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ABSTRACT Various models describe asexual evolution by mutation, selection, and drift. Some focus directly on fitness, typically
modeling drift but ignoring or simplifying both epistasis and the distribution of mutation effects (traveling wave models). Others follow
the dynamics of quantitative traits determining fitness (Fisher’s geometric model), imposing a complex but fixed form of mutation
effects and epistasis, and often ignoring drift. In all cases, predictions are typically obtained in high or low mutation rate limits and for
long-term stationary regimes, thus losing information on transient behaviors and the effect of initial conditions. Here, we connect
fitness-based and trait-based models into a single framework, and seek explicit solutions even away from stationarity. The expected
fitness distribution is followed over time via its cumulant generating function, using a deterministic approximation that neglects drift. In
several cases, explicit trajectories for the full fitness distribution are obtained for arbitrary mutation rates and standing variance. For
nonepistatic mutations, especially with beneficial mutations, this approximation fails over the long term but captures the early
dynamics, thus complementing stationary stochastic predictions. The approximation also handles several diminishing returns epistasis
models (e.g., with an optimal genotype); it can be applied at and away from equilibrium. General results arise at equilibrium, where
fitness distributions display a “phase transition” with mutation rate. Beyond this phase transition, in Fisher’s geometric model, the full
trajectory of fitness and trait distributions takes a simple form; robust to the details of the mutant phenotype distribution. Analytical
arguments are explored regarding why and when the deterministic approximation applies.
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EMPIRICAL dynamics of fitness in simple environments are
still not quantitatively predicted by evolutionary biology,

in spite of a wealth of theoretical progress and an ever-
growing corpus of data produced by experimental evolution.
To our knowledge, no model exists that was parameterized
from independent data and that has proved to predict
observed fitness trajectories in either sexual or asexual or-
ganisms, from de novo mutations, or preexisting standing
variance. Patterns of fitness trajectories in microbes (de novo
mutations in asexuals) have been confronted to and fitted
with various theoretical predictions, showing qualitative

agreement with models of clonal interference (Tsimring
et al. 1996; Miralles et al. 2000; Gerrish 2001; Desai et al.
2007), and suggesting pervasive diminishing returns epista-
sis among beneficial mutations (Chou et al. 2011; Khan et al.
2011). However, fitting is not predicting: several alternative
models can be qualitatively consistent with the same data set
(Frank 2014). Regarding fitness dynamics during adaptation
from standing variance, both theory and data are relatively
scarce, at least in asexuals. This limits our knowledge of
the transient effects of standing variance, yet these can be
critical for short-term adaptive responses to environmental
challenges.

Important progress has been made, over several decades,
with a rich variety of models predicting fitness dynamics.
These models critically depend on (i) a mutation rate, and
(ii) adistributionoffitnesseffects (DFE)ofmutations,which is
either independent of the background genotype (no epistasis
for fitness), or depends on it, typically via its fitness. They
differ in the genotype-fitness landscape considered and the
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regimesassumed toderive theevolutionarydynamics.Models
of mutation and selection in asexuals roughly fall into two
(seemingly disconnected) classes: DFE-based models that
directly track the distribution of fitness, and trait-based mod-
els that follow the distribution of underlying quantitative
traits, which determine fitness. The aim of this work is to
handle this variety of models into a single analytical frame-
work [in termsofpartialdifferential equations (PDEs)], and to
use it to derive new results for these models, regarding non-
stationary dynamics or equilibria. We start by briefly summariz-
ingtheseexistingapproaches, inanecessarily far-from-exhaustive
manner.

Fitness-based models directly follow the dynamics of fit-
ness distributions, typically with a constantmutation rate and
DFE over time (no epistasis). Initially based on deterministic
equations and diffusive mutation effects (Tsimring et al.
1996), they were then refined to include stochasticity and
more general DFEs of purely beneficial mutations (Gerrish
and Lenski 1998; Rouzine et al. 2003; Dwyer 2012; Good
et al. 2012). More recently, the interplay of a distribution of
deleterious and beneficial mutations has been studied in
this context, in either low (e.g., Good and Desai 2014) or
high (e.g., Neher and Hallatschek 2013) mutation rate limits.
As beneficial mutation influx becomes large in asexuals,
cosegregating lineages compete for fixation and slow down
adaptation; a process further affected by the deleterious
mutations that accumulate in each lineage. These “clonal
interference” dynamics, in the presence of stochastic fluctu-
ations, are difficult to analyze and often yield complex or
nonexplicit formulas; but several models have provided im-
portant insight into this process. They have been handled
through alternative modeling approaches, accurate in differ-
ent regimes: low to intermediate mutation rate for the orig-
inal clonal interference models (Gerrish and Lenski 1998;
Gerrish 2001), or higher mutation rate for the more recent
“traveling wave” models (Rouzine et al. 2003; Good et al.
2012; Neher and Hallatschek 2013). Note that in the limit
of very large populations, high mutation rates, and weak
mutation effects, a simple and explicit Gaussian traveling
wave is retrieved for the expected fitness distribution
(Neher and Hallatschek 2013).

This rich literature, reviewedelsewhere (e.g., Rouzine et al.
2003; Desai and Fisher 2007; Sniegowski and Gerrish 2010;
Desai 2013), has a common feature: it describes the station-
ary regime of a stochastic process. This implies that a full
trajectory from given initial conditions (possibly with stand-
ing variance) is not available, only the ultimate average
rate of steady fitness change. Furthermore, as time goes on,
the envelope around this mean fitness prediction typically
explodes so that individual populations may lie far from the
predicted mean at any time. This limits the comparison to
empirical trajectories, which typically start away from a
stationary regime and contain a few replicates. Note, how-
ever, that this assumption of a steady increase in fitness is
often envisioned as reflecting a constant struggle between a
steadily changing environment and an adapting population

(Neher and Hallatschek 2013). It is possible that in such a
regime the envelope may remain narrow and steady state
may be reached faster.

Another aspect of the approach is that epistasis must be
ignored here, otherwise mutation rates and effects may
change over time (as the dominant backgrounds change);
impeding the setting of a stationary regime.Recent extensions
do include some form of epistasis or deleterious mutations
(Kryazhimskiy et al. 2009; Dwyer 2012; Good and Desai
2015). However, analytical progress is then difficult beyond
the master equation: relatively simple exemplary cases were
analyzed in depth, but always in regimes where clonal in-
terference is negligible. Also note that other DFE-based mod-
els were devoted to describe mutation-selection balance
(another stationarity assumption), ignoring drift and epista-
sis. General insight into equilibrium fitness distributions has
been gained from quasi-species theory (Eigen 1971) or asex-
ual mutation-selection-balance models (Johnson 1999). This
literature will not be reviewed here either (see Wilke 2005),
but in general, analytical progress has often proved difficult
unless simplified forms of DFE are assumed (discussed in
Martin and Gandon 2010).

Trait-based models form an equally central body of liter-
ature that dealswith adaptation affecting a trait or set of traits
under selection for anoptimum(via someconcavephenotype-
fitness function). These single peak, trait-based models date
back to Fisher’s (1930) geometric model (FGM), and also
produced a rich literature connected to evolutionary quanti-
tative genetics (Lande 1979). This approach is constrained
into a particular form of DFE, but one that does include (i)
pervasive epistasis and dominance, and (ii) both beneficial
and deleterious mutations. Several patterns of mutant fitness
expected in the FGM have been tested on fitness data from
mutant lines (Martin et al. 2007; Trindade et al. 2010, 2012;
Manna et al. 2011; Sousa et al. 2011; Hietpas et al. 2013),
showing promising overall agreement. The FGM also emerges
as the limit of a broader class of genotype-phenotype-fitness
landscapes involving highly integrated “small-world” pheno-
typic networks (Martin 2014). Overall, the FGM seems a rea-
sonable null model for evolutionary predictions (reviewed in
Tenaillon 2014). The population genetics of adaptation by
mutation and selection, in such trait-based models, has also
seen many developments; reviewed extensively elsewhere
(e.g., Burger 2000;Orr 2005). It provides awell-studied theory
for equilibrium states in various situations (detailed in Roze
and Blanckaert 2014); several qualitative properties of equi-
libria have even been obtained for more general trait-fitness
relationships, at least with a single trait (detailed in Burger
1998, 2000). The effect of standing genetic variance has also
been studied extensively (from its quantitative genetics heri-
tage), making the FGM an interesting complement to DFE-
based models. Furthermore, predictions on trait distributions
can be transformed into predictions on measurable fitness dis-
tributions under the model (e.g., Martin and Gandon 2010).
Yet, in spite of interest in its potential (Barton 1998; Gordo
and Campos 2012), analytic progress in situations relevant for
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experimental evolution (notably asexuals), has proven equally
difficult to obtain. Even equilibrium states are not fully re-
solved in the FGM. Alternative analytic approximations only
exist at each extreme of the mutation rate spectrum: house of
cards for a single trait (Turelli 1984) vs.Gaussian for arbitrarily
many traits (Kimura 1965; Lande 1980) in the low vs. large
mutation rate limits, respectively. When dealing with the
dynamics of adaptation, the classic approach (Lande 1979)
focuses on large highly polymorphic sexual populations where
the genetic variance of the traits is transiently approximately
constant; another stationarity assumption, that is valid this
time over finite timescales. However, this option generally
breaks down with asexuals. Alternatively, stochastic models
of mutation-selection-drift dynamics have been implemented
under the FGM for adaptation trajectories (Orr 2000) or
mutation-selection-drift balance (Tenaillon et al. 2007). How-
ever, they apply in a weak-mutation, strong-selection limit (or
with unlinked nonepistatic loci in sexuals) where clonal inter-
ference is negligible. Finally, it is noteworthy that treatments of
trait-based models with high mutational input (Gaussian the-
ories) put less emphasis on drift (often neglected) than their
fitness-based counterparts. They do involve multiple cosegre-
gating mutants (clonal interference), but the deterministic
predictions prove fairly accurate in this case; suggesting that
some difference in the assumptionsmakes the interplay of drift
and other forces less critical.

Aim of this work

Overall, we enjoy a wealth of alternative, complementary
approaches of adaptive (or maladaptive) fitness dynamics
in the presence of mutation, selection, and possibly drift.
Yet, they are not easily connected. They do not provide a
readily testable prediction in terms of trajectories of fitness
distributions over time, from known initial conditions, in the
large asexual populations typical of evolution experiments. To
derive such predictions, we extend an approach initially pro-
posed by Burger (1991), who studied trait-based models via
the dynamics of the cumulants of the trait distribution, under
selection and nonepistatic mutation. We apply this framework
to fitness itself. Deterministic dynamics of fitness cumulants/
moments have been used previously in nonepistatic fitness-
based models; either neglecting drift (Johnson 1999; Desai
and Fisher 2011; Gerrish and Sniegowski 2012) or includ-
ing a stochastic diffusion component and considering the
expected cumulants over replicates (Rattray and Shapiro
2001; Good and Desai 2013). Following Burger’s (1991)
strategy, these studies solved a finite set of cumulant equa-
tions numerically, but the system could not be closed as
cumulants/moments influence each other in cascade. Here,
we focus on the moment generating function (MGF) and
cumulant generating function (CGF) of the fitness distribu-
tion, which handles all moments (respectively cumulants) in
a single function. In a variety of models, this allows us to
“close the system” into a single PDE describing the dynamics
of the expectation of the fitness distribution, among stochas-
tic replicates, by ignoring the effect of drift. We further in-

clude mutational epistasis by considering DFEs that broadly
depend on background fitness. Overall, several processes are
jointly handled by the PDE (Figure 1): starting from an arbi-
trary initial fitness distribution, new mutations accumulate
on each lineage (with lineage-dependent DFE) and cosegre-
gate under selection (clonal interference). In several classes
of models, explicit solutions can be found for the PDE, pro-
viding a fully analytic theory in terms of mutational param-
eters and standing variance.We check the predictions against
stochastic, individual-based simulations of various subcases.

