itself, to other genes governing the
phenotypes A and B, or to other aspects of the phenotype], or
unmodelled changes in the environment or ecosystem, will
occur, rendering our model unsuited to the situation.)

Simulation of therapeutic intervention

To demonstrate the importance of the underlying molecular
switch on the efficacy of treatment holidays for diseases with
bet-hedging-driven resistance, we performed a two-part sim-
ulation. First, a treatment holiday was simulated through an
evolutionary simulation in a hospitable environment to de-
termine a postholiday population genotype. A nonspatial,
individual-based model was then used to simulate drug
treatment. The parameter values used in the evolutionary
simulation of treatment holidays were chosen to coincide
with the values w ¼ ½whosp

A ;whosp
B � ¼ ½2:0; 1:01� used in our

simulation of evolutionary loss of bet-hedging. For the sim-
ulation of treatment, explicit values of f drugi and ddrugi (for
i 2 fA;Bg) are required. First, we determined the values for
the nondrug environment that correspond to those used in
the evolutionary simulation. For the hospitable environ-
ment, we assumed a fixed death probability for both As
and Bs of dhospA ¼ dhospB ¼ 0:005: The per-hour likelihood of
reproduction for the surviving individuals was taken as
fhospA ¼ 1:0 and fhospB ¼ 0:015: These parameters correspond
to overall expected offspring for each phenotype
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We consider three regimes of drug–environment parameter
sets corresponding to a purely cytostatic drug, affecting only
fA; a purely cytotoxic drug, affecting only dA, and a drug that is
a mixture of the two, affecting both fA and dA intermediately.
In the following discussion the “drug” superscript is omitted
for readability.

For each regime we assume that the parameters for phe-
notype B, mirroring a drug-impervious persister-like pheno-
type, are unchanged. Consider a fixed drug parameter set.
For each switching network, the expected postholiday
population genotype, g, was calculated for each treatment
holiday length T 2 (0, 3000, 5000, 50,000, 10,000) from
initial genotype g0 chosen, as before, to correspond closely
to an equal proportion of each phenotype. From each g, we
then performed 2000 simulations of drug treatment to de-
termine a distribution of extinction times. Where simulation
time exceeded 20,000 hr, the simulation was halted and ex-
tinction was determined to not occur. A standard course of
antibiotic treatment lasts between 7 and 10 days. Using this
period as a guide, we defined extinction times of,240 hr as
corresponding to a potentially successful course of therapy,
and thus, a viable treatment holiday strategy. The extinction

time histograms lying within this period are shaded green
and marked by a * in the histograms. Mutations were not
modeled during the simulations of therapy.

The cytostatic drug parameter set was taken to correspond
toa substantial reduction in theproliferative rateofphenotype
A individuals. We note that extinction will almost surely
never occur ifD

wdrug
E
¼ pðgÞwdrug

A þ ½12 pðgÞ�wdrug
B ¼ pðgÞð12 dAÞ

3 ð1þ fAÞ þ ½12 pðgÞ�ð12 dBÞð1þ fBÞ$ 1:

As ð12 dBÞð1þ fBÞ. 1:0; it follows that a cytostatic drug can
only drive extinction in this case if ð12 dAÞð1þ fAÞ, 1:0: As
dA ¼ 0:005; this occurs only if fA , 0:99521 2 1 � 0:005: For
our simulation of cytostatic drug treatment, we assume that
the drug is entirely effective at inhibiting reproduction,
fA ¼ 0: For this parameter, we find that extinction never oc-
curs within the 240 hr time period, indicating that, regard-
less of the underlying switching mechanism, no length of
treatment holiday will result in complete cure with a cyto-
static drug. The histograms of extinction times, where extinc-
tion does occur, are presented in Figure 3 of File S1.

For the cytotoxic drug parameter set, we consider an in-
creased death probability of dA ¼ 0:8; holding all others the
same. The histograms of extinction times are presented in
Figure 8. Here, we see that the length of treatment holiday

Figure 6 GP mapping determines the dynamics of invasion. (A) The relationship between population genotype, x0; and average population fitness for
each molecular switch. (B) Invasion probabilities for a new genotype x0 þ 1 into a resident population of genotype x0: (C) Invasion probabilities for
resident and invader genotypes.
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Figure 7 Convergence dynamics through genotype and probability space for the GP maps defined by DC, DCx, DCy, and AM; 30 stochastic realizations of
the evolutionary simulation through both genotype and probability space are shown for (A) the DCy switch, (B) the DC switch, (C) the DCx switch, and (D)
the AM switch. Due to the rapid initial change in hedging probability for the DCx switch, the convergence dynamics are also shown on a restricted scale.
As the probability of phenotype B rapidly approaches zero in the AM switch simulation but never converges, the dynamics are shown on a logarithmic scale.
The expected convergence time for the DCy switch is marked in green, for the DC switch is marked in red, and for the DCx switch is marked in blue.
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necessary for a successful (,240 hr) follow up course of
therapy varies by orders of magnitude depending on the un-
derlying switch. It follows that the efficacy of treatment hol-
idays as a potential therapeutic intervention for a disease
with bet-hedging-driven resistance is dependent on the un-
derlying driver of bet-hedging.

