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Abstract

Craving usually precedes a lapse for impulsive behaviors such as overeating, drinking, smoking, 

and drug use. Passive estimation of craving from sensor data in the natural environment can be 

used to assist users in coping with craving. In this paper, we take the first steps towards developing 

a computational model to estimate cigarette craving (during smoking abstinence) at the minute-

level using mobile sensor data. We use 2,012 hours of sensor data and 1,812 craving self-reports 

from 61 participants in a smoking cessation study. To estimate craving, we first obtain a 

continuous measure of stress from sensor data. We find that during hours of day when craving is 

high, stress associated with self-reported high craving is greater than stress associated with low 

craving. We use this and other insights to develop feature functions, and encode them as pattern 

detectors in a Conditional Random Field (CRF) based model to infer craving probabilities.
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INTRODUCTION

Tobacco smoking is known to cause serious health issues such as cancer, respiratory 

diseases, cardiovascular diseases and metabolic diseases [1]. Smoking is responsible for 

480,000 deaths per year in US alone, according to estimates from the Centers for Disease 

Control and Prevention (CDC) [1]. World-wide, first and second hand smoke causes over 6 

million deaths per year, according to estimates from the World Health Organization (WHO) 

[3]. Encouragingly, nearly 7 out of 10 (68.8%) adult smokers report a desire to quit and 

almost half of all smokers attempt to quit each year [1], however only 6.2% of those 

attempts are successful [2]. The majority relapses [14] in the first few days after a quit 

attempt.

Decades of prior research on smoking cessation with self-report has found that major 

predictors of a smoking lapse include stress (or negative affect) [42], smoking cues (e.g., 

seeing a cigarette) [40, 46], and craving [9, 18, 38]. Similar to other impulsive behaviors, 

craving is prevalent during the first few postquit days. Passive estimation of craving from 

sensor data in the natural environment [20] can enable the development of novel mobile 

tools to address the adverse consequences of craving during smoking abstinence.

Recent works on continuously estimating similar mental processes in the natural 

environment such as stress [13] from mobile physiological sensors, and [30] electrodermal 

activity (EDA) and detection of generalized tonic–clonic (GTC) seizures automatically are 

encouraging developments. But, to the best of our knowledge, there has not been any work 

to estimate craving from sensor data in the natural environment.

Estimating craving automatically from physiological response in the field environment is 

more challenging than estimation of stress. There are several reasons for this. First, the 

pathways linking perception of stress and its manifestation in physiology are now well 

established. In the case of identifying stress-related arousal, various features from 

physiological signals, such as heart rate variability (HRV) from Electrocardiogram (ECG) 

have been shown to be effective. To the best of our knowledge, no such work exists for 

inferring craving from physiological response.

Second, there have been works [21] showing activation of specific parts of the brain in 

response to craving but activation of these components of the brain are not known to have a 

specific and identifiable manifestation in physiological arousal. Third, no gold standard 

exists that can be used as labels for training and testing a craving model, especially in field 

settings. Therefore, we are limited to using self-reports as labels. Given the inherent 

variability of self-reports in capturing mental states, even for well-researched phenomenon 

such as stress, the best correspondence between physiological response and self-reports 

collected in the field is 0.71 [13].

In this paper, we take the first step towards developing a computational model to estimate 

craving for each minute (during smoking abstinence) using sensor data. We use multiple key 

insights that are well-supported by craving research (conducted using self-reports). First, 

rather than targeting estimation of craving as a general phenomenon, we restrict ourselves to 
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craving estimation during the post-quit period of smoking cessation, when craving 

estimation has the highest clinical utility [6].

The second insight is that although craving may not manifest itself clearly in a visible 

physiological response, high-craving moments may lead to elevation in the quitters’ stress 

levels as they struggle to cope with craving [24]. However, stress may not always be due to 

craving, and in some cases, craving may not result in a stress response. Hence, stress can’t 

be used as a direct surrogate of craving. The final insight we use is that time of day does 

have a noticeable effect on self-reported craving. This effect is supported by smoking 

abstinence research [26], and was observed in our data as well.

We analyze 2,012 hours of sensor data and 1,812 craving self-reports from 61 participants in 

a smoking cessation study in their post-quit period. We first verify each of the above insights 

in our dataset with appropriate statistical tests. We use a recent model of stress measure [13] 

for stress assessment.

In our analysis of craving self-reports during the post-quit period, we observe that craving is 

moderate in the morning, decreases in late morning, increases substantially in the afternoon 

(after lunch) and increases further in the evening-night. This observation is in line with a 

similar finding reported in an independent study [26].

In our analysis of association between craving and stress, we find that during the hours of 

day when craving is high, stress associated with self-reported high craving is significantly 

greater than stress associated with self-reported low craving. On the other hand, during hours 

of a day when craving is relatively low, stress associated with self-reported high craving is 

not significantly greater than that associated with self-reported low craving. In addition, we 

note that high craving in a minute is generally followed by high craving in the next minute, 

since craving dissipates gradually over time. Similarly, low craving in a minute is mostly 

followed by low craving in the next minute.

Prior to describing the mCrave model we present a statistical and exploratory analysis of 

craving, with an emphasis on gaining insights into the relationship between craving, time of 

day, and stress. In particular, we propose and statistically test two hypotheses describing this 

relationship.