Heuristic statements

Before describing the model in more mathematical detail, we
first tackle some qualitative aspects of fitness dynamics in the
different models above. Let us start by a somewhat technical
remark that justifies theuseof generating functionshere.With
any model where the DFE only depends on parental fitness
and in an asexual (no recombination/segregation); fitness is
the only trait whose distribution fully determines its own
evolution.We can thus follow this distribution alone, ignoring
the genetic or phenotypic details underlying its variation,
namely the number and effects of the mutations carried by
different genotypes, over the entire genome. This does not
preclude the complications described above: multiple muta-
tions accumulate on each lineage; multiple lineages cosegre-
gate and compete for ultimate fixation; and each lineage may
have its own background-dependent DFE (epistasis), as long
as this dependence is entirely mediated by the background
fitness. Generating functions handle sums of independent
variables in a convenient manner, which helps us to study
the cumulative effect of multiple mutations accumulating in
lineages. It is also known that the effect of selection on fitness
distributions takes on a simple form in terms of generating
functions (Hansen 1992; Manna et al. 2012).

Second, let us considerwhy andwhen driftmay be ignored
in a given finite population, or among replicate finite popu-
lations, to describe the average fitness trajectory. The primary
impactofdrift identified in stochasticfitness-basedmodels lies
in its impact on the very fittest edge of the fitness distribution.
When this edge represents a small absolute number of indi-
viduals, stochastic fluctuations in this subpopulation indi-
rectly bias the future mean fitness dynamics of the whole
population, over longer timescales. This effect does not aver-
age out if we consider the average mean fitness of replicate
populations. However, over a substantial initial period, this
fitter edge has little influence on the mean fitness dynamics
(discussed in Gerrish and Sniegowski 2012) for two reasons.
First, in a large polymorphic population, the short-termmean
fitness dynamics are driven by selection and mutation in the
bulk of the population, which behaves roughly deterministi-
cally. Second, even in a smaller population, drift, of itself,
only slightly alters the average frequency dynamics of geno-
types, roughly by an order of2shp2i=N whereN is population
size and p and s are the allele’s frequency and fitness effect,
respectively (see, e.g., Otto and Barton 2001). Therefore, any
quantity that is linear in genotype frequencies, such as mean
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fitness or the MGF of the fitness distribution, is only slightly
affected by drift over this timescale. It is only once new mu-
tants establish (or not) that the future of the fitness dynamics
is inaccurately predicted by a deterministic model: ignoring
the stochastic loss of these fitter genotypes leads to an over-
estimate of mean fitness over longer timescales. Finally, even
over longer timescales, the bias induced by drift is only visible
if it accumulates over time, as the fittest edge stochastically
moves toward fitter classes (at a speed overestimated by the
deterministic model). If the set of all possible fitnesses is
bounded by some maximal value, stochastic fluctuations
should become less important, as the edge cannot spread
forward forever: the delay between the edge and the bulk
is bounded and tends to decay over time (as the bulk adapts).
Most trait-based models consider adaptation toward a phe-
notypic optimum, implying a form of diminishing returns
epistasis, where fitness is bounded on the right by the fitness
of this optimum. This may explain why the evolutionary
dynamics in these models has been accurately captured by
deterministic theories. The same applies for purely deleteri-
ous models, where fitness cannot travel beyond the unloaded
fitness class. In this case, however, loss of the fitter class also
occurs and affects the long-term dynamics [Muller’s (1932)
ratchet]. Yet, this happens over much longer timescales, as
the edge is a large subpopulation and as each “click” of the
ratchet has a small impact (especially with continuous
DFEs, where the new fittest class typically lies close to the
previous one). This argument suggests that, in the presence
of a fitness upper bound, it may be possible to accurately
capture fitness dynamics by a mere deterministic model,
even if clonal interference is involved and even over long
timescales. It also suggests that nonepistatic models with
beneficial mutations (where deterministic models fail in
the long run) could still show transient fitness dynamics in
which the average (over replicates) is captured by a deter-

ministic model. Deriving such predictions (and justifying
the above heuristic statement), as well as testing their ac-
curacy with stochastic simulations is the central aim of this
article.

Methods

General setting

We assume finite haploid asexual populations and follow the
expected fitness distribution among replicates, starting from
the same initial fitness distribution.We consider a continuous
time model (overlapping generations), measured in arbitrary
units (hours, days, etc.). This setting can also approximate
a discrete time model (nonoverlapping generations) when
effects are small per generation, the time t is then measured
in generations: this will be our simulation scheme. We follow
the dynamics of the distribution of the Malthusian fitness m
(hereafter “fitness”). In continuous time, this is the expected
exponential growth rate of a given genotype. In a discrete
time approximation, m is the log of the Darwinian fitness
ðm ¼ log WÞ; namely, the log of the expected geometric
growth rate of a genotype. We define fitness relative to a
reference, set atm ¼ 0; without loss of generality. This refer-
ence is arbitrary as we consider evolutionary dynamics (rel-
ative fitness) without coupling to demography. In those
models that include some fitness upper bound (e.g., single-
peak landscape models or models with only deleterious
mutations), we set the optimal genotype (with fitness equal
to this maximum) to be the reference m ¼ 0 for convenience
(so that allm# 0). In other models (e.g., models with context-
independent beneficial mutations), the reference is just an
arbitrary point in fitness space. At any time t; an arbitrary set
of Kt genotypes, with constant fitnesses fmigi2½1;Kt �; coexist in
relative frequencies ptðmiÞ; satisfying

PKt
i¼1 ptðmiÞ ¼ 1: This

approach can describe discrete classes (Kt finite) or infinite
countable classes in the limit Kt/N (with convergence to a
continuous distribution of fitness). Genotypes compete by
frequency-independent selection and mutate according to a
Poisson process with fixed rateU per capita per unit time. The
fitness of a mutant whose parent has fitnessm ismþ s;where
s is the selection coefficient of the mutation relative to the
parent, and is drawn from an arbitrary distributionwith prob-
ability distribution function (pdf) f ðsjmÞ (a probability den-
sity function if the distribution is continuous), depending on
the parent fitness m:

Notations

We must define various expectations and means. We use
an overbar �X to describe any variable XðmÞ; averaged over
the current distribution of genotypes within a focal popu-
lation: �X ¼PKt

i¼1 ptðmiÞXðmiÞ: We define the expectation
EðY jmÞ of any function YðsÞ of the DFE in background
m : EðY jmÞ ¼ R YðsÞfðsjmÞds; and we denote the mean
DFE by ms ¼ EðsÞ whenever it does not depend on m:

Figure 1 The standing fitness distribution ½ptðmÞ; blue curve� travels to
the right by selection. Each genetic background under this distribution
(e.g. m1 and m2 here) mutates to new genotypes with fitness mi þ s;
where s has the density f ðsjmiÞ depending on background fitness (red
and brown curves for m1 and m2, respectively).
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Generating functions

The distribution of m at time t can be characterized by its
MGF:MtðzÞ ¼ em z ¼PKt

i¼1 ptðmiÞemi z: For any finite popula-
tion (Kt finite), this MGF is always defined over the full line
z 2 ℝ; but we may study it on a compact subset spanning
0 ðhere; z 2 ℝþÞwithout loss of generality: this helps handle
several continuous class limits ðwhen Kt/NÞ: This gener-
ating function provides essential information on the distri-
bution at time t: its derivatives at z ¼ 0 are the raw
moments of the fitness distribution, notably the mean
fitness �mt ¼ Mt9ð0Þ (the prime refers to differentiation
with respect to z). For mathematical convenience, we
mostly focus on the natural logarithm of the MGF, which
is the CGF: CtðzÞ ¼ log MtðzÞ: Its derivatives at z ¼ 0
are the cumulants of the distribution: in particular, the
first three derivatives are the mean �mt ¼ Ct9ð0Þ; variance
Vt ¼ Ct$ð0Þ; and third central moment (related to skewness)
k3 ¼ Ct$9ð0Þ: Additionally, the maximum of the distribution
is given by Ct9ðNÞ and the weight of the classm ¼ 0 is given
by rt ¼ eCtðNÞ; we say that the distribution has a “spike” at
m ¼ 0 when this quantity rt is strictly positive. It should
also be noted that the full distribution of m at time t can
be retrieved by applying an inverse Laplace transform to
Mt ¼ eCt :

Because each replicate population has its own trajectory of
genotypic frequencies, the generating functions Mtð�Þ and
Ctð�Þ are stochastic functions of z over time. We seek to pre-
dict the behavior of the expectation of such variables over
stochastic replicates, so we use hXi to denote any such expec-
tation of X: In particular, hMtðzÞi and hCtðzÞi are the expected
MGF and CGF, which are deterministic functions of z and t;
while h �mti and hVti are the expected mean fitness and vari-
ance in fitness within populations. These are deterministic
functions of time.

Organization of the article

All appendices are included inSupplementalMaterial, File S1.
In Appendix A, we derive exact dynamics for the expected
generating functions, which do not close. Then we describe
approximate closed dynamics for these quantities under a
deterministic approximation ignoring drift. In Appendix B,
we derive general properties of the approximate dynamics,
and Appendices C, D, and E provide detailed applications to
particular classes of mutational models. In the Model section
below, we summarize our results on the expected CGF
hCtðzÞi; and its approximate deterministic counterpart,
denoted CtðzÞ � hCtðzÞi (the � sign is a reminder that the
result is approximate). The Application section then illus-
trates applications to several classes of mutation models,
evaluating the accuracy of the approximation on stochastic
simulations. A last section summarizes some analytic results
on the error involved by the approximation, and hints on why
and when it applies. All notations are summarized in Table 1.

