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Abstract

Purpose—To provide further insight into the role of proliferation and other cellular processes in 

chemosensitivity and resistance, we evaluated the association of a diverse set of gene expression 

signatures with response to neoadjuvant chemotherapy (NAC) in breast cancer.

Experimental Design—Expression data from primary breast cancer biopsies for 1419 patients 

in 17 studies prior to NAC were identified and aggregated using common normalization 

procedures. Clinicopathologic characteristics including response to NAC were collected. Scores 

for 125 previously published breast cancer-related gene expression signatures were calculated for 

each tumor.

Results—Within each receptor-based subgroup or PAM50 subtype, breast tumors with high 

proliferation signature scores were significantly more likely to achieve pCR to NAC. To 

distinguish ‘proliferation-associated’ from ‘proliferation-independent’ signatures, we used 

correlation and linear modeling approaches. Most signatures associated with response to NAC 

were proliferation-associated: 90.5% (38/42) in ER+/HER2- and 63.3% (38/60) in triple-negative 

breast cancer (TNBC). Proliferation-independent signatures predictive of response to NAC in ER

+/HER2- breast cancer were related to immune activity, while those in TNBC comprised a diverse 

set of signatures, including immune, DNA damage, signaling pathways (PI3K, AKT, Ras, EGFR), 

and ‘stemness’ phenotypes.

Conclusion—Proliferation differences account for the vast majority of predictive capacity of 

gene expression signatures in neoadjuvant chemosensitivity for ER+/HER2- breast cancers and, to 

a lesser extent, TNBCs. Immune activation signatures are proliferation-independent predictors of 
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pCR in ER+/HER2- breast cancers. In TNBCs, significant proliferation-independent signatures 

include gene sets that represent a diverse set of cellular processes.
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Introduction

In spite of remarkable progress in targeted therapeutics in breast cancer, including hormonal 

and HER2-directed therapies, chemotherapy continues to play a critical role in the 

management of over one third of all women with breast cancer.(1-3) Neoadjuvant 

chemotherapy (NAC) is associated with improved rates of conversion from mastectomy to 

breast conservation and also offers prognostic information: in a large meta-analysis, patients 

who achieved pCR following NAC had improved disease-free and overall survival relative to 

those with residual disease.(4) In addition, NAC provides a window through which to 

evaluate the intrinsic chemosensitivity of breast cancer, as patients receive no treatments 

prior to NAC and there is a discrete endpoint – pathologic complete response (pCR) or 

residual disease (RD).

Gene expression signatures are sets of genes whose expression patterns associate with a 

specific biological process or phenotype. Over 15 years ago, Perou and colleagues used gene 

expression profiling to describe molecular subtypes within breast cancer that initially 

correlated with overall survival and ultimately were shown to reflect sensitivity to NAC.

(5-8) Studies of gene expression signatures by Desmedt, Sotiriou, and colleagues over the 

past decade revealed the importance of proliferation and other biologic processes, including 

immune activation, in breast cancer prognosis and response to NAC.(9-11) Recent 

prospective data from the TAILORx and MINDACT studies demonstrate the importance of 

signature-based genomic predictors (OncotypeDX and MammaPrint, respectively) in 

clinical decision-making for breast cancer.(12, 13) While these studies and many others 

demonstrate the utility of gene expression signatures, most evaluate only one or a small 

number of signatures, making cross-study comparison of signatures difficult due to sample 

and methodological differences. Systematically interrogating multiple individual gene 

expression signatures could provide insight into the complex network of pathways and 

processes involved in chemosensitivity and resistance.(14-16)

In this patient-level meta-analysis, we assembled publicly available mRNA microarray gene 

expression data from over 1400 breast cancer biopsies obtained prior to NAC, the largest 

dataset of its type to date. We collected study-reported response to NAC defined as pCR 

versus RD as well as patient clinicopathologic characteristics. With this large clinically 

annotated dataset, we interrogatated pathways involved in response to chemotherapy by 

evaluating and comparing 125 published breast cancer-related gene expression signatures 

implicated in chemosensitivity and resistance. We demonstrate that proliferation accounts 

for the vast majority of the predictive power of gene signatures within each subset of breast 

cancer and identify proliferation-independent signatures predictive of response to NAC, 
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including immune signatures in ER+/HER2- breast cancers and signaling pathway 

signatures in triple-negative breast cancers.