Next, we use these insights to propose our mCrave model for craving estimation, which is 

based on a linear-chain Conditional Random Fields (CRF) model. The model is provided 

with observed input signals which contain salient patterns indicating heightened craving at 

the locations of the patterns. On the basis of these patterns, the model is capable of several 

types of inferences, such as inferring the probability of any given sequence of low/high 

craving labels, inferring the most probable sequence of labels over any period, or even 

inferring the time series of marginal probabilities of high craving for each minute. As part of 

the training algorithm, the model learns the weights of the aforementioned patterns such that 

it can make accurate inferences. To do this, the model requires ground-truth craving labels 

for at least a subset of the data. A strength of the CRF model is that it can also make use of 

minute-to-minute transition patterns, such as craving to non-craving, and vice-versa, to 

improve the inference accuracy.
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BACKGROUND

In this section, we illustrate the smoking lapse process, the craving process, and the utility of 

estimating craving.

Smoking Lapse Process

In the abstinence phase, deprivation of nicotine leads to withdrawal symptoms such as 

anxiety, sadness, anger, concentration impairment, increased hunger, and others [27, 36]. 

The withdrawal effect may be accentuated by environmental stimuli (e.g., visual exposure to 

smoking cues, alcohol) and social triggers (e.g., social gathering of friends who are smokers) 

[40]. Quitters who are better able to cope with these withdrawal effects (e.g., craving and 

stress) are relatively more successful in maintaining abstinence [5, 27]. For lapsers, a rapid 

increase in negative affect and smoking urges/cravings is associated with the first smoking 

lapse [4, 42]. Unfortunately, the first lapse usually leads to a full relapse [16].

Craving Process

Craving or urge to smoke is generally conceptualized as the motivational state of desire for 

nicotine [15, 38]. Although urge and craving may have different meaning [19], they can be 

used interchangeably as there is a correlation of 0.96 between self-reported urge and craving 

[38, 40, 47]. Hence, we consider urge and craving interchangeably hereafter.

During the post-quit abstinence phase, individuals experience high craving soon after 

quitting that reduces as time progresses [18, 38, 49]. Periodic episodes of prolonged craving 

are associated with stress (or negative affect) [24,39,42], time of day [26], smoking cues [38, 

40], and alcohol consumption [40]. During abstinence, individuals often need to cope with 

prolonged, recurring, and intensified craving effects in order to maintain abstinence. 

Individuals experiencing higher craving soon after quitting are more likely to relapse [18].

Assessing Craving During Smoking Abstinence

Data collected in smoking cessation studies [9, 17, 26, 48] rely mostly on retrospective 

recall of craving and stress (or negative affect) that may be prone to recall biases and errors 

[12]. To reduce these problems, Ecological Momentary Assessments (EMA) [41,44] collect 

repeated momentary self-reports in the natural environment, longitudinally.

The use of EMA in behavioral medicine is a significant methodological advancement, but it 

also has several limitations. First, EMA depends on the participants’ volition to answer 

probes, making them prone to noncompliance due to not being available at the time of the 

prompt [34], or to reporting burden, which reduces data integrity. Second, EMA prompted at 

random times may miss the most opportune moment (e.g., intense stress and subsequent 

craving prior to a lapse). Third, recall from the past (from minutes to hours) may still suffer 

from recall bias and error.

Smoking researchers have envisioned [37,43] the use of ubiquitous computing (e.g., 

smartphone and wearable sensors) in smoking cessation research. Recent advances in 

ubiquitous computing have now made it feasible to obtain critical measures (e.g., stress) 

from sensors [11, 13, 28].
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Benefits of Minute-level Craving Estimation

In this work, we estimate craving at the minute-level during the abstinence phase in smoking 

cessation. Continuous estimation of craving during abstinence has several utilities.

First, the minute-level objective estimation of craving will not rely on participants’ self-

assessment, which eliminates recall-bias and noncompliance. Second, participant burden of 

frequent self-reporting can be reduced. Third, researchers can analyze craving data at a 

higher temporal resolution (e.g., prior to a lapse) and assess lapse risk. Fourth, this work 

accelerates the discovery of a model that can reliably predict first lapse or high risk 

situations during the abstinence period.

RELATED WORKS

Research on Craving from Self-reports

Craving has been studied extensively in smoking cessation research via self-reports. It has 

been found that escalation of stress and craving during a quit attempt may contribute to 

smoking lapse [6]. In addition, there is an increased risk for lapse following a sudden spike 

in craving [25]. Dynamic changes in craving during smoking cessation [38] show that it is 

episodic in nature.

Time of day effect on craving has also been widely reported [26]. During abstinence, craving 

is less in the morning, it gets elevated in the afternoon (i.e., after lunch) and increases further 

in the evening.

Associations of stress and craving have also been studied. For example, stress is associated 

with increased craving intensity and decreased self-control for rewarding substances (e.g., 

nicotine/cigarettes) in abstinent smokers [24].

Most of the research on craving, such as the ones discussed here, however, has been based 

on self-reports (e.g., EMA). In addition to suffering from reporting biases and response 

burden, low temporal resolution of self-reports has prevented a study of craving in the 

minutes preceding a high-risk or lapse situation. Our proposed model for continuous 

estimation of craving can now facilitate investigation of craving around significant clinical 

events, including the minutes prior to lapses.

Continuous Estimation of Mental States from Sensors

Advances in ubiquitous computing have resulted in several models for continuous estimation 

of the mental states of humans. For example, [45] demonstrates a method to dynamically 

infer multiple levels of user frustration caused by system response delays using 

physiological sensors. Computational models also exist to continuously infer physiological 

stress using electrocardiogram (ECG) and respiration data [13, 29]. These contemporary 

works indicate that ubiquitous sensors have progressed to the point that they can 

continuously measure behavior, physiology, and mental states from sensor data. Our work 

makes use of some of these models (e.g., stress) as inputs, but none of these existing models 

can be used directly to develop a model for estimating craving.