Dynamics of the expected CGF under selection, drift,
and mutation

Using a multi-type Wright–Fisher diffusion approximation to
genotype frequency dynamics (Section II in Appendix A, File
S1), it can be shown that the change by selection and drift
(SD) over Dt; in the expected CGF hCtðzÞi satisfies

D
SD
hCtðzÞi
Dt

¼ hCt9ðzÞi2 hCt9ð0Þi þ dtðzÞ;

dtðzÞ ¼
12

�
eCtð2  zÞ22  CtðzÞ�

2Ne
:

(1)

Here, dtðzÞ is the contribution generated by drift
ðit vanishes if Ne/NÞ; which is essentially the same as
given in Good and Desai’s (2013) equation D.4. This dynamic
term does not allow us to close the system as dtðzÞ does not
depend directly on CtðzÞ: We thus rely on a deterministic
approximation (that we will use throughout), which simply
ignores dtðzÞ in the dynamics, yielding an approximate
expected CGF ðCtðzÞ � hCtðzÞiÞ; with closed dynamics
D
SD

CtðzÞ=Dt ¼ Ct9ðzÞ2 Ct9ð0Þ:
Mutation (see the General setting section above) generates

a DFE whose MGF is denoted MSðz;mÞ ¼ Rℝ f ðsjmÞes zds: It
is assumed to have known analytical form, over some pos-
itive domain z 2 ½0; zmax� � ℝþ; determined by the model
considered. This may include continuous or discrete dis-
tributions, but it does require a DFE with finite higher
moments (so that an MGF can be analytically defined).
The change in ðCtðzÞÞ ½and CtðzÞ� by mutation (mut), over
Dt; takes the general form (Section III.1 in Appendix A,
File S1):

D
mut

hCtðzÞi
Dt

¼
D
mut

CtðzÞ
Dt

¼ U
em  zMSðz;mÞ

em  z
21

+* !
;

 
(2)

where we recall that h�i is the expectation over replicate
populations; while the overbar refers to the averaging
with respect to m; within a given population, at current
time t: The limit, as Dt/0; of ðD

SD
CtðzÞ þ D

mut
CtðzÞÞ=Dt from

Equation 1 and Equation 2, yields the continuous time
dynamics of the expected CGF, under the deterministic
approximation:

@thCtðzÞi � @tCtðzÞ

¼ Ct9ðzÞ2 Ct9ð0Þ þ U
em  zMSðz;mÞ

em  z

+
2 1

* !
:

 

(3)

This is our central result, from which all the following dy-
namics are derived. In general, the mutation kernel in Equa-
tion 3 does not generate a closed system, even under the
deterministic approximation, as the mutational term cannot
be expressed in terms of Ctð�Þ: Fortunately, this term simplifies
in several general classes of models, which we detail below,
summarize in Table 2, and implement in File S3 (see below).
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Linear background dependence

The first important situation is when the MGF of the DFE can
be (exactly or approximately) written as a linear function of
m : MSðz;mÞ ¼ aðzÞmþM*ðzÞ; with some function a and
withM*ðzÞ ¼ MSðz; 0Þ being the MGF of the DFE in the back-
ground with fitness m ¼ 0: As an MGF, M* is continuous on a
domain including 0 andmust satisfyM*ð0Þ ¼ 1 andM*$ðzÞ$ 0:
The function a must satisfy að0Þ ¼ 0 and either a$ðzÞ# 0 over
z 2 ℝþ; iffitnesses are bounded on the right so that allm#0; or
a$ðzÞ ¼ 0; if fitnesses are unbounded on the right. This is re-
quired forMS to satisfy the basic MGF propertiesMSð0;mÞ ¼ 1
(conservation of probability) and MS$ðz;mÞ$ 0 (convexity for
all m and z). Linear background dependence (see Section III.2
in Appendix A, File S1) implies a mutation kernel (Equation 2)
of the form D

mut
CtðzÞ=ðUDtÞ ¼ M*ðzÞ2 1þ aðzÞCt9ðzÞ: The

(approximate) expected CGF Ctð�Þ then satisfies a first order,
linear nonlocal PDE:

@tCtðzÞ ¼ aðzÞCt9ðzÞ2 Ct9ð0Þ þ bðzÞ; (4)

where the functional coefficients are aðzÞ ¼ 1þ U aðzÞ and
bðzÞ ¼ UðM*ðzÞ2 1Þ; with að0Þ ¼ 1 and bð0Þ ¼ 0: This PDE

has the boundary condition Ctð0Þ ¼ 0 and initial condition
C0ðzÞ ¼ C0ðzÞ (initial fitness distribution) and can be solved
analytically (Section II.1 in Appendix B, File S1). Define the
function y as the solution of the ordinary differential equation
y9ðzÞ ¼ aðyðzÞÞ with initial condition yð0Þ ¼ 0 and its func-

tional inverse y21ðzÞ ¼ Rz
0
1=aðvÞdv; such that yð y21ðzÞÞ ¼ z;

defined on ½0; z1Þ;where z1 is the first positive root of a: The
unique solution of Equation 4 from initial condition C0ðzÞ is

CtðzÞ ¼ C0
�
y
�
y21ðzÞ þ t

��
2C0ð yðtÞÞ

þ
Zt
0

b
�
y
�
y21ðzÞ þ v

��
2bð yðvÞÞdv: (5)

The corresponding trajectory of the expected mean fitness is
(under the deterministic approximation)

�mth i � Ct9ð0Þ ¼ að yðtÞÞC09ð yðtÞÞ þ bð yðtÞÞ; (6)

for all t$ 0: A similar explicit expression is given in File S1,
Appendix B (Equation B31) for the trajectory of the expected

Table 1 Main notations used throughout the article

Notation Description Formula

m Malthusian fitness
fmigi 2 ½1;Kt � Fitness classes within a population
ptðmiÞ Frequency of the fitness class mi at time t
N; Ne Population size, effective size
Kt Number of fitness classes at time t
�mt Mean fitness at time t

XKt

i¼1

ptðmiÞmi

Vt Variance in fitness at time t
XKt

i¼1

ptðmiÞm2
i 2 �m2

t

rt Weight of the class m ¼ 0 ptðmi ¼ 0Þ
�X Mean value of any variable XðmÞ; averaged over the current distribution of genotypes

within a population

XKt

i¼1

ptðmiÞXðmiÞ

hi “Ensemble expectation” of any random variable, averaged over
replicate (finite) populations

MtðzÞ “Empirical” MGF of m in a given population, at time t
XKt

i¼1

ptðmiÞemi z

CtðzÞ “Empirical” CGF of m in a given population, at time t log MtðzÞ
MtðzÞ Expected MGF under the deterministic approximation MtðzÞ � hMtðzÞi
CtðzÞ Expected CGF under the deterministic approximation CtðzÞ � hCtðzÞi
DFE Distribution of fitness effects of mutations
s Selection coefficient of a mutation relative to its parent
f ðsjmÞ Probability distribution function of s in background m
EðY jmÞ Expectation of any variable YðsÞ over the DFE in background m

R
ℝ
YðsÞfðsjmÞds;

ms Mean effect of mutations on fitness in the background with fitness m ¼ 0 (or
any background in nonepistatic models)

R
ℝ
s  fðsjm ¼ 0Þds

MSðz;mÞ MGF of the DFE
R
ℝ
f ðsjmÞes  zds

M*ðzÞ MGF of the DFE in the background with fitness m ¼ 0 MSðz; 0Þ
vðzÞ Linear effect of m on the CGF of the DFE @mlog MSðz;mÞ��m¼0
sH Harmonic mean in absolute value of the DFE in the background m ¼ 0 1=Eð1=jsjÞ
U Genomic mutation rate
L Mutation load (with an optimal fitness class at m ¼ 0) L ¼ 2h �mNi
FGM Fisher’s geometric model
n Dimension of the phenotypic space
l Mutational variance at each trait
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variance hVti � Ct$ð0Þ: More generally, Equation 5 gives the
trajectory of the whole fitness distribution, for several classes
of models described in the Application section.

Examples of linear background-dependence models

Nonepistatic models: An obvious case of linear background
dependence is for any nonepistatic model (whose DFE has
finite moments, so that its MGF exists). In these, we have
MSðz;mÞ ¼ M*ðzÞ for all backgrounds, so that aðzÞ ¼ 0 and
aðzÞ ¼ 1:

Simplified version of the “binary model”: In Rouzine et al.’s
(2003) binary model (detailed in Section III.2, Appendix A,
File S1), genotypes consist of L bins representing sites (we
use notations different from the original article to avoid
confusions with other quantities in this article). Each bin
codes for a wild-type (“0”) or mutant (“1”) allele (with
constant deleterious effect 2d , 0). Mutation, at rate u
per site ðgenomic rate U ¼ uLÞ; randomly creates shifts
between allele states and allelic effects add up across the
genome. This model shows mutational epistasis (the DFE
depends on the background m), although fitness is still a
sum of allelic effects over the genome. It also implies an
upper bound m ¼ 0 to all possible fitnesses (i.e., the
unloaded wild-type with only 0 bins) and has linear back-
ground dependence (see Table 2 and Equation A10, Ap-
pendix A in File S1). It can be checked that að0Þ ¼ 0 and
a$ðzÞ# 0 over ℝþ: We do not explore this model further
here, except in File S3 (see below).

Log-linear background dependence

Alternatively, the MGF of the DFE may be log linear in
m : MSðz;mÞ ¼ M*ðzÞevðzÞm: Here, again, M*ðzÞ ¼ MSðz; 0Þ is
convex and satisfies M*ð0Þ ¼ 1; while v must be concave
(with bounded fitness set m # 0) and vð0Þ ¼ 0: Plugging
this form into the mutational kernel in Equation 2 yields
another nonlocal first order PDE for the (approximate)
expected CGF, but this time it is nonlinear (Section III.4 in
Appendix A, File S1):

@tCtðzÞ � Ct9ðzÞ2 Ct9ð0Þ þ U
�
M*ðzÞ eCtðzþvðzÞÞ2CtðzÞ 2 1

�
;

(7)

for t$ 0 and z$ 0; with the boundary condition Ctð0Þ ¼
hCtð0Þi ¼ 0: The second term UðM*ðzÞeCt ½zþvðzÞ�2CtðzÞ 21Þ in
Equation 7 describes the effect of mutations accumulating
on each background, with a dependence on the standing
distribution of background fitnesses ðon CtÞ mediated by
vðzÞ:Note that this time this term is only approximate, under
similar conditions as the deterministic approximation used
all along (detailed in Section III.3 of Appendix A, File S1).

The well-posedness of Equation 7 requires that
0# zþ vðzÞ; so that the nonlocal term remains within the
domain under study. This is the case for any epistatic model
ðv u  0Þ showing log-linear background dependence, with a
fitness optimum atm ¼ 0 (see Section I.1 in Appendix B, File
S1). Although we were not able to get an explicit solution
of Equation 7, which is a nonstandard PDE problem due to
the two nonlocal terms Ct9ð0Þ and eCtðzþvðzÞÞ; we were able
to get some insight into the behavior of the solution. First,
Ct9ðNÞ ¼ 0 for all positive times (Section I.2 in Appendix B,
File S1) with the epistatic model ðv u  0Þ: This means that
the support of the fitness distribution instantaneously rea-
ches the optimum m ¼ 0; whatever the initial fitness distri-
bution. It implies a memoryless property in the sense that the
long-time behavior of the solution is not affected by the initial
fitness distribution, which is not obtained in nonepistatic
models ðv ¼ 0Þ: Second, analytical expressions are derived
(Section I.3 of Appendix B, File S1) for the kth cumulants
of the equilibrium distribution ðk$ 0Þ and a dichotomy
for the value of the equilibrium mean fitness; namely,
either h �mNi ¼ 2U or h �mNi ¼ 2Uð12BÞ; for some positive
constant B: Third, the existence of a spike implies that
h �mNi ¼ 2U (Section I.4 of Appendix B, File S1). These re-
sults were obtained under any of the two general properties
(Section I.2 in Appendix B, File S1): H, any background
can mutate to the optimal background; or H9, any back-
ground can at best mutate to some fitter but suboptimal class.