To test the robustness of this result, we considered an
intermediate parameter set of dA ¼ 0:4 and fA ¼ 0:5 as a
trade-off between cytostasis and cytotoxicity. The histograms
of extinction times in this simulation are presented in Figure
4 of File S1. We find that, although the specific extinction
times change, the qualitative results remain the same. Spe-
cifically, those combinations of treatment holiday, T, and
switching mechanism that resulted in an effective follow-up
treatment with a cytotoxic drug (Green, Figure 8) also permit
effective treatment under this mixed parameter set. The con-
verse is also true, with the blue (extinction but not within
240 hr) and gray (no extinction with 20,000 hr) histograms
from Figure 8 being preserved.

Discussion

Wehave introduced amodel for theGPmap that usesminimal
networks of stochastic interactions to determine phenotypes.
Other models of nongenetic phenotypic heterogeneity have
utilized deterministic interaction networks, for example, the
models of Gerlee and Anderson (2007) or Huang (2009,
2012), or stochastic simulation of empirically derived molec-
ular pathways, for example Charlebois et al. (2014). The
model presented here differs as we investigate minimal sto-
chastic instances of switching behavior. These networks, like
those investigated by Gerlee and Anderson or Huang, are, at
present, hypothetical. However, this work could be readily
extended to empirically observed reaction networks in future
work.

Remarkably simple network motifs have been demon-
strated to implement switching behavior that can produce
populations in which different proportions of cells, deter-
mined by the initial conditions of the network, take on dif-
ferent phenotypes. While abstract in its representation of
reactions within a network, the reactions in our model are
closely related to the physical mechanisms that govern in-
tracellular regulatory networks, providing valuable insight
into the impact of network architecture on the stochastic
determination of phenotypes.

We have demonstrated how redundancy, a common fea-
ture ofmany biological systems, can result in bet-hedging that
is robust to the addition or removal of chemical species. This
redundancy, which can arise initially through neutral or
nearly-neutral mutations of network structure, can ensure
that bet-hedging is not lost through gene deletions or dupli-
cations. Critically, this observation may explain the failure to
identify genes responsible for bacterial persistence. For ex-
ample, Lewis (2006) highlights mutations to the genes hipA,
rmf, sulA, and toxin–antitoxin (TA) loci relBE, dinJ and
mazEF as possible drivers of bacterial persistence. However,

deletion of rmf, relBE or mazEF has been demonstrated to
have no effect on the phenomenon of persistence, owing
possibly to redundancy in TAmodules, while deletion or over
expression of hipA can change the proportion of bacterial
persisters but not eradicate them. This is consistent with
our results that indicate deletion of a single species in the
CRN will not inhibit phenotypic heterogeneity but may alter
phenotype proportions (Figure 5). The conclusion to be taken
from the results reviewed by Lewis (2006) need not be that
the factors identified are not the ones driving bacterial per-
sistence, but instead it may be that the search for a single
genetic factor responsible for bet-hedging is doomed to fail. It
may be that bet-hedging emerges from the interactions of a
collection of genetic factors in the sense of the epigenetic
landscape studied by Brock et al. (2009) and Huang
(2009). If this is the case, then to identify the biological
mechanisms responsible for bet-hedging, we need to move
beyond a gene-centric perspective, and to identify those net-
works of interactions governing the determination of
phenotypes.

Mutations in cancer have often been associated with their
direct effect on phenotypes—the concept of a driver mutation
being that it induces a novel adaptive phenotype leading to
clonal expansion (McFarland et al. 2014). However, our re-
sults suggest another phenomenon, wherein mutations do
not induce novel phenotypes, but rather alter frequencies of
pre-existing phenotypes within the population. This change
in phenotypic ratio can have implications for cancer progres-
sion—a phenomenon previously explored by Charlebois et al.
(2011). Consider the phenomenon of tumorigenic cells,
where it is thought that only cells of a certain phenotype
can form a growing tumor mass (Pardal et al. 2003; Ricci-
Vitiani et al. 2007; Meacham and Morrison 2013). Genetic
heterogeneity can explain the existence of a tumorigenic sub-
population if certain driver mutations are responsible for the
tumorigenic phenotype. However, an alternative mechanism
is that stem-like tumor cells give rise to a population of het-
erogeneous phenotypes. In the traditional stem cell model, a
hierarchy exists where the stem cells produce a range of tu-
mor cell phenotypes (Reya et al. 2001). Cancer stem cells
divide to produce either more cancer stem cells (self-renewal)
or cells with nonstem phenotypes down the hierarchy. This
cellular decision is often taken to be stochastic (an example
of bet-hedging), and our results highlight the potential for
mutations to alter the probabilities of self-renewal or differ-
entiation that have been shown to have significant impact
on many aspects of tumor progression (Enderling et al.
2013).

An alternative bet-hedging mechanism for tumorigenicitiy
is that the tumorigenic phenotype is transient and stochasti-
cally determined (potentially withmicroenvironmental influ-
ence). Evidence for this phenomenon was highlighted by
Quintana et al. (2010), who demonstrated that the tumori-
genic potential of individual melanoma cells is similar, de-
spite high heterogeneity of many markers in the initializing
cell. No driver or stem population was found, and, indeed,
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the heterogeneity of marker expression was recapitulated by
most tumorigenic cells, regardless of the starting pattern of
expression. Such a mechanism would have different implica-
tions from the stem cell model presented above, as poten-
tially sensitive cells would be more difficult to define.
However, our predictions remain the same: that genetic mu-
tations could shift the frequency of tumorigenic phenotypes
and profoundly impact cancer progression.