Chatterjee et al. Page 5

Proc ACM Int Conf Ubiquitous Comput. Author manuscript; available in PMC 2016 December 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



DATA COLLECTION

We describe the smoking cessation study [32] whose data was used in the development of 

the mCrave model. The study was approved by the Institutional Review Board (IRB).

Devices and Sensor Measurements

Wearable Sensor Suite—Participants in the study wore a wireless physiological sensor 

suite (AutoSense [11]) underneath their clothes. The wearable sensor suite consisted of two-

lead electrocardiograph (ECG), 3-axis accelerometer, and respiration sensors. Participants 

also wore an inertial sensor (i.e., smartwatch), which includes a 3-axis accelerometer and a 

3-axis gyroscope, on each wrist. Each sensor transmitted the sensor data continuously to a 

mobile phone. AutoSense respiration sensor has its own battery and it lasts for 10 days on a 

750 mAh battery. It uses a low-powered ANT Radio to connect with the phone. The phone 

(which collects GPS data continuously and keeps its wireless radio on for data reception) 

lasts for 13 hours on a single charge. The smartwatch we use lasts 3 days on a 500 mAh 

battery. The sampling rate is 21.3 Hz for the respiration sensor, 64 Hz for the ECG sensor, 

and 16 Hz for each axis of the accelerometer on the smartwatch.

Mobile Phone—Participants were given a smartphone to carry. It receives and stores data 

from sensors on the body and on the phone. It also collects information via EMA, which 

captures the characteristics of situational factors associated with craving. These factors 

include stress and physical activity levels. In the smoking cessation study, participants used 

the phone to report (at random prompts) their craving level on a Likert scale of 1–6.

Smoking Cessation Study

Participants—Participants were 61 smokers (27 females) with mean age of 37±12.54 and 

years-of-education of 14±1.82. Ethnically, there were 47 Caucasians, 10 African-Americans, 

2 Native Hawaiian, and 2 from multiple races. All participants reported smoking 10 or more 

cigarettes per day for at least 2 years, and reported a high motivation to quit. To qualify, 

participants had to pass a screening session prior to being enrolled in the study. The 

screening included assessment of current medical and mental health status and history of any 

major medical and psychiatric illness. Screening also included assessment of smoking 

behavior, mood, and other behavioral health measures. Participants were excluded if they 

had ongoing major medical or psychiatric problems and if they had other comorbid 

psychiatric and substance use problems. Also, participants who were not entrained to the 

normal day/light diurnal cycle were excluded to control for variation in diurnal physiological 

activity and behaviors.

Protocol—Once enrolled, the participants picked a smoking quit date. Two weeks prior to 

their quit date, subjects wore the sensor suite for 24 hours in their natural environment. After 

completion of the 24 hours of monitoring, which we call the pre-quit session, participants 

returned to the lab for their second visit. Smoking cessation counseling was provided 

starting at this second visit. Then the participants returned to the lab on the assigned quit 

date to attend a counseling session and to begin the 72 hours of monitoring in the field; this 

we refer to as the post-quit session. They came back to the lab each day to confirm smoking 
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status via an expired breath sample in a carbon monoxide (CO) monitor. During each day of 

monitoring (24 hours pre-quit and 72 hours post-quit), the participants wore the sensor suite 

during awake hours, and completed on the mobile phone, 12 EMAs (i.e., self-reports) daily. 

All participants were compensated monetarily for their time and effort ($430 after successful 

completion).

Total Data Collected—We collected data from 61 participants. The participants wore the 

sensor suite for a total of 2,766 hours (754 pre-quit and 2,012 post-quit).

Lapse Detection—For the mCrave model development, we use the data collected (both 

sensor and self-report) during the post-quit, but pre-lapse phase. This requires detection of 

first-lapse events. Although participants undergo carbon monoxide (CO) testing each day 

and are asked to self-report their lapse events, none of these are temporally precise enough 

to precisely mark lapse occurrence in the sensor data (that is collected at the rate of tens of 

hertz). Therefore, we use a recently developed model (puffMarker) for detecting first 

smoking lapse events from sensor data.

puffMarker [32] is a multi-sensor approach for pinpointing the timing of first lapse in 

smoking cessation. puffMarker uses data collected from two wearable sensors, breathing 

pattern captured from a RIP sensor and hand gestures captured using 6-axis inertial sensors 

(3-axis accelerometers and 3-axis gyroscopes) worn on wrists. It uses inertial sensor data to 

identify hand-to-mouth gestures and applies a machine learning model on the corresponding 

respiration data to detect deep inhalation and exhalation pattern expected during smoking. 

By using both of these sensing modalities, puffMarker achieves good accuracy. When 

applied to 3 days of post-quit data from 33 lapsers (from the participant pool of 61) [32], it 

correctly pinpoints the timing of first lapse in 28 participants; data from the other five was 

not available due to sensor-non-wearing or lost data at the time of first lapse.

Participant Selection for mCrave Modeling—After applying the puffmarker model on 

lapsers, a lapse time was established for the lapsers. For mCrave, to ensure uniformity and 

sufficiency of self-reported craving data (that is used as labels), we selected those 

participants (from both lapsers and abstainers) who had a minimum of 2 craving reports in 

each time of day (morning, afternoon and evening/night) during their abstinent (i.e., post 

quit, but pre-lapse) period. As a result, 16 participants were excluded either due to lack of 

reporting their craving level or because they lapsed before evening of the first post-quit day. 

We use the remaining 45 participants, who contributed 1,557 self-reports of craving. Further, 

if there was a missing stress inference at the minute adjacent to a craving report, due to 

activity or data loss, we excluded that craving report from our analysis. We are thus left with 

1,109 craving self-reports, of which 109 are used to initialize the model and the remaining 

1,000 for training and testing.