Table 2 Various mutational models handled by the proposed framework

Model Background dependence Timescale of applicability vðzÞ or aðzÞ M*ðzÞ
Nonepistatic deleterious None t# T � Ne e2U=sH 0 Arbitrary , 1
Nonepistatic deleterious and beneficial None t# T � 10021000a 0 Arbitrary
House of cards Log-linear t 2 ℝþ 2z Arbitrary
Binary modelb Linear t 2 ℝþ 22sinhðdzÞ=ðLdÞ e2d  z

Gaussian FGM Log-linear t 2 ℝþ 2l z2=ð1þ lzÞ ð1þ l zÞ2n=2

Generalized FGM � LinearðU � UcÞ t 2 ℝþ � 22jmsjz2=n � 12 z jmsj
Diminishing return � Linear (near equilibrium) At equilibrium 2 ½2z;0� Arbitrary , 1

These models only apply when NeUjmsj � 1: For each model, each column gives (i) the model type, (ii) the type of background dependence, (iii) the timescale (sometimes
approximate) over which the prediction applies (in that it is expected to be reasonably to very accurate), (iv) the background-dependence function [v(z) for log-linear
background dependence or a(z) for linear background dependence], and (v) the MGF M*ðzÞ of the DFE in the background with fitness m ¼ 0 (fittest background in models
with a maximum fitness). In some models the “�” notifies that this is an approximate result or a conjecture; “T � Ne e2U=sH” means that the two quantities have the same
order of magnitude.
a Conjecture and timescale based on observations in our simulations.
b Simplified version of Rouzine et al.’s (2003) model, detailed in Section III.2, Appendix A, File S1. Here, L is the number of sites (9L in the original paper) and d is the constant
deleterious effect of “mutant” alleles (s in the original paper).
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Biologically, this simply means that some form of compensa-
tion of deleterious mutations exists.

Examples of log-linear background-dependent models

As an example, we describe two classic models of context-
dependent DFEs where log-linear background dependence
applies (see also Table 2).

Fisher’s geometric model: Fisher’s (1930) geometric model
(FGM) assumes that each genotype is characterized by a
(breeding value for) phenotype at n traits ðg 2 ℝnÞ (possi-
bly with some environmental variance effects). An optimal
phenotype corresponds to maximal fitness and sets the or-
igin of phenotype space ðg ¼ 0Þ: Fitness decreases away
from this optimum, and mutation creates random indepen-
dent and identically distributed (iid) variation dg around
the parent, for each trait. In all our examples, we will
consider a quadratic fitness function: in continuous time
models, Malthusian fitness is a quadratic function of
the breeding value ½mðgÞ ¼ 2kgk2=2�; and in discrete
time versions, Darwinian fitness is a Gaussian function of
g ½WðgÞ ¼ emðgÞ ¼ expð2kgk2=2Þ�: A classic version of this
model is the “Gaussian FGM,” where mutation phenotypic
effects are multivariate normal: dg � Nð0; lInÞ; where
l. 0 is the mutational variance at each trait, and In is
the identity matrix in n dimensions. This Gaussian FGM
is also the standard model of evolutionary quantitative
genetics, dating back to Kimura’s (1965) and Lande’s
(1980) work on mutation and selection on traits with a
complex genetic basis (infinitely many possible alleles).
The Gaussian FGM shows exact log-linear context-
dependence (Martin 2014): MSðz;mÞ ¼ M*ðzÞem  vðzÞ with
M*ðzÞ ¼ ð1þ l  zÞ2n=2 and vðzÞ ¼ 2l  z2=ð1þ l  zÞ:We study
this model in depth in the Application section.

House-of-cards model: Kingman’s (1978) house-of-cards
(HOC) model assumes that mutants have absolute fitness
that follows a unique distribution, independent of the back-
ground in which they arise. This model is epistatic in that the
DFE depends on the background f ðsjmÞ ¼ gðsþmÞ; so that
mutant absolute fitnesses X have a given fixed fitness distri-
bution with pdf gðxÞ: Versions of the HOC were used, e.g., in
Kryazhimskiy et al. (2009) andMcCandlish et al. (2014) with
an exponential or Gaussian distribution g; respectively, and
focusing on a regime of low NU where substitutions occur
sequentially (no clonal interference). In this model, the
MGF of the DFE is MSðz;mÞ ¼ Eðes  zjmÞ ¼ MXðzÞe2z m where
MXðzÞ ¼

R
ex zgðxÞdx is the MGF of the chosen distribution of

X with pdf g: Thus this model, in its general version, implies
log-linear background dependence with M* ¼ MX and
vðzÞ ¼ 2 z: We do not explore this model further here, ex-
cept in File S3 (see below).

Individual-based simulations

Individual-based, discrete-time simulations were used to
check the validity of the approximations in finite populations

for various mutational models. Individuals were sampled
every generation according to their fitness W ¼ em

(Wright–Fisher model of genetic drift and selection). Muta-
tion was simulated in every generation in each individual by
randomly drawing a Poisson number of mutations, each
with effects drawn into a given DFE, and summing their
effects to produce the mutant offspring. When considering
trait-based models, genotypes where characterized by their
breeding value in n dimensions g 2 ℝn: Mutation effects on
traits were drawn into a given multivariate distribution and
the fitness was computed as mðgÞ ¼ 2kgk2=2 (quadratic
landscape models, or “generalized FGM”, see Application
section).

Data availability

File S1 contains Appendices A–E describing all analytical der-
ivations. File S2 provides a numerical solver of Equation 7,
applied to the FGM as aMATLAB source code, together with a
MATLAB graphical user interface and code for individual-
based simulation. The solver is based on a finite-difference
methodwith variable step sizes in z (smaller steps near z ¼ 0;
to get accurate values of the derivatives Ct9ð0Þ; Ct$ð0ÞÞ and an
implicit scheme in time. Because of the transport term Ct9ðzÞ;
which tends to translate the solution toward the left with
speed 1, the solution was computed on a finite interval of
z 2 ½0; tmax�; where tmax is the duration of the simulation.
See Section V in Appendix D, File S1 for more details. File
S3 gives examples of each subcase in the six first models in
Table 2: analytical trajectories, solver for the PDE (Equation
7; method of lines), simulation code, and illustrations of the-
ory vs. simulation results. File S4 contains movies illustrating
the dynamics of the distribution of fitness (and trait when
applicable, i.e., in FGM) over time, compared to the theoret-
ical distributions.

Application

Herewe study variousmodels for which the PDEs in Equation
4 and/or Equation 7 apply. We distinguish three main appli-
cations: (1) nonepistatic models of general form; (2) epistatic
models of general form, nearing equilibrium; and (3) epistatic
models generated by quadratic fitness functions of pheno-
types (FGM). Throughout, we use the deterministic approx-
imation, sowewrite� to recall the approximate nature of our
results.

Nonepistatic models

Before tackling epistatic models, we first focus on context-
independent mutation models, mostly to check that we re-
trieve previously known properties and to provide some new
results. Because several results on nonepistatic models are
already known, we put most of the results on this section in a
dedicated Appendix C, File S1, and focused on new insights.
As we have seen, any nonepistatic model is a trivial subcase
of Equation 4 with aðzÞ ¼ 1 ð yðzÞ ¼ y21ðzÞ ¼ zÞ and
bðzÞ ¼ UðM*ðzÞ2 1Þ Equation 5 yields
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CtðzÞ ¼ C0ðzþ tÞ2C0ðtÞ þ U
R t
0 M*ðzþ vÞ2M*ðvÞdv;

�mth i ¼ hCt9ð0Þi � Ct9ð0Þ ¼ C09ðtÞ þ UðM*ðtÞ2 1Þ;
hVti ¼ hCt$ð0Þi � Ct$ð0Þ ¼ C0$ðtÞ þ UðM*9ðtÞ2msÞ;

(8)

where we recall that ms ¼ EðsÞ: This result essentially re-
trieves an alternative formulation of equation 10 of Desai
and Fisher (2011), itself a continuous time version of
Johnson’s (1999) equation 13. These previous results both
assumed purely deleterious mutations, which proves unnec-
essary in the derivation of Equation 8. Equation 8 further
allows for arbitrary standing variance in fitness via the addi-
tional term C0ðzþ tÞ2C0ðtÞ; previously obtained for an
infinite asexual population without mutation (Hansen
1992; Manna et al. 2012). As such, results in terms of CGFs
or MGFs provide valuable information on the trajectory of
moments, but are not so easy to fit on observed empirical
distributions, which require an explicit distribution function.
In Appendix C II, File S1, we derive the stochastic represen-
tation of fitness from Equation 8 to help derive such func-
tions. Movie 1, A and B, in File S4, illustrates the dynamics of
the full fitness distribution for a negative gamma DFE and a
constant DFE, respectively. In the parameter range chosen,
the prediction from Equation 8 accurately fits the observed
distribution from the simulation of a single finite population
of size N ¼ 105: Other illustrative examples are given in File
S1, Appendix C.

Retrieving previous results: Several key known results
on nonepistatic deleterious mutation models are readily
obtained from Equation 8 (detailed in Appendix C, File S1),
such as properties of nonepistatic mutation-selection balance
with arbitrary DFEs. In particular, Johnson’s (1999) result for
discrete fitness classes straightforwardly extends to continu-
ous DFEs: the equilibrium fitness distribution is a negative
compound Poisson, with Poisson parameter U=sH where
sH ¼ 1=Eð1=jsjÞ is the harmonic mean of the DFE in absolute
value. Note that allowing for continuous distributions implies
that the harmonicmeanmay be zero ðEð1=jsjÞ/NÞ; in which
case the spike of fittest genotypes ðwith weight e2U=sH Þ is de
facto absent and the fitness distribution converges to a Gauss-
ian (Equation C10 in Appendix C, File S1). Equation 8 also
implies that with arbitrary deleterious DFE andmutation rate
U; themutation load is L ¼ 2 h �mNi ¼ U; and the equilibrium
variance in fitness is hVNi ¼ Ujmsj: This extends a result pre-
viously derived as a low mutation rate limit (Burger and
Hofbauer 1994) to the full mutation rate spectrum.

Timescales of load build-up vs. loss of accuracy with
purely deleterious mutations: Equation 8 allows us to derive
the “characteristic time” tq that it takes to reach some pro-
portion q of the ultimate equilibrium ðh �mtqi ¼ 2q  UÞ:
Neglecting standing variance this time, tq is the solution of
M*ðtqÞ ¼ 12 q : notably, it is independent of the mutation
rate. This time can be computed for any given DFE, and ad-
mits simple bounds in the general case (see Appendix C III,
File S1). For example, 3=jmsj# t0:95 # 8=sH; it takes between

3=jmsj and 8=sH generations to reach 95% of the load. We
recall that jmsj and sH are the arithmetic and harmonic means
of the DFE in absolute value, respectively.