Our results further demonstrate that the structure of the
network governing phenotypic differentiation also has impor-
tant implications for the evolutionary loss of bet-hedging. By
considering mutations to the expression levels of genes, we
find that the time taken for a two-phenotype bet-hedge to be
lost, in an environment favorable to only one of the pheno-
types, can vary by orders of magnitude depending on the
network structure. If bet-hedging serves as a survival mech-
anism in the event of rare catastrophic environmental change
(e.g., drug treatment), then the GP mapping can prevent loss
of this survival mechanism over the long timescales in which
catastrophe does not occur. For example, if bet-hedging is
driven by a network such as the AM network (Figure 3), then
each successive mutation toward a one–phenotype strategy
induces a diminishing increase in the probability of generat-

ing that phenotype, and, thus, a diminishing increase in
expected fitness. Eventually mutations become (essentially)
neutral, and unable to fix in a large population. It is the
structure of the molecular switch that substantially slows
evolutionary convergence. This result provides a possible so-
lution to the apparent paradox of bet-hedging, i.e., how can
bet-hedging persist in environments where natural selection
acts to remove it? The structure of the molecular mechanism,
itself subject to natural selection, can slow the loss of bet-
hedging strategies to ensure a survival mechanism, even
where environmental catastrophes are very rare.

These results have important implications for therapeutic
strategies to treatdiseasesdisplayingbet-hedging-drivendrug
resistance.Theoreticalstrategiestocombatbet-hedging-induced
drug resistance have focused on identifying novel agents
capable of killing persister cells, or identifying genetic mech-
anisms that can be targeted to prevent the persister pheno-
type from emerging. This latter strategy bears a striking
resemblance to the targeted therapy revolution in the treat-
ment ofmany cancers. The identification ofmolecular targets
whose inhibition inducesdeath (or inhibits growth)has led to
the discovery of a number of novel therapies for melanoma,
nonsmall cell lungcancer, andcolorectal cancers.Thesedrugs

Figure 8 Treatment dynamics for populations endowed with the different switching networks after differing timescales of treatment holidays for a
cytotoxic drug regime. Each histogram shows the distribution of extinction times over 2000 simulations of treatment in an individual-based model. The
switch used as the GP map is shown as the column heading. The genotype and associated probability of phenotype A (shown inset to each subfigure) are
determined by an evolutionary simulation of a treatment holiday for a timescale, measured in mutational events, determined by the row. The gray
background (top row) indicates that no extinction occurred within the simulated 20,000 hr of treatment. The blue background indicates extinction times
longer than a timeframe viable for an antibiotic treatment (240 hr), a green background (or inset star) indicates extinction times within this time frame.
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are, in the short term, remarkably effective; however, the
effects are rarely durable.Mutations that abrogate the effects
of targeted therapies quickly emerge during treatment, driv-
ing resistance, and, ultimately, mortality. The results of our
chemical reaction model shed light on this Darwinian adap-
tation, and suggest that targeted therapies to prevent bet-
hedging may either be impossible, or, where they do exist,
prone to fail due to the re-emergence of bet-hedging through
evolution. More precisely, the discovery of a single “magic
bullet” genetic factor (Strebhardt and Ullrich 2008), which,
when targeted, can switch off multi-drug resistant dormant
phenotypes, is unlikely, owing to redundancy in the network
architecture. However, we should not rule out the potential
of targeted therapies entirely. It may be possible to identify
multiple targets for which simultaneous inhibition prevents
bet-hedging. Alternatively, targets may be identified that
shift the proportion of resistant or dormant individuals
within a population to a manageable level, either permitting
treatment with other cytotoxic agents, or driving the disease
into a dormant state.

A second theoretical treatment strategy suggested to com-
bat resistance in cancers and resistant infections (Bigger
1944) is the introduction of treatment holidays. The tradi-
tional doctrine for therapy is one ofmaximal dose-density, i.e.,
that we should treat diseases using themost potent drug with
the highest tolerable dose for the longest possible time until
the disease is cured, the therapy ceases to be effective, or the
drugs become too toxic. Mathematical models of disease pro-
gression assuming genetically driven resistance indicate that
this approach could drive the emergence of resistance
through an ecological principle called competitive release
(Alto et al. 2013; Adkins and Shabbir 2014). Before treat-
ment, cells compete with one another for limited resources
within a spatially constrained population. In a nontreated
environment, pre-existing resistant cells are often less fit than
sensitive ones, and, thus, owing to competition, do not grow
to large numbers within the population. Selective pressures,
for example within a growing tumor, are often not sufficiently
strong for clonal sweeps (the fixation of a single genetic
clone) to occur (Robertson-Tessi and Anderson 2015;
Sottoriva et al. 2015) and the population contains a hetero-
geneous mix of phenotypes. When this population is exposed
to a maximum dose-density therapy, the sensitive cells are
killed, allowing the rapid outgrowth of the previously small
and resistant population. This population then drives the re-
currence of drug-resistant disease. Treatment holidays have
been suggested as a potential therapeutic strategy to avoid
drug resistance driven by competitive release (Enriquez-
Navas et al. 2016).