STRESS ASSESSMENT FROM SENSOR DATA

We use the cStress model for stress assessment. cStress uses Electrocardiogram (ECG) and 

respiration to infer stress. This model is applied to a set of features computed from each 

minute of sensor data, whereby consecutive minutes are non-overlapping. The model 

Chatterjee et al. Page 7

Proc ACM Int Conf Ubiquitous Comput. Author manuscript; available in PMC 2016 December 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



determines whether this minute’s sensor readings correspond to a physiological response to 

stressors. Features used in the model include 80th percentile of R-R intervals and Heart Rate 

Variability (HRV) from ECG, and mean inspiration-expiration ratio and median of stretch 

from respiration [13]. This model was shown to classify stress and non-stress minutes with 

95% accuracy on independent subject validation (different from training set) in lab testing. It 

also showed that using HRV measure alone from ECG, as has been the case in several prior 

works [22, 23], leads to a significant drop in F1 score (0.56 vs. 0.78). Finally, it was 

evaluated against self-report from independent set of 20 participants who wore sensors for a 

week in the field and was found to have a median F1 score of 0.71 [13]. Subsequently, it was 

also shown to have a median F1 score of 0.717 with self-reports collected from a different 

set of 38 participants who wore sensors for four weeks in the field [35]. This stress model 

was recently validated on our smoking cessation dataset and was found to have a median F1 

score of 0.68 [33].

The cStress model, briefly described above, provides a continuous inference of stress, scaled 

to be between 0 and 1, for every 1-minute of sensor data. This time series of 1-minute 

probability-like measures of stress, for a particular participant, is termed throughout the rest 

of the paper as “stress likelihood”. Figure 1 shows the hourly distribution of stress inferences 

of an awake day across all participants.

ASSOCIATION OF TIME OF DAY, STRESS, AND CRAVING DURING 

ABSTINENCE

Here we describe two hypotheses and support them with statistical tests on our data. The 

hypotheses provide key insights to the construction of the craving estimation model. Figure 

2 provides an overview of the analysis structure.

Craving likelihood based on hour (time) of day

Self-reported craving data has been collected during the awake hours of the participants. 

Participants respond to assessments containing a craving item on a Likert scale of 1–6 

prompted at random times in a day. We analyze the self-reported craving assessments (1,557 

self-reports) of 45 participants. Individual differences in self-reported craving ratings affect 

the comparison of inter-individual ratings. To overcome this challenge, we compute a z-

score transformation of the craving ratings for each participant pi, separately. For participant 

pi, we compute the mean, μi and standard deviation, σi of ratings of all the craving 

assessments reported by that participant. Now, for craving assessment cij of participant pi, 

we compute the z-score  as,

where k is the total number of craving assessments for participant pi and n = 45 is the total 

number of participants.
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Craving ratings with z-score greater than 0 are marked as high craving episodes and those 

with z-score less than 0 are marked as low craving episodes. We observe that during 

abstinence, craving is lower during morning, with mean craving z score of −0.132 (p(C) = 

0.4511), craving increases during the afternoon, with mean craving z score of 0.033 (p(C) = 

0.533), and further increases during the evening, with mean craving z score of 0.106 (p(C) = 

0.545). We find that craving during the afternoon (n = 178) is significantly greater than in 

the morning (n = 404) (p = 0.024 obtained using one-tailed Wilcoxon rank-sum test). Also, 

craving during the evening (n = 527) is significantly greater than in the morning (n = 404) (p 
< 0.0001 obtained using one-tailed Wilcoxon rank-sum test), however, there is no significant 

difference in craving during evening (n = 527) and afternoon (n = 178) (p = 0.489 obtained 

using two-tailed pairwise Wilcoxon rank-sum test). Our finding agrees with that reported in 

[26] on different data.

We further estimated the distribution of normalized self-reported craving episodes during 

each awaking hour (T8, T9,…,T22, represent 15 hours of awake day, where T9 represents the 

hour of day greater than equal to 9:00 and less than 10:00), across all the participants. Figure 

3 illustrates the total number of self-report assessments during each hour of a day. We 

compute the craving likelihood, as the proportion of high craving episodes reported in each 

hour,

Now, prior to classifying each hour of a day as high or low craving likelihood hour, we need 

to know the level of precision for the expected craving likelihood in each hour. We used the 

bootstrap method (random resampling with replacement) [10] in order to obtain mean and 

standard error for craving likelihood in each hour. We computed the 95% confidence interval 

(CI) of craving likelihood in each hour. We marked the set of hours of a day, as high craving 
likelihood hours, Ti, (see Table 1) where both the upper and lower limits of 95% CI of 

craving likelihood, are greater than 0.5 (indicating majority voting). On the other hand, we 

marked the set of hours of a day as low craving likelihood hours, Tj (j ≠ i), (see Table 1) 

where both the upper and lower limits of 95% CI of craving likelihood are less than or equal 

to 0.5. Figure 4 illustrates the distribution of reported craving across all participants during 

hours of a day. We observe that the hours of day when craving likelihood is high are,

Similarly, hours of day when craving likelihood is low are,

1p(C) refers to probability of high craving episodes.
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Shown in Figure 2, the hours of a day is divided into hours Ti when craving likelihood is 

high (red line marked as A), and Tj when craving likelihood is low (green line marked as B). 

The hours of day with high craving likelihood (Ti) are referred to as High Vulnerable hours; 

those with low craving likelihood (Tj) are referred to as Low Vulnerable hours (see Table 1).