Nonepistatic models with beneficial mutations: When
the kernel includes a portion of beneficial muta-
tions ðM*ðNÞ ¼ NÞ; mean fitness increases indefinitely
ðh �mti/N in Equation 8Þ and our approach overestimates
this increase after some time (see Application). For any non-
epistatic model, the long-term fitness dynamics are best de-
scribed by stochastic origin-fixation models (with or without
clonal interference), once a stationary regime of fitness
change has set. However, we propose that Equation 8 can
provide some connection between the transient and sta-
tionary regimes and predict the fitness trajectory before
stationarity (Section III in Appendix C, File S1). Assume
a given rate n of fitness change is predicted at stationarity.
If we assume a sharp transition from a deterministic to a
stochastic stationary regime, this transition must then occur
when the deterministic and stochastic models have equal
rates of mean fitness change, namely at some time t ¼ t

such that @th �mti ¼ n ¼ U  M9
*
ðtÞ (Equation 8, ignoring the

contribution from standing variance). Up to this time,
mean fitness is assumed to be given by the deterministic
theory ðh �mti ¼ U  M*ðtÞÞ while it increases steadily at rate
n afterward. This conjecture proves reasonable, as illus-
trated in Figure 2. In Figure 2A, the DFE consists of purely
beneficial, exponentially distributed, mutation effects
ðs � Expð1=msÞ; with ms .0Þ and n is given by clonal inter-
ference theory (equation 16 in Good et al. 2012). In Figure
2B, a shifted gamma DFE is considered: s � s0 þ x; with
s0 . 0 and x � 2Gða; bÞ and the stationary rate n is computed
empirically, based on the adaptation rate that is observed at
large times in the individual-based simulations. Using only this
rate n as input, the transition time t is computed and the full
trajectory of expected mean fitness is predicted (see also Fig-
ures C2–C5 in Appendix C, File S1, for other parameter values
and other DFEs). By construction, theory (lines) and average
from simulations (circles) should have the same slope n in the
late linear increase phase. However, they need not be super-
posed, especially over the full timescale studied. Coarse grain
observation indeed suggests that the whole trajectory is sur-
prisingly well captured by this simple heuristic technique.
However, a transiently oscillating behavior (of the average tra-
jectories) arises around the inferred transition time t in all our
simulations. This shows that the actual behavior is more com-
plex than a simple transition from nonstationary/deterministic
to stationary/stochastic (discussed in Desai and Fisher 2007).

In any case, the simulations in Figure 2 and Figures C2–C5
in Appendix C, File S1, show that the simple deterministic
approximation does capture the dynamics over possibly sev-
eral 100 (Figure 2A) or 1000 (Figure 2B) generations (all the
more as the proportion of beneficial mutations is small,
apparently).

Furthermore, recall that this treatment only applies to thin-
tailedDFEs (that fall off fasteroras anexponential), otherwise
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the MGF is not analytic and t/0: The limiting case is an
exponential tail, for which t becomes smaller as the tail falls
slower (larger mean). Yet, the simple heuristic technique did
show good accuracy when simulating exponential DFEs with
ms ¼ 0:01  or 0:001 (Figure 2; Figures C2 and C3 in File S1).

Finally, Figure 2 and Figures C2–C5 in Appendix C, File S1,
also illustrate that variation around the expected mean fit-
ness explodes over time (red envelopes), especially after
the transition to stationarity (late linear phase). Therefore,
the empirical insight gained from the sole prediction of the
expected mean fitness dynamics (without its envelope) can
be de facto limited in this regime.

Equilibrium in the presence of diminishing
returns epistasis

Now consider an epistatic model ðMsðz;mÞ 6¼ M*ðzÞÞ; where
beneficial mutations become less frequent and of smaller
effect as the population adapts; corresponding to a form of
“diminishing returns” epistasis. More precisely, we assume
that (i) fitnesses are bounded on the right (the maximum
fitness is then set at m = 0), and (ii) there is compensa-
tion (suboptimal backgrounds produce a portion of ben-
eficial mutations). In this case, near equilibrium, the
fitness distribution shrinks toward the maximum, and
a first order Taylor series of CSðz;mÞ ¼ log MSðz;mÞ in
small m yields MSðz;mÞ ¼ M*ðzÞevðzÞmð1þ Oðm2ÞÞ: Here
vðzÞ ¼ @mCSðz;mÞ��m¼0 is the slope of the change with m of
the CGF of the DFE, in the vicinity of m ¼ 0; while
M*ðzÞ ¼ MSðz; 0Þ is the MGF of the DFE in the optimal back-
ground. Arbitrary models with diminishing returns epistasis
(and a fitness upper bound) thus converge to log-linear
background dependence near equilibrium. Then, by the
memoryless property of log-linear background-dependent
models (see Equation B3 in Appendix B I, File S1), the

CGF converges as t/N to a unique equilibrium, indepen-
dently of the initial CGF (the equilibrium cumulants are
detailed in Section I, Appendix B, File S1). Overall, mutation-
selection balance is therefore a local attractor for this class of
models and a global attractor for models with exact back-
ground dependence (such as the FGM).

In order to get further insight into the equilibrium fitness
distribution, we now use a linear approximation to the MGF
with small m; yielding MSðz;mÞ ¼ aðzÞmþ bðzÞ þ Oðm2Þ;
where bðzÞ ¼ UðM*ðzÞ21Þ and aðzÞ ¼ 1þ UM*ðzÞvðzÞ:
The asymptotic properties of Equation 5 as t/N (Section
II.2 and II.3 in Appendix B, File S1) then yield a general
theory for mutation-selection balance in the presence of di-
minishing return epistasis.

Mutation load: In particular, mean fitness stabilizes to
h �mNi ¼ bðz1Þ; where z1 is the smallest positive root of a:
Therefore, the mutation load is L ¼ 02 h �mNi ¼ 2bðz1Þ ¼
Uð12M*ðz1ÞÞ: Two situations can occur: either a has no such
root ðz1 ¼ NÞ; inwhich case L ¼ U; or it has a root 0, z1 ,N;

in which case L ¼ Uð12M*ðz1ÞÞ ¼ U þ 1=vðz1Þ: As 0,
M*ðz1Þ, 1; the load is then smaller than the mutation rate
0, L,U: The first situation ðL ¼ UÞ always arises as U/0:
We thus have some form of phase transition in the depen-
dence of the load on mutation rate, as U increases.

Equilibrium fitness variance: We have hVNi ¼ U   L  v9ð0Þþ
Ujmsj; where ms ¼ M*9ð0Þ; as above. Note that the term
v9ð0Þ ¼ @mEðsjmÞjm¼0 is the slope of the change in the mean
of the DFE with m in the vicinity of m ¼ 0: It seems likely
that in most models, this slope is of the same order as
the mean itself: v9ð0Þ ¼ OðjmsjÞ: We thus have, a priori,
hVNi ¼ Ujmsj ð1þ OðLÞÞ where we have seen that L#U;
therefore, the fitness variance is close to Ujmsj at equilibrium

Figure 2 Mean fitness �mt and variance Vt trajectories in nonepistatic models including beneficial mutations. (A) Exponential DFE: s� Expð1=msÞ with
mean effect ms ¼ 0:001: (B) Shifted gamma DFE: s � s0 þ x; with s0 .0 and x � 2Gða;bÞ; with a ¼ 2; b ¼ 5 � 1023 and s0 ¼ a � b=5: In both cases,
U ¼ 1023: Solid lines: for t, t; the expected trajectories h �mti and hVti are given by our analytical theory (Equation 8); for t$ t; the slope n ¼ h@t �mti
and the variance hVti are kept constant. In (A), the transition time t ð’ 770Þ is such that n equals the theoretical asymptotic slope given by equation
16 in Good et al. (2012); in (B), the transition time t ð’ 2650Þ is such that n equals the empirical slope observed in the individual-based simulations
during the interval t 2 ð4000;6000Þ:s: empirical mean fitness and variance given by individual-based simulations, averaged over (A) 103 populations or
(B) 102 populations, with N ¼ Ne ¼ 106: Shaded regions: 99% C.I.’s for the mean fitness (in red) and the variance (in gray). We assumed initially clonal
populations with m0 ¼ 0:
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in a vast variety ofmodels (epistatic or not), as long asU � 1:
It is easily checked that the equilibrium for a nonepistatic
model with deleterious mutations (see above) is retrieved
as a subcase: vðzÞ ¼ 0 ðaðzÞ ¼ 1; z1 ¼ NÞ so that L ¼ U and
hVNi ¼ Ujmsj:

Spike of optimal genotypes: A spikemay exist (Section II.4 in
Appendix B, File S1), but only provided the load is L ¼ U and
if v9ð0Þ$ 0; namely, when maladaptation at most aggravates
the mean deleterious effect of mutations (they become more
or equally deleterious as the background becomes subopti-
mal). The spike converges as U/0 to that of the correspond-
ing nonepistatic model with the same M*ð�Þ: We have

hrNi/e2U
RN

0
M

*
ðuÞdu ¼ e2U=sH where sH; as before, is the har-

monic mean (in absolute value) of the DFE in the optimal
background at m ¼ 0: Furthermore, whenever sH ¼ 0; the
spike is vanishing at equilibrium, for any U: Finally, when
v9ð0Þ ¼ 0 (as in the FGM), the weak mutation limit is also
the upper bound hrNi# e2U=sH for any U:

Some of the qualitative results above are reminiscent of
Burger’s (2000) propositions 2.1 on p.127 and 5.1 on p.145,
proven for a single continuous trait, by a very different ap-
proach. It states that, independently of the trait mutational
kernel or the trait-to-fitness function, the load (i) converges
to L ¼ U as U/0; (ii) is exactly equal to U whenever a spike
exists at the optimum, and (iii) is always less or equal to this
limit ðL#U; U 2 ℝþÞ: This section thus extends this result by
providing a general approach to analytically compute these
mutation loads, spike heights, and higher moments for all U:

FGM

Let us now consider a classic model with diminishing returns
epistasis: FGM (Fisher 1930), described in theModel section,
as an example of log-linear background dependence.

Gaussian FGM: Recall that we denote Gaussian FGM the
classic version with a multivariate normal distribution for
mutation phenotypic effects, which shows exact log-linear
context dependence (Table 2) so that Equation 7 applies.

Trajectories: The fitness mean and variance trajectories
over time (predicted by numerically solving Equation 7) are
illustrated for a small mutation rate in Figure 3A (U, Uc, see
below for the definition of the critical value Uc) and a high
mutation rate (U . Uc) in Figure 3B. They are compared
with the average fitness mean and variance in simula-
tions (population size N = 105). Smaller and larger pop-
ulation sizes and other mutation rates are illustrated
in Figures D2 and D3, Appendix D, File S1. The deter-
ministic approximation, here, is accurate across the whole
mutation rate spectrum ðroughly as long as NUjmsj � 1Þ:
Note that, while the two first derivatives at z ¼ 0
ðexpected mean h �mti ¼ Ct9ð0Þ and variance hVti ¼ Ct$ð0ÞÞ are
accurately retrieved from the numerical solution of Equation 7,
the third order derivative is more problematic to obtain (due to
limited machine ɛ) and would require solving the PDE satisfied
by C9

tðzÞ; together with Equation 7.