Here, we implemented an individual-based model of the
dynamics of a bet-hedging population under treatment to
explore the efficacy of treatment holidays in combating bet-
hedging-driven resistance. Coupled with a long-term evolu-
tionary simulation, we explored the impact of the mechanism
driving bet-hedging on the efficacy of treatment holidays. Our
model suggests that it is the GPmap, and, in particular, how it

hinders or promotes the rate of evolution, that determines the
efficacy of treatment breaks in reversingdrug resistance. If the
mechanismdriving bet-hedging permits evolutionary loss in a
short-to-medium timescale, then treatment holidays may
drive the loss of bet-hedging and re-establish drug sensitivity.
However, if instead, the driving mechanism slows the evolu-
tionary loss of bet-hedging, then a treatment break is unlikely
to re-establish drug sensitivity in a time frame relevant to
disease progression. We note that interfering with the mech-
anism driving bet-hedging through targeted therapy could
alter the switching to allow the fast evolutionary loss of bet-
hedging where previously this would not occur.

In this paper, we have taken the initial conditions of our
reaction networks to be genetically determined and stable,
allowing us to explore the implications of the structure of the
network on the evolution of bet-hedging. The model we
present could also be used to study additional aspects of
nongenetic heterogeneity other than those presented here.
For example, themodel could be extended to directly account
for the dynamics of gene expression [for example using the
model presented by Kaern et al. (2005) or the GRN model
presented by Huang (2009)]. We have assumed that the
chemical species comprising the reaction networks are en-
tirely depleted before reproduction and determination of
the next phenotype. Omitting this assumption to permit the
epigenetic inheritance of molecular switch state represents
an extension of our model to account for phenotypic memory
or carry-over. Alternatively, the initial conditions could be
taken to be environmentally determined, and the network
itself to be genetically determined. In this case the model
would give a GP map similar to the neural network model
used by Gerlee and Anderson (2007) and Gerlee et al. (2015)
to study phenotypic plasticity. However, our model would
differ in that the determination of phenotypes would be sto-
chastic, permitting the study of environment-dependent bet-
hedging strategies.

Finally, it is worth noting that the model of Gerlee and
Anderson (2007) and Gerlee et al. (2015) is an extension
of the classical concept of the reaction norm (Via and Lande
1985) to nonlinear and higher dimensional functions. The
model presented here offers a further natural extension,
breaking down the assumption of functionality within the
reaction norm by introducing stochasticity, bringing the re-
action norm concept more closely in line with biological re-
ality. This theoretical extension of GP mapping to a stochastic
nonfunctional process could be further extended to account
for environmental factors, as discussed above. Such an exten-
sion will bring the model more closely in line with the maxim
of developmental biology, that both environment and geno-
type are equally important in determining the phenotype
(“g + e = p”). Pigliucci (2010) suggests, in a review of the-
oretical models of the GP mapping, that we must build
models that take both environment and genotype as equal
partners in determining the phenotype, and attempt to
bridge the divide between developmental biology and the
modern evolutionary synthesis. The model presented here
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represents a potential step toward this goal, but importantly
offers somethingmore than previousmodels that have set out
along this path: an attempt to account for the role of chance.

Acknowledgments

D.N. thanks the Engineering and Physical Sciences Re-
search Council (EPSRC) for generous funding for doctoral
studies (ref: OUCL/DN/2013). M.R.T. and A.R.A.A. ac-
knowledge the National Cancer Institute funded Physical
Science Oncology Center grant, U54CA193489.

Literature Cited

Adkins, S., and A. Shabbir, 2014 Biology, ecology and manage-
ment of the invasive parthenium weed (Parthenium hysteropho-
rus L.). Pest Manag. Sci. 70: 1023–1029.

Alto, B. W., R. L. Lampman, B. Kesavaraju, and E. J. Muturi,
2013 Pesticide-induced release from competition among com-
peting Aedes aegypti and Aedes albopictus (Diptera: Culicidae).
J. Med. Entomol. 50: 1240–1249.

Angluin, D., J. Aspnes, and D. Eisenstat, 2008 A simple popula-
tion protocol for fast robust approximate majority. Distrib. Com-
put. 21: 87–102.

Balaban, N. Q., J. Merrin, R. Chait, L. Kowalik, and S. Leibler,
2004 Bacterial persistence as a phenotypic switch. Science
305: 1622–1625.

Balázsi, G., A. van Oudenaarden, and J. J. Collins, 2011 Cellular
decision making and biological noise: from microbes to mam-
mals. Cell 144: 910–925.

Beaumont, H. J., J. Gallie, C. Kost, G. C. Ferguson, and P. B. Rainey,
2009 Experimental evolution of bet hedging. Nature 462: 90–
93.

Becskei, A., and L. Serrano, 2000 Engineering stability in gene
networks by autoregulation. Nature 405: 590–593.

Becskei, A., B. Séraphin, and L. Serrano, 2001 Positive feedback
in eukaryotic gene networks: cell differentiation by graded to
binary response conversion. EMBO J. 20: 2528–2535.

Bigger, J., 1944 Treatment of staphylococcal infections with pen-
icillin by intermittent sterilisation. Lancet 244: 497–500.

Blake, W. J., G. Balázsi, M. A. Kohanski, F. J. Isaacs, K. F. Murphy
et al., 2006 Phenotypic consequences of promoter-mediated
transcriptional noise. Mol. Cell 24: 853–865.

Botero, C. A., F. J. Weissing, J. Wright, and D. R. Rubenstein,
2015 Evolutionary tipping points in the capacity to adapt to
environmental change. Proc. Natl. Acad. Sci. USA 112: 184–
189.

Brock, A., H. Chang, and S. Huang, 2009 Non-genetic hetero-
geneity––a mutation-independent driving force for the somatic
evolution of tumours. Nat. Rev. Genet. 10: 336–342.