Physiological Stress and Craving

Across all participants (n = 45), we compute the stress likelihood at the nearest minute 

adjacent to each craving self-report. As described previously, all the 1,109 craving self-

reports selected for analysis have a stress inference at the minute adjacent to the craving 

report. Next, we group the craving reports and their associated stress likelihood according to 

hours, Ti (see Table 1) and hours Tj (see Table 1).

We hypothesize that physiological stress response is associated with craving during the 

smoking abstinence period, but, not always. We believe that during specific times of a day, 

high stress response may be associated with high craving (e.g., when participants become 

aware of the thought that they will not be able to smoke anymore, or under influence of 

smoking cues like alcohol), however, during other times stress response may be elevated due 

to other reasons (e.g., busy working in order to meet a deadline).

Following are the two alternate hypotheses,

(H01) During the hours (or times) of a day, Ti when participants are highly 

vulnerable, the stress likelihood associated with high craving (denoted as, 

in Figure 2, A.1) is significantly greater than the stress likelihood associated 

with low craving (denoted as,  in Figure 2, A.2).

(H02) During the hours (or times) of a day, Tj when participants are not highly 

vulnerable, there is significant difference between the stress likelihood 

associated with high (denoted as,  in Figure 2, B.1) and low craving 

(denoted as,  in Figure 2, B.2).

We performed two statistical tests in order to provide a convincing rationale behind the 

above hypotheses.

First: To assess H01, we performed a two sample right tailed Wilcoxon rank-sum test for 

and  (see Table 1) with n = 269 and n = 202, respectively. Interestingly, we found that 

is significantly greater than  (p = 0.012). We observed that median of  samples is 

0.131 (mean = 0.196±0.193) and median of  samples is 0.1 (mean = 0.159±0.176). Left 

half of Figure 5 shows the comparison between them. In order to assess H02, we performed 

a two sample two tailed Wilcoxon rank-sum test for  and  (see Table 1) with n = 295 

and n = 343, respectively. We found that  and  are not significantly different (p = 

0.229). We observed that the median of  is 0.105 (mean = 0.167±0.172) and the median 

of  is 0.092 (mean = 0.152±0.161). The right half of Figure 5 shows the comparison 

between them. Interestingly, in both cases, the mean stress likelihood is significantly greater 
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than the median stress likelihood. This can be explained by the fact that stress likelihood 

follows a right-skewed beta distribution [35].

Second: The, number of self-reports in each hour is not the same (mean = 70.125±27.959). 

Consequently, the result of Wilcoxon rank-sum test can be biased. Hence, we performed a 

second test, where we first computed the median stress likelihood associated with high and 

low self-reported craving in each hour of a day. Next, in order to assess H01, we performed 

a right tailed pairwise Wilcoxon sign-rank test for median of  and median of  in each 

high vulnerable hour, n = 6 pairs. We found that median of  is significantly higher than 

the median of  (p = 0.015). Figure 6 illustrates the samples used in this test. In order to 

assess H02, we performed a two sided pairwise Wilcoxon sign-rank test on the median of 

 and the median of  in each low vulnerable hour, n = 9 pairs. We found that the 

median of  and the median of  are not significantly different (p = 0.945). Figure 7 

illustrates the samples used in this test.

THE MCRAVE MODEL

In this section, we describe our proposed Conditional Random Fields model, capable of 

inferring the probabilities of high craving continuously on a minute-by-minute basis, over a 

span of an entire day, provided we know the minute-level stress likelihoods over the course 

of the same day. Conditional Random Fields (CRFs) is a well-established and highly flexible 

class of graphical models for defining probability distributions over sequences of inter-

dependent categorical random variables, conditioned on some observed evidential data.

To apply CRFs to our problem, we first define a sequence of random output variables C = 

{C(i) ∈ {−1: low craving, +1: high craving}|i = 1 … n}, which mark the binary craving 

levels for all n recorded minutes of the given day. The observed evidential data made 

available to the model consist of previously defined , which are a time series of 

non-day-specific hourly craving likelihoods spanning hours from 8:00 (8AM) to 23:00 

(11PM), and Sz(i)|i=1…n, which are a time-series of standardized minute-level stress 

likelihoods, produced by standardizing, i.e., subtracting the daily mean and dividing by the 

daily standard deviation, the output of the cStress model. The standardization is important 

for the sake of producing a population-wide model, which is robust in the face of day-

specific differences in baseline mean and standard deviation of stress likelihoods. The model 

defines the joint conditional distribution . Once the parameters θ of this 

distribution are learned, we can use the model to infer the marginal probabilities of high 

craving for every minute of the day.

The key advantage of CRFs is their ability to use salient features that target the complex 

patterns and relationships that are expected to exist between the output variables C(i) and the 

evidential data , and Sz. The ability to use these features can make CRFs a better choice in 

a supervised learning setting than such generative models as Bayesian Networks. Like 

Bayesian Networks, however, CRFs can also model structural patterns and probabilistic 
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dependencies between output variables, which gives them an edge in structural learning over 

other feature-rich models, such as Support Vector Machines and Logistic Regression.

The full conditional probability of a sequence of high/low labels, defined by our CRF model, 

is:

(1)

(2)

The function Z above is the so-called partition function, and it is used to normalize the 

numerator, and make sure that  is scaled between 0 and 1 and adds up to 1. 

Computing Z presents one of the main challenges in CRF inference, because it is defined as 

the sum of  over all possible C′, of which there are exponentially many. 

Luckily, in a linear-chain CRF, this sum can be computed efficiently using a dynamic 

program called Sum-Product Message Passing (or Exact Belief Propagation).

The  are the previously-mentioned feature functions, which are divided into 

so-called ‘local’ features, capturing the compatibility between observed evidential data and 

the craving label at a single minute i, and ‘pairwise’ features, which capture dependencies 

between successive craving labels. A positive output of fj signals an agreement between the 

variables and the evidential data, whereas a negative value is a sign of a disagreement. A 

value close to 0 indicates an ambiguous/low signal.