Equilibrium: The equilibrium for the Gaussian FGM is a
global attractor (by the memoryless property of log-linear
background-dependence models, Appendix B, File S1). Its
properties are readily derived from the framework in Equilib-
rium in the presence of diminishing returns epistasis (detailed
in Appendix D, File S1) and summarized in Table 3 (approx-
imate results for n $ 3 are derived in Appendix E, File S1).
Three qualitatively distinct situations arise according to the di-
mensionality n and mutation rate U; which determine the ex-
istence of a finite positive root to a: Consistent with the general
results in Equilibrium in the presence of diminishing returns epis-
tasis, a phase transition can occur (if n$ 3) at a criticalmutation
rateUc;which depends on dimension and scale (explicit formu-
las in Table 3 and File S1 in Appendix D, Section III). The results
are consistent with Waxman and Peck’s (1998) conclusions: a
spike of optimal genotypes only exists at a low enoughmutation
rate ðU,UcÞ and in n$ 3 dimensions. Here an exact expres-
sion is obtained for the critical mutation rate where the spike
vanishes, for the spike height below this threshold, and for the
mutation load over the full range of U: Note that explicit ex-
pressions for the spike height in n ¼ 3 dimensions were also
obtained (for a non-Gaussian FGM) in Waxman and Peck
(2006), by a different approach.

A simple approximationemerges for theequilibriumfitness
distribution when U,Uc in terms of a mixture of a probabil-
ity mass of optimal genotypes and a negative gamma distri-
bution of suboptimal genotypes, corresponding to a Gaussian
FGM in n2 2 dimensions (with n $ 3):

if   U,Uc:

(m ¼ 0; with  probability   hrNi ¼ e2U=sH ;

m � 2G
�n2 2

2
; l
�
; with  probability   12 hrNi

:

(9)

Strikingly, theweight of the spike is exactly the same as that in
the corresponding nonepistatic model here (gamma DFE),
whereas our heuristic analysis (Equilibrium in the presence of
diminishing returns epistasis) only suggests such convergence
in the limit of low mutation rates, in general. The full fitness
distribution in Equation 9 is exactly that expected in the absence
of epistasis, in the smallU=s approximation described in File S1,
Appendix C, Section II (Equation C9). A simple pattern thus
emerges: for any U,Uc; the equilibrium fitness distribution
in the FGM is approximately “blind” to the presence of epistasis,
and behaves as the equivalent nonepistatic model with DFE
given by that of the optimal genotype. We thus retrieve essen-
tially an HOC approximation (Turelli 1984) on fitness itself.

On the other hand, when U � Uc; a weak selection strong
mutation (WSSM) limit (detailed below and in Appendix E,
File S1) yields a complementary approximation for the fitness
distribution at high mutation rates.

if   U � Uc : m � 2G

	
n
2
;
ffiffiffiffiffiffiffiffi
U   l

p �
: (10)

Finally, note that the equilibriumhighermoments of Equation
7 (exact for the Gaussian FGM) can be studied analytically
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(Appendix B, File S1) and are very close to the general ex-
pressions derived from the linearization in Equilibrium in the
presence of diminishing returns epistasis.

Generalized FGM: Fisher’s original formulation did not spec-
ify the shape of the fitness function (linear, quadratic. etc.) or
the distribution of mutation effects on g (normal, uniform,
etc.), except that it must be spherically symmetrical (effects
are iid across traits) and centered on the parental phenotype.
Keeping the quadratic fitness function, we study a “general-
ized FGM” (see Appendix E, File S1) with arbitrary spheri-
cally symmetric distributions of mutation phenotypic effects
ðdg � DÞ: A given distribution D determines a given DFE in
the optimal background ½a given M*ðzÞ�: The function v is
then vðzÞ ¼ 2 z2M*9ðzÞ=ðnM*ðzÞÞ; thus allowing the study of
equilibria for any choice ofD (Section I, Appendix E, File S1).
As an example (Section II, Appendix E, File S1), we
derive the equilibrium properties of a model with
arbitrary dimension n and negative exponential DFE at the
optimum: s � 2Expð1=jmsjÞ: In particular, the load is L ¼
minðU; n ffiffiffiffiffiffiffiffi

U   l
p

=2Þ; where l ¼ 2jmsj=n is the mutational var-
iance on each trait (for consistency with the Gaussian FGM).

Weak Selection Strong Mutation (WSSM) approximation:
More general and simple results (Section III, Appendix E, File
S1) are obtained from a WSSM approximation, more pre-
cisely whenever U � ~Uc ¼ n2l=4; where l ¼ 2jmsj=n is the
mutational variance on each trait. Note that ~Uc � Uc (for sub-
stantial n): it is roughly at the same mutation-rate threshold
that equilibria ðUcÞ and transient dynamics ð~UcÞ show a qual-
itative transition. In theWSSM regime, the mutational kernel
is approximately linear in m; so that Equation 4 captures the
CGF dynamics, even away from equilibrium. The coefficients
are aðzÞ ¼ 12U   l  z2 and bðzÞ ¼ 2U   l  n=2  z:

Equilibrium: As was already stated above (Equation 10),
the corresponding equilibrium fitness distribution is a nega-

tive gamma: m � 2Gðn=2; ffiffiffiffiffiffiffiffi
U   l

p Þ: Connecting this approxi-
mation with the known value of the load at lower mutation
rates, L ¼ U provides a simple expression covering all the
range of U :

L � minðU; n
ffiffiffiffiffiffiffiffi
U   l

p
=2Þ; (11)

with a phase transition at U ¼ ~Uc ¼ l=4n2: The accuracy of
this simple result is illustrated in Figure 4A, where the load is
shown for single replicate simulations over a range of U: We
simulated two alternative models (Gaussian FGM with a
gamma DFE and an inverse Gaussian DFE), scaled to the
same value of jmsj and with the same dimensionality n: Both
models yield the same results, accurately captured by Equa-
tion 11. The spike of optimal genotypes is shown in Figure 4B
for the same simulations: here, all genotypes pertaining to an
effectively neutral fitness class relative to the optimum
ð21=N#m# 0Þ were counted as “under the spike.” As
expected by theory, the spike weight is approximately
e2U=sH ; where sH differs between the two models (Gaussian
or inverse Gaussian).

Trajectories: The analytic solution (Equation 5) applied to
the WSSM approximation can be equated, at all times, to a
known explicit distribution, depending on the initial condi-
tion. The corresponding distribution of the underlying phe-
notype is also explicit, and, in all cases, happens to be
multivariate Gaussian (with time-varying variances and
means).Therefore, theWSSMapproximationexactlymatches
Kimura’s (1965) and Lande’s (1980) Gaussian approxima-
tion for traits at equilibrium, and extends it away from
equilibrium. Indeed, although obtained in very different
manners, these two approaches rely on qualitatively the same
WSSM assumption. Lande already conjectured that this ap-
proximation was mostly independent of the underlying dis-
tribution of mutation effects on phenotype, and should be
valid away from equilibrium, as the dynamics of phenotypic

Figure 3 Mean fitness �mt and variance Vt trajectories in a Gaussian FGM. (A) U ¼ 0:02,Uc ; (B) U ¼ 0:1.Uc : Solid lines: expected trajectories h �mti
and hVti given by the numerical solution of Equation 7, with M*ðzÞ ¼ ð1þ l  zÞ2n=2 and vðzÞ ¼ 2 l  z2=ð1þ l  zÞ: Dotted lines: equilibria
h �mNi ¼ 2L ¼ 2U þ Uð1þ l  z1Þ2n=2 and hVNi ¼ Ujmsj ¼ U  n  l=2 given by the analytical theory. Dashed lines (B): expected trajectories from the
WSSM approximation ðEquation 12 for h �mti and B31 for hVtiÞ:s: empirical mean fitness and variance given by individual based simulations, averaged
over 103 populations ðN ¼ Ne ¼ 105Þ: Shaded regions: 99% C.I.’s for the mean fitness (in red) and the variance (in gray). The parameter values are
n ¼ 6 traits and l ¼ 1=300 ðjmsj ¼ 0:01Þ; leading to a critical mutation rate Uc ¼ 16l ’ 0:05: We assumed initially clonal populations with
m0 ¼ 2 20jmsj ¼ 20:2:
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variance are then independent of the mean (equation 19 in
Lande 1980). Here, the result arises explicitly as a WSSM
limit of a generalized FGM. The present approach extends
these former results to fitness (and trait) dynamics where
the phenotypic variance is not constant, and provides an ex-
plicit threshold ðU � ~Uc ¼ n2l=4Þ; beyond which it is accu-
rate. All results are given in Appendix E, File S1, here we only
detail the mean fitness trajectories.

Adaptation from a clone: For a population started with a
clone at given fitness m0 # 0; the mean fitness trajectory,
given by Equation 6, is

�mth i ¼ Ct9ð0Þ � 2
n
2

ffiffiffiffiffiffiffiffi
U   l

p
tanh

�
t 
ffiffiffiffiffiffiffiffi
U   l

p �
þ sech

�
t 
ffiffiffiffiffiffiffiffi
U   l

p �2
m0: (12)

This WSSM approximation is illustrated in Figure 3B (dashed
lines) and proves fairly accurate even when U is only mildly
superior to ~Uc ðU ¼ 2 ~Uc in this exampleÞ: The correspond-
ing trajectory of the full fitness and phenotype distributions
are illustrated in File S4 (Movie 2, A and B, respectively),
showing the agreement between simulations and theory,
for a single replicate. The characteristic time of this fitness
trajectory is the time t0:99 taken to fulfill 99% of the trajectory.
Strikingly, it is independent of the details of the model:
t0:99 � 3=

ffiffiffiffiffiffiffiffi
U   l

p
: In particular, it is independent of the dis-

tance to the optimum ðm0Þ : it takes roughly the same time
to reach equilibrium from an optimal or a highly suboptimal
clone in the WSSM regime.