Cardelli, L., 2014 Morphisms of reaction networks that couple
structure to function. BMC Syst. Biol. 8: 84.

Cardelli, L., and A. Csikász-Nagy, 2012 The cell cycle switch com-
putes approximate majority. Sci. Rep. 2: 656.

Charlebois, D. A., N. Abdennur, and M. Kaern, 2011 Gene expres-
sion noise facilitates adaptation and drug resistance indepen-
dently of mutation. Phys. Rev. Lett. 107: 218101.

Charlebois, D. A., G. Balázsi, and M. Kærn, 2014 Coherent feed-
forward transcriptional regulatory motifs enhance drug resis-
tance. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 89: 052708.

Childs, D. Z., C. Metcalf, and M. Rees, 2010 Evolutionary bet-
hedging in the real world: empirical evidence and challenges
revealed by plants. Proc. Biol. Sci. 277: 3055–3064.

Cushing, J. M., 1998 An Introduction to Structured Population Dy-
namics, Vol. 71, SIAM, Philadelphia, PA.

Danforth, B. N., 1999 Emergence dynamics and bet hedging in a
desert bee, Perdita portalis. Proc. R. Soc. Lond. B Biol. Sci. 266:
1985–1994.

de Jong, I. G., P. Haccou, and O. P. Kuipers, 2011 Bet hedging or
not? A guide to proper classification of microbial survival strat-
egies. BioEssays 33: 215–223.

Dodd, I. B., M. A. Micheelsen, K. Sneppen, and G. Thon,
2007 Theoretical analysis of epigenetic cell memory by nucleo-
some modification. Cell 129: 813–822.

Elowitz, M. B., A. J. Levine, E. D. Siggia, and P. S. Swain,
2002 Stochastic gene expression in a single cell. Science
297: 1183–1186.

Enderling, H., L. Hlatky, and P. Hahnfeldt, 2013 Cancer stem
cells: a minor cancer subpopulation that redefines global cancer
features. Breast 11: 200.

Enriquez-Navas, P. M., Y. Kam, T. Das, S. Hassan, A. Silva et al.,
2016 Exploiting evolutionary principles to prolong tumor con-
trol in preclinical models of breast cancer. Sci. Transl. Med. 8:
327ra24.

Gallie, J., E. Libby, F. Bertels, P. Remigi, C. B. Jendresen et al.,
2015 Bistability in a metabolic network underpins the de novo
evolution of colony switching in Pseudomonas fluorescens. PLoS
Biol. 13: e1002109.

Gerlee, P., and A. R. Anderson, 2007 An evolutionary hybrid cel-
lular automaton model of solid tumour growth. J. Theor. Biol.
246: 583–603.

Gerlee, P., and A. R. Anderson, 2009 Modelling evolutionary cell
behaviour using neural networks: application to tumour growth.
Biosystems 95: 166–174.

Gerlee, P., E. Kim, and A. R. Anderson, 2015 Bridging scales in
cancer progression: mapping genotype to phenotype using neu-
ral networks. Semin. Cancer Biol. 30: 30–41.

Gillespie, D. T., 1977 Exact stochastic simulation of coupled
chemical reactions. J. Phys. Chem. 81: 2340–2361.

Gillespie, D. T., 2001 Approximate accelerated stochastic simula-
tion of chemically reacting systems. J. Chem. Phys. 115: 1716–
1733.

Gillespie, J. H., 1983 A simple stochastic gene substitution model.
Theor. Popul. Biol. 23: 202–215.

Gillespie, J. H., 1984 Molecular evolution over the mutational
landscape. Evolution 38: 1116–1129.

Gould, S. J., and R. C. Lewontin, 1979 The spandrels of San Marco
and the Panglossian paradigm: a critique of the adaptationist
programme. Proc. R. Soc. Lond. B Biol. Sci. 205: 581–598.

Greaves, M., and C. C. Maley, 2012 Clonal evolution in cancer.
Nature 481: 306–313.

Gupta, P. B., C. M. Fillmore, G. Jiang, S. D. Shapira, K. Tao et al.,
2011 Stochastic state transitions give rise to phenotypic equi-
librium in populations of cancer cells. Cell 146: 633–644.

Hasty, J., J. Pradines, M. Dolnik, and J. J. Collins, 2000 Noise-
based switches and amplifiers for gene expression. Proc. Natl.
Acad. Sci. USA 97: 2075–2080.

Hopper, K. R., 1999 Risk-spreading and bet-hedging in insect pop-
ulation biology 1. Annu. Rev. Entomol. 44: 535–560.

Huang, S., 2009 Non-genetic heterogeneity of cells in develop-
ment: more than just noise. Development 136: 3853–3862.

Huang, S., 2012 The molecular and mathematical basis of Wad-
dington’s epigenetic landscape: a framework for post-Darwinian
biology? BioEssays 34: 149–157.

Isaacs, F. J., J. Hasty, C. R. Cantor, and J. J. Collins, 2003 Prediction
and measurement of an autoregulatory genetic module. Proc.
Natl. Acad. Sci. USA 100: 7714–7719.

Kaern, M., T. C. Elston, W. J. Blake, and J. J. Collins,
2005 Stochasticity in gene expression: from theories to phe-
notypes. Nat. Rev. Genet. 6: 451–464.