The performance of the model depends on the discriminative power and generalizability of 

the feature functions encoded in the model. Below, we list the specific ‘local’ and ‘pairwise’ 

features used in our model, which are inspired by the analyses and hypotheses mentioned in 

the previous sections.

•

Hour t contains minute i. This feature measures how well a craving label 

at a minute level agrees with the likelihood of craving at an hour level. If 

the output is positive, the sign of craving label C(i) agrees with the sign of 

, whereas a negative output indicates a disagreement between 

them. The absolute value is the degree of agreement/disagreement. The 

constant α1 weighs the role of this feature/pattern in deciding the local 

compatibility of C(i), relative to all other features.

•

This feature expands on the previous feature and measures the three-way 

agreement among minute-level stress likelihood, hourly craving 
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likelihood, and minute-level craving labels. Additionally, this feature is 

based on construction of a linear separating boundary between the low 
craving minutes (C(i) = −1) and high craving minutes (C(i) = +1) in the 

space , with  as the x-axis. The boundary has an x-

intercept at , and is parametrized by the constant γ, denoting the 

slope of the boundary. The relationship it encodes is that if the craving 

likelihood is low, it requires a much higher likelihood of stress to indicate 

high craving at that minute. On the other hand, if there is already a high 

likelihood of craving during that hour, it does not take as much stress to 

trigger high craving.

•

This feature is based on the hypothesis H01, discussed in the previous 

section, and detects instances of high stress likelihood associated with 

self-reported high craving during high vulnerable hours.

•

This pairwise feature measures the compatibility scores for all transitions 

of craving labels from minute to minute. For example, β3 measures the 

compatibility of transitioning from ‘high craving’ at minute i to ‘low 

craving’ at minute i + 1.

The constants αi, α2, α3, β1, β2, β3, β4, γ comprise the parameter vector θ, and they can be 

learned using supervised learning via Maximum Likelihood Estimation, provided we have a 

sequence of ground-truth labels for C. Luckily, these weights can be learned even if we have 

ground-truth labels for only a portion of the minutes, as is the case with EMA-based 

sampling of self-reports throughout the day, by defining the partial likelihood of parameters 

given the sample of ground-truth labels. We use a L2 regularized likelihood, to improve the 

generalization and convergence characteristics of the learning process. We use a 

regularization constant λ to tune the role of regularization.

Once the model is trained, it can be applied to provide several different inferences. The 

inference that we find to be most useful is the inference of 

 — the marginal probabilities of high craving for all 

minutes of the day. They can be computed efficiently using an algorithm almost identical to 

the one used to compute Z. These marginal probabilities are used during validation of the 

model, enabling us to compute various classification performance metrics, such as F1, 

accuracy (hit-rate), Area-under-the-Curve (AUC), and others.

FINDINGS

In this section, we report the experimental results and findings obtained with our proposed 

mCrave model. The only hyper-parameter used during learning is the choice of the 
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regularization constant λ. To find the optimal value for this constant, as well as to validate 

the model’s generalization performance in a robust manner, we performed leave-one-

participant-out (LOPO) cross validation.

The training data consists of daily self-reported ground-truth labels for 45 participants. In 

total, there are 1,000 ground-truth craving labels over all days, 505 of them from the high 
craving class, and 495 from low craving class. The LOPO results are summarized below.

Craving estimation during High Vulnerable Hours (Ti)

Out of the total number of craving ground-truth labels, 505 are during high vulnerable hours. 

Of these, 283 belong to high craving class and 222 to low craving class. As Table 2 shows, 

the overall accuracy of classifying these craving self-reports is 72.9%. Furthermore, the 

model attained a true positive rate of 78.4%, where positive class is high craving class, and a 

true negative rate of 65.3% cases. The precision, recall, F1 score, and Area-Under-Curve 

(AUC) of the model are 0.742, 0.784, 0.764 and 0.750, respectively.

Craving estimation during Low Vulnerable Hours (Tj)

On the other side, 495 ground-truth craving labels are during the low vulnerable hours Of 

these, 225 belong to the high craving class, and 270 to the low craving class. We obtained an 

overall accuracy of 72.2%. From the confusion matrix in Table 3, we found that the model 

attained a true positive rate of 62.7% cases, and a true negative rate of 79.6% cases. The 

model obtained a precision of 0.719, a recall of 0.627, an F1 score of 0.673 and Area-Under-

Curve (AUC) of 0.722.

For comparison, the median F1 score of the cStress model is 0.68 [33] for continuous 

estimation of stress and its agreement with self-reported stress in the field setting. As 

described previously, the cStress model is based on extensive prior works on stress and 

physiology, yet its accuracy is limited when comparing against self-report in the field 

setting, due to wide variability and occassional inconsistencies in self-reports. Therefore, the 

accuracy of craving estimation is quite good for a first model, as its comparison is also with 

self-reports collected in the field setting.

In addition to the confusion table, we plotted the ROC curves for the LOPO results, 

comparing the low vulnerable and high vulnerable curves side-by-side, as shown in Figure 8. 

We observed that the performance of the model during high vulnerable hours is better than 

during low vulnerable hours (further illustrated in Figure 9), which agrees with our 

hypothesis that the high vulnerable hours are marked by a stronger connection between 

stress and craving, which in turn leads to better classification of craving self-reports 

conditioned to stress.