Methods

Microarray Data

Using Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 

guidelines, two gene expression repositories – the National Center for Biotechnology 

Information Gene Expression Omnibus (NCBI GEO; (17)) and the European Molecular 

Biology Laboratory/European Bioinformatics Institute (ArrayExpress; (18)) – were queried 

for available gene expression datasets; date of last query was May 1, 2015. Using the search 

terms “breast cancer” AND (neoadjuvant OR chemotherapy OR residual), we identified 22 

studies with 2407 patient records (Figure 1.). Only studies with microarray gene expression 

data from Affymetrix (U133 and U133Plus2.0 arrays) and Agilent platforms were included 

to limit cross-platform variability. Individual samples were excluded if biopsy was obtained 

after NAC, if the patient received HER2-directed therapy (e.g. trastuzumab), or if pathologic 

response data were not available. Duplicate records were removed by careful review of GEO 

annotation and any records with Pearson correlation coefficient of one. In total, 1417 records 

from 17 studies were included for analysis (Table 1., Supplementary Table 1., NCBI GEO 

accession numbers GSE8465, GSE16446, GSE18728, GSE19697, GSE20194, GSE20271, 

GSE21974, GSE21997, GSE22093, GSE22226, GSE22358, GSE22513, GSE23988, 

GSE25066, GSE28796, GSE32646). Raw Affymetrix microarray data were processed with 

RMA normalization and Agilent microarray data was subjected to Lowess-normalization 

and log2 transformation. Samples were batch-median centered by study to allow cross-study 

comparison.(19, 20) To determine intrinsic breast cancer subtype, the ‘Bioclassifier’ package 

from Parker and colleagues (21) was used with no additional calibration parameters given 

that each dataset was relatively balanced with respect to ER-status by pathology: 49% and 

58% ER-positive for Affymetrix and Agilent datasets, respectively (Table 2.).(7) Receptor 

status by gene expression was determined using the genefu package in R.(22) Triple-

negative breast cancer (TNBC) subtype was determined using the TNBCtype tool (23) after 

re-normalizing data within TNBCs per recommended procedures.(24, 25) The ESTIMATE 

package was used to calculate estimated tumor purity using R version 2.15.3.(26)

Patient and Tumor Characteristics

Patient-specific data was obtained from NCBI GEO and Array Express including response 

to NAC, age, grade, pathologic receptor status (ER, PR, and HER2), and chemotherapy 

regimen (Table 2.). Response was categorized as pCR or RD based on study-specific 

definitions of endpoint. Most studies defined response by breast and axilla, though four 

studies reported breast-only response (Table 1. and Supplementary Table 1.). Pathologic 

receptor status was ‘positive’ or ‘negative’ based on study-specific definitions. For ER or PR 

immunohistochemistry (IHC), 0 was defined as ‘negative’ and 2-3 defined as ‘positive’, 

while IHC of 1 was considered indeterminate. A FISH HER2/CEP17 ratio of greater than 

2.0 was defined as positive. Chemotherapy was patient-specified in 15 studies and based on 

the associated publication in two studies.
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Gene Expression Signatures

Gene expression signatures were compiled from published studies describing a variety of 

processes implicated in chemosensitivity or resistance (11, 15) and from curated databases, 

including MSigDB(27) and GeneSigDB.(28) We included only signatures that were defined 

from mammary or breast cancer cell lines, breast cancer samples, or had been previously 

validated in breast cancer expression datasets. Signatures were categorized based on the 

proposed phenotype characterized by that signature (Figure 2A.). To establish a single value 

for each signature, we calculated the mean of the gene expression values identified as ‘up’ in 

each signature based on the original publication. As a sensitivity analysis, we evaluated 

those signatures that had both ‘up’ and ‘down’ genes (32/125 signatures; 25.6%) and 

calculated the mean of the ‘down’ genes subtracted from the mean of the ‘up’ genes. 