Adaptation from an equilibrium population: In a similar
manner,wemay consider apopulation starting at equilibrium,
undergoing a sudden shift in the optimum and responding
to this new environment, this time with standing vari-
ance available. Here too, the whole fitness and phenotype
distributions are explicit over time, including with a change
in U or l between the former and new environments.
If the shift only affects the optimum (not U or l) and is
such that the mean phenotype shows a fitness lag m0

ðmean fitness is then �m0 ¼ m0 2
ffiffiffiffiffiffiffiffi
U   l

p
n=2Þ; then

�mth i ¼ Ct9ð0Þ � m0   e22t
ffiffiffiffiffiffi
U   l

p
2

ffiffiffiffiffiffiffiffi
U   l

p
n
.
2: (13)

The trajectory of the fitness and phenotype distributions are
illustrated in File S4 (Movie 3, A and B, respectively), with an

additional doubling of the mutation rate in the new environ-
ment. Here too, the characteristic time is independent of
the distance to the optimumt0:99 � 2:3=

ffiffiffiffiffiffiffiffi
U   l

p
; and it is only

mildly shorter than the characteristic time in the absence of
standing variance. In all cases, the characteristic times scale
with 1=

ffiffiffiffiffiffiffiffi
U   l

p
; showing that the “cost of complexity” well

known in the FGM (Orr 2000), is only mediated byffiffiffiffiffiffiffiffiffi
U l

p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ujmsj=n

p
in this regime. When comparing differ-

ent dimensionalities n; if we scale l to the same jmsj; com-
plexity slows down adaptation as 1=

ffiffiffi
n

p
: Otherwise, simply

adding traits with the same variance l does not affect the
characteristic time, it simply increases the mutation load as
L ¼ n

ffiffiffiffiffiffiffiffi
U   l

p
=2:

Convergence to the deterministic approximation

Our simulations,which included full stochasticity (individual-
based model) showed good agreement with the theory in
Equation 3,which ignores drift. This seems to hold over either
effectively infinite timescales (e.g., FGM, Figure 3 and Figure
4, and other models illustrated in File S3), over very long
timescales (nonepistatic models with purely deleterious mu-
tations, Figure C1, File S1), or over only a few 100 or
1000 generations (nonepistatic models with beneficial muta-
tions, Figures C2–C5, File S1). Accuracy also seems to in-
crease as NU gets larger for the models and parameters we
explored. It has indeed long been observed that deleterious
mutation models or models with an optimum could be han-
dled reasonably well by deterministic population genetics.
This then raises the question of why the deterministic approx-
imation ultimately breaks down with nonepistatic models,
whereas it does not seem to do so with diminishing returns
epistasis.

This can obviously be tackled by individual-based simula-
tions for any given model. In the case of nonepistatic models,
analytical studies have also pointed to a complex interplay of
drift and other forces in the mid- to long-term behavior of
asexual models (e.g., Desai and Fisher 2007): the importance
of the “stochastic edge” of the fitness distribution (Brunet
et al. 2008) depends on whether this edge is stochastic or
not (highly populated or not). The present treatment pro-
vides some hint on the issue by looking at the term neglected
in the deterministic dynamics: dtðzÞ in Equation 1. This
“stochastic source term” is negative, vanishes at z ¼ 0 but
increases with z (see Section III, Appendix B, File S1). That

Table 3 Mutation-selection balance properties in the Gaussian FGM

n Uc z1 Load VðmÞ Spike height

1 N ,N ,U Ujmsj 0

2 l

�
N; U,Uc

1=ð ffiffiffiffiffiffiffiffi
U  l

p
2lÞ; U$Uc

�
U; U,Ucffiffiffiffiffiffiffiffi
U  l

p
; U$Uc

Ujmsj 0

$3 � ðn2l=4Þ
�

N; U,Uc

� 1=
ffiffiffiffiffiffiffiffi
U  l

p
; U$Uc

�
U; U,Uc

� n=2
ffiffiffiffiffiffiffiffi
U  l

p
; U$Uc

Ujmsj
�
e2U=sH ; U,Uc

0; U$Uc

Here ms ¼ EðsjmÞ ¼ Eðsj0Þ ¼ 2 n  l=2 is the arithmetic mean of the DFE andsH ¼ 1=jEð1=sj0Þj ¼ 1=ðlðn=22 1ÞÞ is the harmonic mean of the DFE. � notifies that this is an
approximate result (Appendix E, File S1).

Asexual Fitness Distribution Trajectory 1553

http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.116.187385/-/DC1/FileS1.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.116.187385/-/DC1/FileS4.rar
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.116.187385/-/DC1/FileS4.rar
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.116.187385/-/DC1/FileS3.zip
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.116.187385/-/DC1/FileS1.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.116.187385/-/DC1/FileS1.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.116.187385/-/DC1/FileS1.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.116.187385/-/DC1/FileS1.pdf


dtðzÞ, 0 means that the deterministic prediction overesti-
mates the cumulants (for example, the expectedmean fitness
is actually bellow the deterministic prediction). That dtðzÞ is
small around z ¼ 0;means that the current error on the bulk
of the distribution (the first derivatives of dt(�) at z = 0) is
limited. On the other hand, because of the transport term
Ct9ðzÞ in Equation 3, the larger error jdtðzÞj for a large z pro-
gressively affects the accuracy of the deterministic approxi-
mation around z ¼ 0 (hence the bulk itself) at later times.
Intuitively, this reflects the fact that sampling (drift) induces
relatively more stochastic variation in the extrema than in the
mean and variance of a distribution: the maximum can be
very important for the long-term rate of adaptation (stochas-
tic edge; Brunet et al. 2008), while the mean and variance
influence the short-term “bulk” dynamics.

Whether andwhen a substantial deviationwill accumulate
depends on the details of the model, and can be difficult to
quantify. However, in the case of linear background depen-
dence (Equation 4) some general insight can be obtained,
focusing on mean fitness trajectories. The relative deviation
between the “exact” expected mean fitness h �mti ¼ hCt9ð0Þi
and that predicted by the deterministic approximation
Ct9ð0Þ; has an explicit upper bound at all times:

jCt9ð0Þ2 �mth ij
j �mth ij #

1
j �mth ij

Z t

0
wtðvÞ j �mvj

Ne pmaxðvÞ

 �

dv: (14)

Here, wtðvÞ ¼ aðyðt2 vÞÞ ¼ y9ðt2 vÞ is a weight which de-
pends on the form of epistasis (via y), see Equation 4 and the
paragraph below. Roughly, if j �mvj and j �mtj are of comparable
order, the relative error is proportional to (i) t=Ne; and (ii) to a
weighted mean over the period ð0; tÞ of the expected inverse
frequency (across replicates) of thefittest class. Equation14pro-
vides some intuition on howandwhy differentmutationmodels
deviate from the deterministic prediction.We treat each in turn.

Nonepistatic models

The weights are then wtðvÞ ¼ aðyðt2 vÞÞ ¼ 1; so the error
must accumulate over time. With purely deleterious mutation

models, pmaxðtÞ remains large for a long time ðpmaxðtÞ$ e2U=sH

in the deterministic approximationÞ; and it can be shown
(Section III, Appendix C, File S1) that the relative
error in Equation 14 remains # 1 for some “time to loss
of accuracy” of order Ne e2U=sH (see Table 2). The “charac-
teristic time” to reach 95% of equilibrium ðt0:95 # 8=sH ;
see Application; Nonepistatic modelsÞ is therefore often
much less than the timescale over which the deterministic
approximation breaks down and Muller’s ratchet starts to
click (of order Ne e2 U=sH ; Table 2).

With beneficial mutations, however, the fittest class con-
sists of a small number of fit mutants so the error accumulates
much faster. Furthermore, as the error depends on inverse
frequencies of the fittest class, the fluctuations of this stochas-
tic edge (across replicates and times), especially through
smaller values, are important; a fact already pointed out for
these models (Hallatschek 2011).

Diminishing returns epistatic models

With diminishing returns, two effects alleviate the deviation.
First, mere intuition suggests that, as there is a reachable
fitness upper bound, this fitness edge should ultimately be-
come highly populated ðpmaxðtÞ � 1=NÞ after sufficient time.
This remains a verbal argument. Second, beyond the critical
mutation rate threshold [whenever a(�) has a finite root], the
weights wtðvÞ in Equation14 vanish as t/N: This implies
that the error ultimately becomes independent of the earlier
dynamics of pmaxðvÞ and remains bounded by a constant in-
dependent of t (see Appendix B, part III.2, File S1). This
explains why these models are always accurately captured
by the deterministic approximation at large times (see Figure
4 on equilibrium states), even when a substantial deviation
from the deterministic trajectory builds up transiently (as
observed, e.g., in Figure D2, File S1, with U = 0.0002,
NU = 2). Intuitively (without formal proof), we expect the
transient error to be larger with smaller NU and when start-
ing from a strongly maladapted population, as the fittest class
may be small for a long time.

Figure 4 (A) Mutation load L and (B) spike rN as a function of mutation rate U : with two values of jmsj (0.1 and 0.01) and with the standard Gaussian
FGM or an FGM with inverse Gaussian DFE at the optimum (IG FGM). Solid red and blue lines: numerical values obtained with Equation 7 for the
Gaussian FGM (estimated at a large time T = 103); the (A) load was computed as 2C9T ð0Þ and (B) the expected spike as eCT ð900Þ: (A) Black dashed lines:
analytic approximations L ’ minðU; n=2 ffiffiffiffiffiffiffiffi

U  l
p Þ (Equation 11). (B) Black dashed or dotted lines: hrNi ’ e2U=sH ; where sH is the harmonic mean of the DFE

(in absolute value) at the optimum (Gaussian or IG FGM respectively, Equation D8, File S1). Circles (Gaussian FGM) and crosses (IG FGM): simulated
values of the mutation load and of spike at time T ¼ 103 given by individual-based simulations of a single population ðN ¼ Ne ¼ 105Þ: The parameter
values are n ¼ 6 traits and jmsj ¼ 0:01 or 0:1: The inverse Gaussian distribution has mean jmsj and shape parameter 0:05:
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Qualitatively, this absence of accumulation of deviation
over large times is akeydifference introducedbyepistasis. The
result is reminiscent of Poon and Otto’s (2000), which
showed that even a minimal amount of compensating mu-
tations can stop Muller’s ratchet. A substantial transient
deviation may arise at intermediate times, but it ultimately
shrinks again.

Discussion

The proposed approach models the dynamics of fitness
distributions in the presence of selection and mutation
(neglecting drift) in large asexual populations with a variety
of DFEs. A deterministic PDE arises as an approximation to
the dynamics of the expectation (over stochastic replicates)
of the CGF of the fitness distribution. This allows to easily
handle clonal interference between cosegregating mutants
(drawn from various classes of mutation models), and the
contribution from standing variance, at or away from sta-
tionary regimes.

Main results and possible empirical tests

When considering only the contribution from standing
variance (negligible contribution from de novo mutation),
Equation 8 with U ¼ 0 predicts the full fitness distribution
over time from an arbitrary initial condition. This provides a
versatile model for the response to selection of large poly-
morphic asexual populations over short timescales, i.e.,
before new mutations contribute to adaptation. The pre-
dicted trajectories are highly testable in experimental evolu-
tion: it only requires a measurement of the initial fitness
distribution. We hope it may foster empirical tests of adaptive
dynamics from standing variance in model asexual organ-
isms, with a potential for faster observable responses than
when a single clone adapts by new mutations.

The use of CGFs also simplifies the treatment of nonepi-
static models with fairly general DFEs (Figure 2 and Figures
C2–C5, File S1). For a nonepistatic deleterious mutation,
most previous results are retrieved as a subcase (see Applica-
tion, Nonepistatic models). We further find that the fitness
distribution admits explicit (testable) form over time (Appen-
dix C, Figure C1 in File S1; and Movie 1, A and B, in File S4)
and that the timescale to reach equilibrium from an
optimal clone is independent of the mutation rate U
ðand of order 1=jmsjÞ; which is easily smaller than that over
which the deterministic approximation breaks down.