Utility of the pairwise feature

As alluded to earlier, the fact that we can incorporate ‘pairwise’ features, targeting 

probabilistic dependency patterns between successive craving labels, was a major factor in 

choosing CRFs as our model. The decision to include these pairwise features was based on 

the reasoning that high craving during a given minute is generally followed by high craving 
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during the next minute, since craving dissipates gradually over time. Similarly, low craving 

during a minute is normally followed by low craving in the next minute. In order to test this 

idea and assess the discriminative power of the pairwise feature, we test our model after 

removing feature  We observed that the model’s average performance over the 

high and low vulnerable hours drops significantly, as shown in Figure 9. This justifies our 

decision to include these pairwise probabilistic dependency patterns.

Comparison to Baseline

Finally, since there does not exist any prior model for craving estimation to which we can 

compare the performance of mCrave, we construct a likely candidate model. Since stress is a 

significant component of the mCrave model, we use cStress as a baseline. In other words, if 

the output of stress model was used directly as a surrogate of craving, how well will this 

model perform in comparison with our mCrave model.

Figure 9 shows the performance of this baseline model. We found that craving estimation 

directly from stress likelihoods attained an accuracy of 54.6% with a kappa score of 0.069, 

F1 score of 0.532, recall of 0.479, and Area-Under-Curve (AUC) of 0.484. In comparison, 

the mCrave model performed significantly better (see Figure 9), which demonstrates the 

utility of mCrave modeling.

DISCUSSIONS, LIMITATIONS AND FUTURE WORK

This work makes several interesting observations. First, it showed that using only a few 

measures (i.e., stress and time of day), it is feasible to estimate craving. Second, it showed 

that stress, by itself, can’t be used as a surrogate of craving; it must be used in conjunction 

with time of day in an appropriate model to produce a good estimate of craving. Third, it 

showed that the accuracy of estimating craving does depend on time of day, i.e., higher 

accuracy may be obtained for high-vulnerable hours, when participants are more likely to 

lapse.

Limitations

Since this work is a first step towards estimating craving, it has several limitations that 

present exciting opportunities for future research in both the UbiComp and health research 

communities.

First, since craving is a psychological construct, estimating it from mobile sensor data is 

inherently difficult. Complicating it further is the challenge of obtaining reliable labels that 

can be used for training and testing of the model. Often, self-report is the only feasible label 

that can be obtained conveniently from the field setting.

Whenever sensor data is used to model the perception of a subjective phenomenon such as 

craving (especially at the minute-level granularity), there are limits to the level of accuracy 

that can be achieved from such models. This is due to inherent variabilities in the self-report. 

In contrast to objective phenomena such as physical activity, eating events, smoking events, 

etc., for which accuracies in the upper nineties can be expected, accuracy for subjective 

phenomenon modeling is usually limited to seventies. This is because the consistency among 
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self-report items for the same construct are limited to lower eighties. Therefore, a 

consistency score of 0.7 or above among self-reported items are considered to be good [7]. 

In particular, [33] found that consistency among self-reported stress items was 0.76 in our 

dataset. The performance of our mCrave model should be viewed from this perspective.

Second, our model uses only stress and time of day. But, craving may be a result of other 

biological phenomena or due to cue exposure. Nicotine deprivation throughout the night 

may result in morning craving. Similarly, craving after lunch may be habitual, situational, or 

biological. In other cases, exposure to alcohol, seeing someone else smoking, smelling 

smoke, seeing a cigarette pack, or reading a social media message may trigger craving. 

Incorporating this information in the model can potentially improve the model’s accuracy. 

Hence, future smoking studies that incorporate other sensing modalities to collect 

geolocation (from GPS), digital exposure (from social media, calenders etc.), visual 

exposure (from smart eyeglasses), detection of eating from hand gestures (e.g., to know 

when lunch is over), etc. can assess the utility of these new data sources in improving the 

estimation of craving, especially in the low vulnerable hours.

Additionally, user demographics may be associated with craving and smoking behavior. For 

instance, female smokers show high craving reactivity to smoking-related cues relative to 

male smokers [31] while another EMA-based study revealed that black smokers report 

greater levels of craving during the day than white smokers [8]. These suggest that more 

research is needed to carefully assess demographic influences on craving during abstinence.

Third, in this smoking cessation study, the duration of post-quit was chosen to be 3 days. 

This is because the first 3 days are the most critical days in smoking cessation, which 

captures the most intense withdrawal symptoms in abstinent smokers. Majority of 

participants lapse during this period; in our smoking cessation study, 53% lapsed in the first 

3 days. Since this was the first smoking cessation study with continuous monitoring using 

physiological sensors (for stress assessment) and smartwatches (for lapse detection), the 

duration of the study was limited to ensure successful data capture in the most vulnerable 

abstinence period.

Now that the feasibility of capturing both stress and detection of smoking lapse from sensors 

in a real-life smoking cessation study has been established, longer studies can be pursued in 

future that can include these and other sensors to capture richer data sets. A longer study is 

likely to lead to new insights and improvements in the craving estimation modeling. It can 

be helpful in revealing several additional information such as trends in craving as withdrawal 

symptoms recede (for those who continue to abstain beyond the first 3 days).

Fourth, although we demonstrate feasibility of estimating craving, the model is not perfect 

and is unlikely to be perfect even in the future. It can both miss high-craving episodes as 

well as detect false ones. This may be due to factors such as errors/noise in the self-reported 

ground-truth craving labels, errors in the stress time series, as well as confounding variables, 

such as location, food/drink intake and others. Even with further improvements in the model, 

some inaccuracies may be inherent due to use of machine learning modeling approaches (for 

example, the fact that we have only a sparse sampling of ground-truth labels for all minutes 
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of the day, we train the model by partial likelihood maximization, which may have played a 

role in lowering the model’s generalization performance) and due to inherent between-

person and between-situation variabilities. Therefore, any intervention delivery that are 

based on craving estimation models must deal with these inaccuracies.