1538 D. Nichol et al.



Keren, I., D. Shah, A. Spoering, N. Kaldalu, and K. Lewis,
2004 Specialized persister cells and the mechanism of multi-
drug tolerance in Escherichia coli. J. Bacteriol. 186: 8172–8180.

Kurata, T., K. Tamura, H. Kaneda, T. Nogami, H. Uejima et al.,
2004 Effect of re-treatment with gefitinib (‘Iressa’, ZD1839)
after acquisition of resistance. Ann. Oncol. 15: 173–174.

Kussell, E., and S. Leibler, 2005 Phenotypic diversity, population
growth, and information in fluctuating environments. Science
309: 2075–2078.

Levy, S. F., N. Ziv, and M. L. Siegal, 2012 Bet hedging in yeast by
heterogeneous, age-correlated expression of a stress protectant.
PLoS Biol. 10: 952.

Lewis, K., 2006 Persister cells, dormancy and infectious disease.
Nat. Rev. Microbiol. 5: 48–56.

Li, C.-K., and H. Schneider, 2002 Applications of Perron–Frobenius
theory to population dynamics. J. Math. Biol. 44: 450–462.

McFarland, C. D., L. A. Mirny, and K. S. Korolev, 2014 Tug-of-war
between driver and passenger mutations in cancer and other
adaptive processes. Proc. Natl. Acad. Sci. USA 111: 15138–
15143.

Meacham, C. E., and S. J. Morrison, 2013 Tumour heterogeneity
and cancer cell plasticity. Nature 501: 328–337.

Müller, J., B. Hense, T. Fuchs, M. Utz, and C. Pötzsche, 2013 Bet-
hedging in stochastically switching environments. J. Theor. Biol.
336: 144–157.

Nikaido, H., 2009 Multidrug resistance in bacteria. Annu. Rev.
Biochem. 78: 119.

Pardal, R., M. F. Clarke, and S. J. Morrison, 2003 Applying the
principles of stem-cell biology to cancer. Nat. Rev. Cancer 3:
895–902.

Pigliucci, M., 2010 Genotype–phenotype mapping and the end of
the ‘genes as blueprint’metaphor. Philos. Trans. R. Soc. Lond. B
Biol. Sci. 365: 557–566.

Quintana, E., M. Shackleton, H. R. Foster, D. R. Fullen, M. S. Sabel
et al., 2010 Phenotypic heterogeneity among tumorigenic mel-
anoma cells from patients that is reversible and not hierarchi-
cally organized. Cancer Cell 18: 510–523.

Raj, A., and A. van Oudenaarden, 2008 Nature, nurture, or
chance: stochastic gene expression and its consequences. Cell
135: 216–226.

Ramirez, M., S. Rajaram, R. J. Steininger, D. Osipchuk, M. A. Roth
et al., 2016 Diverse drug-resistance mechanisms can emerge
from drug-tolerant cancer persister cells. Nat. Commun. 7:
10690.

Reya, T., S. J. Morrison, M. F. Clarke, and I. L. Weissman,
2001 Stem cells, cancer, and cancer stem cells. Nature 414:
105–111.

Ricci-Vitiani, L., D. G. Lombardi, E. Pilozzi, M. Biffoni, M. Todaro
et al., 2007 Identification and expansion of human colon-
cancer-initiating cells. Nature 445: 111–115.

Robertson-Tessi, M., and A. Anderson, 2015 Big bang and con-
text-driven collapse. Nat. Genet. 47: 196–197.

Seger, J., 1987 What is bet-hedging? Oxford Surveys in Evolution-
ary Biology 4: 182–211.

Sharma, S. V., D. Y. Lee, B. Li, M. P. Quinlan, F. Takahashi et al.,
2010 A chromatin-mediated reversible drug-tolerant state in
cancer cell subpopulations. Cell 141: 69–80.

Sottoriva, A., H. Kang, Z. Ma, T. A. Graham, M. P. Salomon et al.,
2015 A big bang model of human colorectal tumor growth.
Nat. Genet. 47: 209–216.

Strebhardt, K., and A. Ullrich, 2008 Paul Ehrlich’s magic bullet
concept: 100 years of progress. Nat. Rev. Cancer 8: 473–480.

Thattai, M., and A. Van Oudenaarden, 2004 Stochastic gene ex-
pression in fluctuating environments. Genetics 167: 523–530.

Tonegawa, S., 1983 Somatic generation of antibody diversity. Na-
ture 302: 575–581.

Veening, J.-W., W. K. Smits, and O. P. Kuipers, 2008 Bistability,
epigenetics, and bet-hedging in bacteria. Annu. Rev. Microbiol.
62: 193–210.

Via, S., and R. Lande, 1985 Genotype-environment interaction and
the evolution of phenotypic plasticity. Evolution 39: 505–522.

Wilke, C. O., 2003 Probability of fixation of an advantageous mu-
tant in a viral quasispecies. Genetics 163: 467–474.

Wilke, C. O., 2005 Quasispecies theory in the context of popula-
tion genetics. BMC Evol. Biol. 5: 1.

Wolf, D. M., V. V. Vazirani, and A. P. Arkin, 2005 Diversity in
times of adversity: probabilistic strategies in microbial survival
games. J. Theor. Biol. 234: 227–253.

Yano, S., E. Nakataki, S. Ohtsuka, M. Inayama, H. Tomimoto et al.,
2005 Retreatment of lung adenocarcinoma patients with gefi-
tinib who had experienced favorable results from their initial
treatment with this selective epidermal growth factor receptor
inhibitor: a report of three cases. Oncol. Res. 15: 107–111.