When nonepistatic beneficial mutations are added, the
approach breaks down over shorter timescales (detailed in
Model section, Application, Nonepistatic models, and Table 2).
In general, the deterministic approximation breaks (after
some time) when the fittest class is only represented by a
few copies (see Section III, Appendix B, File S1), forming a
stochastic edge (Brunet et al. 2008). However, in this case, we
observe by simulation that Equation 8 still provides a rough
connection (Figure 2) between the early regime of adapta-
tion (deterministic), and the ultimate stationary regime (sto-

chastic). Because Equation 8 easily handles a wide variety of
DFEs (e.g., including beneficial and deleterious mutations)
that are not easily treated in the stationary stochastic regime,
it may also be used as a more general null model over shorter
empirical timescales (albeit still ignoring epistasis).

The same framework can be applied to mutation kernels
showing diminishing returns epistasis (Equilibrium in the
presence of diminishing returns epistasis and FGM in Applica-
tion). In that case, the discrepancy with the deterministic
approximation remains bounded (sometimes very small) at
all times (Figure 3, Figure 4, and File S3), because the fittest
class is rapidly filled with a substantial number of selected
mutants. The fitness distribution and the proportion of opti-
mal genotypes at equilibrium then take testable explicit
forms (Equilibrium in the presence of diminishing returns epis-
tasis in Application and Figure 4) in a variety of diminishing
returns epistasis models where beneficial mutations compen-
sate suboptimal genotypes. Overall, our most robust predic-
tion (both with and without epistasis) at equilibrium is that
fitness variance should be close to hVNi � Ujmsj þ oðUÞ;
whenever U � 1: This is also testable (given a large popula-
tion at equilibrium), as the product Ujmsj can be directly es-
timated from mutation-accumulation experiments (reviewed,
e.g., in Keightley and Eyre-Walker 1999). It is also easier to
estimate the fitness variance (and possibly skewness, etc.) than
the mutation load, as the latter requires an estimate of the
maximal fitness. Such an estimate would only be possible if
optimal genotypes were frequent (not always the case), or
given a particular model for the equilibrium fitness distribution
(e.g., Equation 9 and Equation 10), which depends on the as-
sumed DFE at the optimum.

The approach via CGFs is also particularly well suited for
the Gaussian FGM with normally distributed mutant pheno-
types. This model has recently served as a landmark null
model of context-dependent DFE (background and/or envi-
ronment dependence, Tenaillon 2014). It has also long been
a landmark tool in evolutionary ecology and quantitative
genetics: most treatments of the adaptive and demographic
responses to environmental challenges, or of the distribution
of phenotypes under stabilizing selection, are based on its
assumptions (Tenaillon 2014). Under this Gaussian FGM,
the fitness dynamics (averaged over replicates) are fully cap-
tured by a single PDE (Equation 7 and Figure 3) covering the
full mutation rate spectrum. Known analytical treatments of
this model mostly described equilibria under two extreme
regimes: in the limit U � jmsj with n ¼ 1 dimension
(Turelli 1984) or in the limit U � jmsj with arbitrary n
(Lande 1980). Here, the full fitness distribution at or before
equilibrium is predicted (analytically or numerically by solv-
ing Equation 7) for all U and arbitrary n (Figure 3, Figure 4;
Appendix D in File S1; and Movie 2 and Movie 3 in File S4).
This yields a fully testable pattern to fit to observed fitness
distributions or mean fitness dynamics.

Finally, the results extend to arbitrary (spherically sym-
metrical) distributions ofmutant phenotypes in aWSSM limit
ðU � Uc � n2l=4Þ: In this limit, both traits and fitness, at all
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times, converge to simple analytic distributions, indepen-
dently of the details of mutational effects. This limit (Figure
3B and Appendix E in File S1) arises here as a diffusion ap-
proximation in fitness space, and corresponds to normally
distributed phenotypes (with time-varying mean and vari-
ance), consistent with Kimura’s (1965) derivation at equilib-
rium in one dimension, and Lande’s (1980) conjecture for
multiple dimensions. The approach extends these theories
away from equilibrium and clarifies the threshold mutation
rate ð~UcÞ where they apply. These trajectories are also highly
testable. Indeed, (i) the full distribution is analytic at all times
from known initial condition (it may be applied on short
experimental timescales), and (ii) the FGM can be parame-
terized (Martin and Lenormand 2006) from data on delete-
rious mutation effects ðjmsj and nÞand rates ðUÞ; which are
more readily available to the experimenter than beneficial
mutation kernels and rates.

The evolutionary process inherent in theFGM is complex in
large asexual populations and at highmutation rates: it includes
clonal interference, both deleterious and beneficial mutations
and pervasive epistasis. Yet, the resulting fitness trajectories in
theWSSM limit (Equation 12 and Equation 13) display surpris-
ingly simple and robust patterns, independently of the details of
theunderlyingmutationalprocess. Inparticular, themeanfitness
(atany timeaway fromequilibrium)scales simplywith the initial
maladaptation: h �mti � m0 sechð ffiffiffiffiffiffiffiffi

U   l
p

  tÞ2; see Equation 12.
This latter pattern is, at least qualitatively, in agreement with
the observation that the cumulative mean fitness increase (over
stochastic replicates and between distant generations) scales
almost linearly with initial maladaptation ðh �mti}m0Þ: Couce
and Tenaillon (2015) recently showed this empirical pattern
to hold across several species and data sets, and suggested that
the FGM may be one among several models yielding such line-
arity. The present analytic treatment might allow us to go be-
yond qualitative analyses and perform quantitative tests based
on known parameters. A test of the FGM and other models
would (ideally) require confronting full observed trajectories
with (independently parameterized) predictions. We hope that
the proposed approach may help such quantitative testing. De-
riving (approximate or exact) analytic solutions to Equation
7 away from theWSSM limitwould also be useful in this regard,
but requires further effort.

Finally, and although not detailed here, other epistatic
models can be predicted analytically (Equation 4) or numer-
ically (Equation 7) through the proposed framework. Two
such examples are summarized in Table 2: Kingman’s (1978)
HOC model (Equation 7) and a simplified version of Rouzine
et al.’s (2003) binary model (Equation 4). Evaluating how
accurate the predictions are, depending on the models and
parameters, requires extensive simulation work beyond the
scope of this article, but the necessary tools (and illustrations
of the accuracy) are provided in File S3.

Limits

The model obviously has several limits; first of all, not all
equations proposed here can be solved analytically (Equation

7) and we must then rely on numerical solutions. But more
fundamental issues canbe raisedabout theapproach itself.We
detail them below and discuss how to improve these aspects.

Genetic drift and clonal interference: Drift is explicitly
modeled in Appendix A, File S1, but only to determine the
error implied by neglecting it (Equation 14). Our results sug-
gest that if the fittest class of genotypes quickly reaches (and
remains at) a substantial frequency, the deterministic approx-
imation is accurate even over the long term (see the section
on Convergence to the Deterministic Approximation). This is
typically what occurs with diminishing returns epistatic mod-
els (where fitness is bounded from above), which also prove
to have a memoryless property that makes them less prone to
accumulate stochastic deviations.

During adaptation over a single peak landscape, clonal
interference is pervasive (multiple asexual lineages compete
for fixation); yet, modeling the stochastic fate of each mutant
does not prove critical in this model. Conversely, in similar
conditions, it proves critical to do sowith nonepistatic models
of beneficial mutation, at least over long timescales. Overall,
clonal interference need not always be described in the pres-
ence of drift: nonepistatic models with beneficial mutations,
most studied in this context (Sniegowski and Gerrish 2010),
happen to be a case where it is particularly important to do
so. From an empirical perspective, it is simpler to avoid a
theory that requires details of the genetic drift process, as
the relevant parameters are notoriously difficult to measure
(Ne, the stochastic reproductive variance which may vary be-
tween genotypes, etc.). However, a proper treatment of the
effect of stochastic forces (drift and mutations) would still be
useful even in models where the expected trajectory is robust
to their effect: it would provide envelopes around the deter-
ministic expectation. Models of stochastic fronts and cutoffs
may be used once translated into CGF dynamics, or stochastic
PDEs using the results of Appendix A, File S1.

Segregation and recombination: Asexuals are our focus
here, because they form the vast majority of model organisms
in experimental evolution, for which this work is intended.
However, sex is the norm in natura andwill also likely become
increasingly more studied empirically. The approach by CGFs
was originally designed to handle recombinant genomes
(Burger 1991), as the CGF from independent loci add up,
providing simple extensions. Indeed, some of our results nat-
urally extend to sexuals in simplified situations (not detailed
here). However, fitness is typically nonadditive across loci, so
that simple additive theory may prove inaccurate in more
realistic models.

Substitution data: The presentmodel directly follows fitness
dynamics, without explicitly modeling substitutions at the
molecular level. They do occur (an allele becomes dominant,
then another takes over, etc.), but their dynamics may
be complex (cosegregating alleles). By not requiring an ex-
plicit description of these dynamics, fitness trajectories in
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nonstationary regimes with complex epistatic models can be
handled. Yet, this is at the cost of providing no information on
the underlying genetic basis of adaptation (which is now
partly available empirically). For some important models,
possibly epistatic but with low polymorphism, these under-
lying dynamics may be inferred from backward modeling.
However, regimes with high polymorphism might show more
complex molecular signatures, especially away from stationary
regimes. The proposed frameworkmay generate alternative co-
alescent models suited for epistatic, nonstationary models, just
as traveling wave models have been successfully used (Good
et al. 2014) for nonepistatic models at a stationary regime.

More complex environments and landscapes: The models
consideredheremostly assumedafixedenvironment inwhich
adaptation occurs, as is typical in most theories of adaptation
(Orr 2005), and as is relevant to many experimental
evolution settings. However, more complex situations are of
interest: multiple environments connected by migration, a
continuously changing environment with amoving optimum,
trade-off in life history traits. In some cases, these can be
expressed as an adaptive process on multiple fitness compo-
nents, and may then be handled by considering the dynamics
of a multivariate CGF, describing the joint distribution of
these components. Also, trait-based landscapes where traits
are not equivalent for selection and/or mutation (e.g., aniso-
tropic FGM) are not handled by the model as such. Indeed,
the DFE is then not only dependent on the background fitness
alone (distance to the optimum), but also on additional de-
tails (direction to the optimum). These can also be handled
by introducing multivariate CGFs, describing the joint fitness
contributions from each phenotypic dimension. We believe
PDEs for such multivariate CGF dynamics can be written for
many important classes of models where multiple fitness
components interact. The open question will more likely be
whether they can yield analytical insight.

Conclusion

Webelieve theoretical tools are nowavailable that provide “null”
adaptation models, which may be quantitatively confronted to
experimental evolution data (including those with standing var-
iance, rarely studied in these experiments). Such tests of basic
process predictions are necessary if we are ever to apply our
theories quantitatively, into the wild, or into the human body.
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