Bidirectional signature scores were highly correlated with scores calculated using only ‘up’ 

genes (median Pearson's r of 0.7412). Based on these data, we pursued subsequent analyses 

using only ‘up’ genes. We also included ‘random’ signatures of varying sizes (5, 10, 50, 100, 

500 genes) composed of genes selected randomly from the transcriptome, termed 

‘RANDOM.GENOME’ or genes randomly selected from the list of genes present in any 

signature, termed ‘RANDOM.SAMPLE.’ Signature nomenclature, categorization, reference/

PMID, and full gene lists are provided (Supplementary Table S2.) as well as code for 

analyses in R (Supplemental Data).

Normal Mammary Epithelium Acinar Morphogenesis Assay

MCF-10A mammary epithelial cells were cultured in MatriGel™ as described previously 

and total mRNA was previously isolated from triplicate samples and hybridized onto 

Affymetrix gene chips U133A and U133B.(29) Raw gene expression data was RMA 

processed then batch median centered. The proportion of proliferating cells was previously 

determined by detecting total DNA content via FACS at each time point.(30)

Identification of Proliferation-Independent Signatures

To determine proliferation-associated versus proliferation-independent signatures, we 

performed a proliferation adjustment using the method proposed by Venet, et al.(31) Briefly, 

a linear model was constructed using the proliferation signature value for each sample fitted 

to the expression of each gene using the ‘lm’ function in R (version 3.1.3). Each expression 

measurement was then substituted by the sum of its residual and mean expression across the 

dataset. This approach was performed using two independent proliferation signatures, the 

11-gene PAM50 proliferation index(32) and the 131-gene PCNA signature.(31) Venn 

diagrams were created using BioVenn.(33)

Evaluation of Proliferation-Immune ‘Meta-Signature’

To determine if we could improve predictive performance by combining signatures, we 

developed a proliferation-immune ‘meta-signature’ consisting of 18 genes – 11 from the 

PAM50 proliferation signature (BIRC5, CCNB1, CDC20, NUF2, CEP55, KNTC2, MKI67, 

PTTG1, RRM2, TYMS, and UBEC2) and 7 from the GeparSixto immune activation 

signature (CXCL9, CCL5, CD8A, CD80, CXCL13, IGKC, CD21).(32, 34) To evaluate the 

performance of this ‘meta-signature’, we combined ER+/HER2- cases from both Affymetrix 
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and Agilent datasets (total n=642) and we randomly partitioned the combined ER+/HER2- 

dataset into equal training/validation subsets (n=321) then calculated the association of the 

‘Proliferation-Immune’ meta-signature and the other 125 signatures via t-test. We repeated 

this approach for 1000 iterations then calculated an average FDR p-value for each signature 

as a measure of consistent performance.

Statistical Analysis

All microarray data processing and statistical analyses were performed in R version 3.1.3. 

Contrasts in patient and tumor characteristics were evaluated using Pearson chi-squared 

tests. Correlation among gene expression signatures was calculated using Pearson's 

coefficient, and hierarchical clustering was performed using average linkage. The 

association of signatures to continuous and categorical factors was evaluated using Student's 

t-test and analysis of variance, respectively. The association of individual genes significantly 

associated with NAC response were identified using ‘limma’ package and by t-test.(35) All 

calculations of association with response were multiple-testing corrected using Benjamini–

Hochberg procedure for false discovery rate.