Zhang, Y., W. W. Yew, and M. R. Barer, 2012 Targeting persisters
for tuberculosis control. Antimicrob. Agents Chemother. 56:
2223–2230.

Communicating editor: L. M. Wahl

Robustness and Persistence of Bet-Hedging 1539



Supplementary Materials

Proof of the Identity for π

Here we provide a brief proof of the identity

1− π = e−Pπ (1)

where

P =
1

〈w〉

[
wAp wBp

wA(1− p) wB(1− p)

]
. (2)

The proof is modified from the theory of viral quasispecies and was originally presented by Wilke
[2003].

Under Wright–Fisher sampling the probability that a randomly chosen individual in the next
generation is the offspring of a given individual of phenotype i ∈ {A,B} in the current generation is
wi
〈w〉N . Thus, the probability that an individual is the offspring of a particular parent of phenotype
i and genotype g and also has phenotype r is

ξr =
wiP(g

GP→ r)

〈w〉N
(3)

as not all offspring will have phenotype r. It follows that the probability that a given individual
of phenotype i has precisely kr offspring of phenotype r in the next generation is given by

p(kr|i) =

(
N

kr

)
ξkrr (1− ξr)N−kr (4)

We can extend this argument to both phenotypes. The probability that an individual of phe-
notype i has kA offspring of phenotype A and kB offspring of phenotype B is

p(kA, kB|i) =
N !

kA!kB!(N − kA − kB)!
ξkAA ξkBB (1− ξA − ξB)N−kA−kB (5)

=
N !

kA!kB!(N − kA − kB)!

Pi1

N

kA Pi2

N

kB

×
(

1− Pi1

N
− Pi2

N

)N−kA−kB
(6)

where the second equality follows from the definition of P. Assume now that the population
size, N , is sufficiently large that we may approximate p(kA, kB|i) by taking the limit as N → ∞.
This limit is a bivariate Poisson distribution

p(kA, kB|i) =
PkA
i1

kA!
×

PkB
i2

kB!
× e−Pi1−Pi2 (7)

In the following derivation we will use the theory of branching processes (Harris [2002]). This
method, along with the assumption of infinite population size, restrict the resulting theory to
fixation events of mutations which increase the average fitness of the population. Denote by χi
the probability that the lineage of a single mutant individual with phenotype i in a population of
average fitness 〈w〉 becomes extinct after finitely many generations. From the theory of branching
processes we know that the vector of extinction probabilities χ = (χA, χB) satisfies χ = f(χ) where
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f(z) = (fA(z), fB(z)) is the probability generating function of the offspring probabilities p(kA, kB|i)
given by,

fi(z) =
∑
kA

∑
kB

p(kA, kB|i)zkA1 zkB2 . (8)

Substituting equation 7 into equation 8 we have

fi(χ) =
∑
kA

∑
kB

(
PkA
i1

kA!
×

PkB
i2

kB!
× e−Pi1−Pi2

)
χkA1 χkB2 (9)

= e−Pi1−Pi2
∑
kA

∑
kB

(
PkA
i1

kA!
χkA1

)(
PkB
i2

kB!
χkB2

)
(10)

= e−Pi1−Pi2
∑
kA

(
(Pi1χ1)

kA

kA!

)∑
kB

(
(Pi2χ2)

kB

kB!

)
(11)

= e−Pi1−Pi2 × ePi1χ1 × ePi2χ2 (12)

= ePi1(χ1−1)+Pi2(χ2−1). (13)

Taking the convention that ex = (ex1 , . . . , exn) this gives

f(χ) = eP(χ−1). (14)

Now note that the probability of fixation of the mutant individual with phenotype i is precisely
the probability that its lineage does not go extinct in finitely many generations, π = 1−χ. Hence

1− π = f(1− π) = e−Pπ. (15)

Robustness to Parameter Variation

The parameters gmax, wA and wB use in this paper take specific values chosen for reasons of
computational efficiency (for gmax) or to mirror qualitative behaviour (for wA and wB). Here, we
demonstrate the robustness of our results to variations in these parameters. Figure 1 shows the effect
of increasing gmax on convergence time. For each type of switch, the convergence time increases
monotonically with gmax and the difference in convergence time between switching networks, on
which our results are predicated, holds as gmax increases. Figure 2 shows the effect of increasing wA
on convergence time when wB = 1.01 is fixed. The differing dynamics of evolutionary convergence
are preserved for increasing wA. However, convergence time is monotonically decreasing as wA
increases. The AM switch is omitted as there is no convergence for wA ≤ 10.

Analytic and Numerical Calculation of p(g)

Computing p(g) by sampling many stochastic runs of the Gillespie algorithm for each molecular
switch is computationally expensive. Instead, we analytically determine p(g) for the DC, DCx and
DCy switches and numerically approximate it for the AM switch.

For the DC, DCx and DCy switch we note that the stochastic process corresponds to the
classical ‘drunkards walk’ in probability theory. Thus, we know
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Figure 1: Comparison of Convergence Times for Increasing gmax.

P ( Phenotype A | DC switch , g = (x0, y0)) =
x0

x0 + y0
(16)

P ( Phenotype A | DCx switch , g = (x0, y0)) =
1−

(
10
11

)x0
1−

(
10
11

)x0+y0 (17)

P ( Phenotype A | DCy switch , g = (x0, y0)) =
1−

(
11
10

)x0
1−

(
11
10

)x0+y0 . (18)

The switching probabilities in the AM network can be approximated numerically by constructing
a Markov chain on the state space of possible configurations of x, y and b molecules.