Fifth, even if craving can be estimated perfectly, smoking lapse can sometimes occur 

without being preceded by craving, e.g., when offered cigarette by a friend, relative, or a 

colleague. Therefore, not all smoking lapse episodes can be prevented by intervening at all 

high-craving moments, which itself may be infeasible if they are too frequent in the day. 

What the model promises to do, instead, is to help prepare an individual to better tolerate 

craving in the abstinence period and increase the chances of remaining abstinent or delaying 

lapse. Once an individual acquires sufficient self-efficacy or tolerance to potent cues and 

biologically triggered craving episodes, they may become more likely to remain abstinent.

Future Research

In addition to addressing limitations and improving the model, this work presents other 

opportunities for future research. A major research direction is to incorporate the mCrave 
model in smoking cessation interventions.

First, majority of interventions for smoking cessation are developed for delivery upon 

request, or at set times. These interventions may need to be revised or adapted for delivery in 

response to sensor-detected craving episodes.

Second, to become widely useful in the society, the clinical utility of mCrave model in the 

management of craving should be established by developing and evaluating sensor-triggered 

just-in-time mobile intervention via randomized clinical trials that can be triggered based on 

the estimation of craving. Issues to be considered include the interruption-like nature of 

these interventions, inaccuracy of sensor detections, opportunity for personalization by 

making use of sensor data to estimate user’s availability [34], and others.

Third, methods need to be developed to deal with the high-frequency of sensor outputs (i.e., 

each minute) to find the most opportune moments to intervene. Some recent research in the 

context of stress intervention provides some initial foundations for this direction [35].

Fourth, effective visualizations could be developed to help the users visualize their craving 

patterns and gain useful insights into the associated contexts that might increase or decrease 

their craving during abstinence.

CONCLUSION

This work presented a computational model to estimate craving continuously from mobile 

physiological sensors. Use of an explainable model in mCrave helps retain the insights 

regarding the phenomena and get confirmation from domain experts. Doing so is critical to 

bridging the gap in such multidisciplinary works. Although numerous improvements can be 

made to improve the sensitivity and specificity of the model (e.g., by incorporating 

geoexposure, visual exposure, and digital exposure data), establishing the feasibility of 

automatically estimating craving opens up numerous exciting research opportunities with 
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significant potential to improve health and wellness. Development of appropriate 

interventions (potentially using assisting technologies such as smartphones, wearables, smart 

clothing, etc.) that are suitable for delivering at vulnerable moments can help build tolerance 

and improve smoking cessation success rates. Since craving plays an important role in 

several impulsive behaviors such as overeating, drinking, and drug use, research can be 

pursued to estimate craving for these behaviors as well.
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Figure 1. 
Distribution of Stress Inferences across hours of a day. Number of participants = 45

Chatterjee et al. Page 21

Proc ACM Int Conf Ubiquitous Comput. Author manuscript; available in PMC 2016 December 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Analysis of Hour (time) of day, craving, and physiological stress.
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Figure 3. 
Total number of self-report assessments during hours of day across all participants. Number 

of participants, n = 45
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Figure 4. 
Craving distribution across hours of a day. Hours with High craving likelihood are marked 

with red. Hours with Low craving likelihood are marked with green
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Figure 5. 
Median Stress likelihood associated with self-reported high craving is significantly greater 

than that associated with self-reported low craving during high vulnerable hours (marked 

with the star), however there is no significant difference between Median Stress likelihood 

associated with self-reported high craving and that associated with self-reported low craving 

during low vulnerable hours
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Figure 6. 
Median Stress Likelihood associated with self-reported high craving (red) and self-reported 

low craving (green) during high vulnerable hours of day. Median Stress Likelihood 

associated with high craving (red) significantly greater than that associated with low craving 

(green)
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Figure 7. 
Median Stress Likelihood associated with High craving (red) and low craving (green) during 

low vulnerable hours. No significant difference between Median Stress Likelihood 

associated with high craving (red) and that associated with low craving (green)
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Figure 8. 
Receiver Operating Characteristic(ROC) curve

Chatterjee et al. Page 28

Proc ACM Int Conf Ubiquitous Comput. Author manuscript; available in PMC 2016 December 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 9. 
Model performance metrics for High Vulnerable, Low Vulnerable Hour, Baseline, Without 

Pairwise Feature
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Table 1

Variables and parameters

Name Description

Ti High Craving Likelihood Hour (High Vulnerable Hour)

Tj Low Craving Likelihood Hour (Low Vulnerable Hour)

Stress likelihood associated with self-reported high craving during high vulnerable hour

Stress likelihood associated with self-reported low craving during high vulnerable hour

Stress likelihood associated with self-reported high craving during low vulnerable hour

Stress likelihood associated with self-reported low craving during low vulnerable hour
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Table 2

Confusion Matrix for High Vulnerable hour. Overall Accuracy is 72.9% (against base accuracy 56.4%) with 

kappa 0.429.

Estimated by mCrave

High Craving Low Craving Total

Actual

High Craving
Low Craving

222 (78.4%)
77 (34.7%)

61 (21.6%)
145 (65.3%)

283
222

 Total 299 206 505
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Table 3

Confusion Matrix for Low Vulnerable hour. Overall Accuracy is 72.2% (against base accuracy 53.7%) with 

kappa 0.424.

Estimated by mCrave

High Craving Low Craving Total

Actual

High Craving
Low Craving

141 (62.7%)
55 (20.4%)

84 (37.3%)
215 (79.6%)

225
270

 Total 196 299 495
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