Results

Patient and Tumor Characteristics

This meta-analysis includes microarray expression data from breast cancer biopsies obtained 

prior to NAC from 1419 breast cancer samples in 17 studies (Figure 1., Table 1., and 

Supplementary Table S1.). The data were divided into two independent datasets based on 

microarray platform for validation purposes: an ‘Affymetrix Dataset’ (12 studies with 1033 

total samples) and an ‘Agilent Dataset’ (5 studies with 386 total samples). The two datasets 

were relatively balanced with respect to age, grade, pathologic ER and HER2 receptor 

status, and clinical subtype (Table 2.). HER2+ breast cancers were relatively under-

represented relative to general incidence as we excluded those patients who received HER2-

directed therapy, while TNBCs were relatively over-represented given that patients with 

TNBC are more likely to receive neoadjuvant chemotherapy. The chemotherapeutic agents 

that these patients received are similar to those agents that are currently administered in most 

centers. Clinicopathologic characteristics known to be associated with response to NAC - 

including tumor grade, receptor status, receptor-based subtype, and PAM50 status - were all 

significantly associated with response to NAC in both the Affymetrix and Agilent datasets 

(all p<0.05; Supplementary Table S3.).

A Large Proportion of Gene Expression Signatures Correlate Highly with Proliferation

We evaluated 125 gene expression signatures representing the expression patterns of a 

diverse set of pathways and cellular processes implicated in chemosensitivity and resistance 

in the 1033 breast cancers samples in the Affymetrix dataset (Figure 2A.). Pairwise 

correlation of the calculated values for each published signature in every sample and 

subsequent unsupervised clustering demonstrates that independently-derived signatures 

reveal marked redundancy (Figure 2B.). The largest cluster is comprised of 46 signatures 

(46/125 signatures; 36.8%) with five well-established proliferation signatures at the center of 

the cluster (10, 15, 24, 31, 32). The 46 signatures in this group each demonstrate a strong 
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correlation to the 11-gene PAM50 proliferation signature(32) (Pearson's r >0.40 for all 

associations; p<1×10-45) and will be considered ‘proliferation-associated’ by correlation. 

Although only 11 signatures were designed to represent proliferation or cell cycle (Figure 

2A.), the pairwise correlation data suggest that a large proportion of published signatures, 

irrespective of described signature target nonetheless correlate highly with proliferation. 

Several other distinct clusters were evident, centering around ER and HER2-related 

signatures, mesenchymal-related signatures, and immune-related signatures (Figure 2B.). 

This supports prior evidence of significant redundancy among published gene expression 

signatures.(11, 36)

Proliferation Signatures Are Sensitive Over a Range of Mammary Cell Proliferative States

To explore gene expression-based proliferation signatures in greater detail, we evaluated 

proliferation gene expression signatures in a 3D culture model of immortalized normal 

mammary epithelial cells that undergo a programmed proliferation arrest, transitioning from 

a high proliferation state (30-35% in G2-S phase on days 2-5) to a low proliferation state 

(approximately 5% in G2-S phase days 12-15; Figure 3A.). We assessed the proportion of 

proliferating cells daily over a 15-day time-course and compared this with five well-

established proliferation signatures, calculated from RNA collected in triplicate each day 

(Figure 3A.).(10, 15, 24, 31, 32) The five proliferation signatures show a strong inter-

signature correlation (Pearson's r > 0.97 for all associations) and each has a strong 

correlation with proportion of proliferating cells (Pearson's r > 0.88 for all associations). 

These in vitro results indicate that the five proliferation signatures, derived from patient 

tumor expression data, reproducibly measure cellular proliferation of mammary epithelial 

cells.

Tumor biopsies often capture non-tumor cells that could impact the proliferation score, for 

example low proliferative fibroblasts or high proliferative immune cells. We calculated 

tumor purity for each sample using a method that infers the fraction of stromal and immune 

cells in tumor samples, shown to correlate with tumor purity based on DNA copy number.

(26) Estimated tumor purity demonstrated no relationship with the 11-gene PAM50 

proliferation score(32) across all samples (R2 = 0.013; Figure 3B.).