Assume that there are n ∈ N molecules in the system. Denote a configuration of the system
by (r, s) for r, s ∈ N with 0 < r + s ≤ n where r and s denote the number of molecule x and y
respectively. Call a configuration stable if no more reactions can occur. As each reaction in the
AM network conserves the total number of molecules we know that the number of molecules b is
equal to n− r − s. Denote

p(r, s) = P[The AM–network with inital config. (19)

(r, s) ends in the stable config. (n, 0)]. (20)

In the absence of y molecules, either the system has reached the stable configuration (n, 0) or the
only reaction that can occur is x+ b −→ x+ x and the system must reach (n, 0) eventually. Hence

p(r, 0) = 1 for all r ∈ [1, n] . (21)
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Figure 2: Comparison of Convergence Times for Increasing wA, wB = 1.0. gmax = 60 for
each curve. The AM network dynamics are omitted as convergence does not occur.

Further, by the symmetry of the reaction network, we must have that

p(r, s) = 1− p(s, r) for all s, r ∈ [0, n] with 0 < r + s ≤ n (22)

and in particular we have

p(r, s) =
1

2
for all r = s with 0 < r + s ≤ n. (23)

By this symmetry, we need only determine p(r, s) on the set

S = {(r, s) : r, s ∈ [0, n], 0 < r + s ≤ n and r ≥ s} (24)

Denote the subset of S for which we know p(r, s) by S∗. Within S\S∗ we have a recurrence relation
for p(r, s).

p(r, s) = P[x+ y −→ x+ b : r, s]p(r, s− 1)

+ P[y + x −→ y + b : r, s]p(r − 1, s)

+ P[x+ b −→ x+ x : r, s]p(r + 1, s)

+ P[y + b −→ y + y : r, s]p(r, s+ 1)

(25)
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Where the probabilities of each reaction are given by the propensity functions,

P[x+ y −→ x+ b : r, s] =
rs

2rs+ r(n− r − s) + s(n− r − s)

P[y + x −→ y + b : r, s] =
rs

2rs+ r(n− r − s) + s(n− r − s)

P[x+ b −→ x+ x : r, s] =
r(n− r − s)

2rs+ r(n− r − s) + s(n− r − s)

P[y + b −→ y + y : r, s] =
s(n− r − s)

2rs+ r(n− r − s) + s(n− r − s)
.

(26)

Now, as we know the values of p(r, s) along two boundaries we can solve this recurrence numerically
with a Markov Chain. Note that we can view the chemical reaction simulation as a random
walk inside the configuration space S with transition probabilities given by the likelihoods of each
reaction. We define the |S| × |S| transition matrix for the Markov chain as

M((r, s), (r′, s′)) =



1 if (r, s) ∈ S∗ and r = r′, s = s′

0 if (r, s) ∈ S∗ and r 6= r′ or s 6= s′

P[R : r, s] if (r, s) 6∈ S∗ and there exists a reaction

R taking (r, s) to (r′, s′)

0 otherwise

(27)

in which we have taken those values (r, s) for which we know p(r, s) to be absorbing states. If we
define the limit matrix

M∗ = lim
k→∞

Mk (28)

then M∗((r, s), (r′, s′)) is only non-zero when (r′, s′) is a state for which we already know p(r′, s′).
In this case M∗((r, s), (r′, s′)) denotes the probability that the random walk in S which simulates
a series of chemical reactions will reach (r′, s′) before any other absorbing state. As such we can
determine p(r, s) by summing over all of the absorbing states of the Markov Chain

p(r, s) =
∑

r′,s′∈[0,n],0<r′+s′≤n

s′=0 or r′=s′

p(r′, s′)M∗((r, s), (r′, s′)). (29)

This relation is used to determine the switching probabilities for the AM switch, for example
in row 3 of Figure 3 in the main text.
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Figure 3: Treatment dynamics for populations endowed with the different switching
networks after differing timescales of treatment holidays for the cytostatic drug regime.
Each histogram shows the distribution of extinction times over 2000 simulations of treatment in an
individual–based model. The switch used as the GP–map is shown as the column heading. The
genotype and associated probability of phenotype A (shown inset to each subfigure) are determined
by an evolutionary simulation of a treatment holiday for a time scale, measured in mutational events,
determined by the row. The grey background (top row) indicates that no extinction occured within
the simulated 20000 hours of treatment. The blue background indicates extinction times longer
than a timeframe viable for an antibiotic treatment (240 hrs), a green background (or inset star)
indicates extinction times within this time frame.
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Figure 4: Treatment dynamics for populations endowed with the different switching
networks after differing timescales of treatment holidays for the mixed drug regime.
Each histogram shows the distribution of extinctintimes over 2000 simulations of treatment in an
individual–based model. The switch used as the GP–map is shown as the column heading. The
genotype and associated probability of phenotype A (shown inset to each subfigure) are determined
by an evolutionary simulation of a treatment holiday for a time scale, measured in mutational events,
determined by the row. The grey background (top row) indicates that no extinction occured within
the simulated 20000 hours of treatment. The blue background indicates extinction times longer
than a timeframe viable for an antibiotic treatment (240 hrs), a green background (or inset star)
indicates extinction times within this time frame.
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