Response to Neoadjuvant Chemotherapy is Strongly Associated With Proliferation

We evaluated the five proliferation signatures described above in 1419 breast tumors. More 

highly proliferative tumors were associated with a greater proportion of pCR to NAC in both 

the Affymetrix and Agilent datasets (Figure 3C. and 3D.; ANOVA p=1.6×10-13 and 

p=3.2×10-11, respectively). Within individual breast cancer subgroups, the highest 

proliferative quartile of tumors via the 11-gene PAM50 proliferation index were associated 

with a greater proportion of pCR in all receptor-based (ER+/HER2-, HER2+, TNBC; Figure 

3E.) and PAM50 (Luminal A, Luminal B, Her2-like, Basal-like, Normal-like; Figure 3F.) 

subgroups. This association was highly statistically significant by stratified Chi-Square: p = 

3.0 × 10-8 and p=0.003, respectively (Supplementary Table S4A.). As a sensitivity analysis, 

we also compared proliferation above/below median; higher proliferation remained 

significantly associated with a greater proportion of pCR for both receptor-based subgroups 

(p = 0.0004) and PAM50 subgroups (p=0.047; Supplementary Table S4B.). Additionally, we 
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evaluated proliferation and pCR rate among the TNBC subtypes from Lehmann and 

colleagues using proliferation above/below median.(24) Five of the TNBC subtypes 

demonstrated higher pCR rates for highly proliferative tumors (basal-like 2, 

immunomodulator, luminal AR, mesenchymal, unselected) while two did not (basal-like 1, 

mesenchymal stem-like). Given the limited number of tumors within each TNBC subtype, it 

is not surprising that the trend for proliferation correlating with pCR within the TNBC 

subtypes did not reach statistical significance (stratified Chi-Square p=0.22; Supplementary 

Table S4B.).

To evaluate the performance of proliferation signatures versus individual genes, we 

evaluated three individual genes commonly associated with proliferation: MKI67, PCNA, 

and AURKA. Comparing each individual proliferation gene with each of the five 

proliferation signatures demonstrates robust correlation across all comparisons (median 

Pearson's r = 0.79, range 0.59-0.88; Supplemental Figure S1A.). We stratified the expression 

of each gene into quartiles calculated across subtypes or within subtypes as an attempt to 

approximate a tissue-based biomarker (e.g. 0, 1+, 2+, 3+). Each individual marker of 

proliferation was significantly associated with pCR; however the 11-gene PAM50 signature 

outperformed (lower stratified Chi-square p-value) each individual gene in comparisons 

where quartiles are defined within subtypes. In analysis across subtypes, the 11-gene 

PAM50 signature outperformed MKI67 and AURKA and was comparable to PCNA 
(p=4.3×10-5 vs. 1.3×10-5, respectively), suggesting that expression-based proliferation 

signatures have the potential to be more robust biomarkers than individual genes 

(Supplemental Figure S1B/C.).

Most Signatures Highly Associated with Response are Proliferation-Associated

We evaluated the significance of association of each of the 125 gene expression signatures 

with response to NAC (pCR vs. RD; ; Supplementary Table S5A-H.). The signatures 

associated with response were highly overlapping between Affymetrix and validation 

Agilent datasets: among all breast cancers, 88.9% (48/54) of statistically significant (FDR 

p<0.05) signatures in the smaller Agilent dataset were also significant in the Affymetrix 

dataset. To investigate the potential impact of median center normalization by study, 

multivariate analysis of signatures with study as a covariate demonstrated that very few 

signatures that shifted from significant to not significant (or vice-versa): 1.6% in ER+/

HER2-, 5.6% in TNBC, and 4.8% in basal-like (Supplementary Figure S2A-C.).

Among receptor-based ER+/HER2- breast cancers (Figure 4A.), four of the five most highly 

associated signatures were proliferation signatures(14, 24, 31, 32) and the fifth a STAT1 

signature(37); all five signatures were positively correlated to pCR. For TNBC (Figure 4B.), 

the five signatures most highly associated with response included a signature of E2F1 

activity,(14) an expression-based predictor of chemosensitivity,(38) a PI3K signature,(14) a 

PTEN deletion signature,(39) and the ‘mature luminal’ mammary lineage signature(40); the 

‘mature luminal’ signature was positively correlated with RD while the other four signatures 

with pCR. Thirty signatures were predictive of response in both ER+/HER2- and triple-

negative breast cancers, while sixteen signatures were predictive in both triple-negative and 

basal-like breast cancers (Supplementary Figure S3A.). Within each of the PAM50 
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subgroups, multiple signatures had nominal p-values less than 0.05 for association with 

response to NAC (Supplementary Tables S5D-H.). However, after correcting for multiple 

testing at a false-discovery threshold of 0.05, signatures remain statistically significant only 

in basal-like (17 signatures) and normal-like (2 signatures) subgroups. The ranked statistical 

significance, direction of association, and grouping for all signatures is provided in 

Supplementary Table S5A-H.

To investigate the contribution of proliferation relative to other processes, we compared pCR 

rates of the five ‘pure’ proliferation signatures with the most highly significant five 

signatures in the proliferation cluster (‘proliferation-associated’), five signatures that were 

significantly associated with response but anti-correlated to proliferation, and five immune 

signatures that were ‘proliferation-independent.’ When all breast cancers are stratified into 

quartiles by signature score, ‘pure’ proliferation and ‘proliferation-associated’ signatures 

revealed a very similar pCR increase from approximately 10% pCR at the lowest signature 

level to approximately 35% pCR at the highest signature level with a parallel rise in average 

proliferation score (Supplemental Figure S3C/D.). The five proliferation anti-correlated 

signatures demonstrate a decline in pCR rate with a parallel – but less dramatic – decline in 

proliferation score (Supplemental Figure S3E.). Five immune signatures reflected a pCR rate 

increased with higher immune signature with minimal change in average proliferation score 

(Supplemental Figure S3F.).

Proliferation-Associated Versus Proliferation-Independent Signatures Delineate 
Neoadjuvant Chemotherapy Response

We evaluated proliferation-associated versus proliferation-independent signatures by two 

distinct approaches: 1) correlation to the 11-gene PAM50 signature and 2) linear modeling 

and residualization to adjust total gene expression data for proliferation.(31) For the 

correlation approach, we considered signatures in the proliferation cluster as ‘proliferation-

associated’ (Figure 2B.; Pearson's r >0.40 to the 11-gene PAM50 proliferation signature, 

p<1×10-45), with the remaining signatures ‘proliferation-independent.’ In the linear 

modeling approach, those signatures that were significantly associated with response after 

proliferation normalization were considered ‘proliferation-independent.’ As a sensitivity 

analysis, we evaluated linear-modeling-based normalization using two separate proliferation 

signatures, the 11-gene PAM50 proliferation index(32) and the 131-gene PCNA 

proliferation signature(31). Non-proliferation signatures were largely unaffected by 

normalization via either signature. (Supplementary Figure S2D.)

Using the correlation approach, ‘proliferation-associated’ signatures accounted for the 

majority of the signatures that achieved statistical significance: 26/42 (61.9%) in ER+/

HER2- breast cancers, and 38/60 (63.3%) in TNBCs (Figure 4A and 4B., red bars). Among 

signatures that were not ‘proliferation-associated’ by correlation, in ER+/HER2- breast 

cancers most were related to immune activation (10/16; 62.5%)(10, 14, 20, 24, 34, 37, 41) 

while in TNBC the signature phenotypes were diverse, including signaling pathways, 

immune, DNA damage, and mesenchymal phenotype.

Using the linear modeling approach, in ER+/HER2- breast cancer nearly all signatures 

significantly associated with response were ‘proliferation-associated’ (38/42; 90.5%). The 
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four ‘proliferation-independent’ signatures were related to immune activation: a signature of 

immune genes predictive in the GeparSixto trial,(34) an immune signature from TNBC 

subtypes,(24) and two STAT1 signatures (Figure 4C.).(10, 37) As a sensitivity analysis, we 

also evaluated ER+ tumors defined by gene expression (ESR1-positive/ERBB2-negative) 

and found only 3 ‘proliferation-independent’ signatures, which were likewise immune-

related and overlapping with those in ER+/HER2-.(10, 24) In luminal A or B breast cancers, 

eight of the 21 signatures with nominal p-values less than 0.05 for association with response 

to NAC were likewise immune signatures (Supplementary Table S5D. & S5E.). We repeated 

our approach using the 131-gene PCNA signature-normalized data and the results 

demonstrated an overlapping list of proliferation-independent immune activation signatures 

(Supplementary Figure S2E.). At the individual gene level, we found that >95% of 

individual genes significantly associated with response for both ER+/HER2- and ESR1+/

ERBB2- were proliferation-associated using either proliferation normalized dataset 

(Supplementary Figure S2F. and S2G.).

Among TNBCs, 63.3% (38/60) of signatures significantly associated with pCR were 

‘proliferation-associated’ using the linear modeling approach. The 22 (36.7%) ‘proliferation-

independent’ signatures comprised a variety of processes, including DNA damage/

chromosomal instability/mutation, signaling pathways (including PI3K, AKT, Ras, EGFR), 

‘stemness’ signatures, prognostic/predictive signatures, and two signatures of randomly 

selected genes (Supplementary Table S5C.). Signatures made up of random genes from 

across the genome have been shown to be prognostic in breast cancer previously.(31) At the 

individual gene level, the proportion of significant genes that were ‘proliferation-

independent’ in TNBCs was 22.5%-32.4%, similar to the proportion of signatures 

(Supplementary Figure S2F/G.). Additional sensitivity analyses in PAM50-defined basal-

like breast cancer reveal a comparable proportion and overlapping ‘proliferation-

independent’ signatures and genes associated with response (Figure 4D., Supplementary 

Figure S2F/G.).

Based on evidence that immune signatures are a proliferation-independent predictor of pCR 

in ER+/HER2- disease, we developed a proliferation-immune ‘meta-signature’ as a proof-

of-concept application of these data. This proliferation-immune ‘meta-signature’ consists of 

18 genes – 11 that comprise the PAM50 proliferation signature and 7 that comprise the 

GeparSixto immune activation signature.(10, 32) We combined ER+/HER2- cases from both 

Affymetrix and Agilent datasets (total n=642) and iteratively evaluated the performance of 

the proliferation-immune ‘meta-signature’ in randomly assigned, equally sized (n=321) 

training/validation subsets. Over 1000 iterations, the proliferation-immune ‘meta-signature’ 

signature demonstrated a stronger association with pCR than any other individual signature 

in ER+/HER2- breast cancers (Supplementary Figure S3G.).

Discussion

We compiled gene expression data from 1419 breast cancer biopsies obtained prior to NAC 

excluding patients who received HER2-directed therapy, the largest data set of its kind, and 

calculated 125 gene expression signatures for each sample. We demonstrate that 

proliferation signatures are highly associated with pCR in all subgroups of breast cancer. 
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These proliferation signatures reflect a broad range of proliferation in an in vitro model of 

mammary epithelial cell proliferation. We further demonstrate that proliferation differences 

account for the majority of variation in chemosensitivity in ER+/HER2- breast cancer and 

remains important - but less so - in TNBCs. Importantly, we provide an approach to 

distinguish proliferation-related from proliferation-independent gene expression signatures 

and identify immune-related signatures as an important proliferation-independent predictor 

of sensitivity to neoadjuvant chemotherapy in ER+/HER2- breast cancer. An eighteen gene 

combined proliferation-immune ‘meta-signature’ performed better than all other signatures 

in predicting response to neoadjuvant chemotherapy in ER+/HER2- breast cancers.

Proliferation has long been implicated as a critical mediator of sensitivity to 

chemotherapy(42, 43) as well as a predictor of long-term outcome (22, 31, 36), but the 

extent to which proliferation accounts for chemosensitivity relative to other processes is not 

well understood. Our findings reinforce the overwhelming importance of proliferation in 

response to chemotherapy in tumors: even within each PAM50 subgroup, which are defined 

in part by 11 proliferation-related genes, higher proliferative tumors are more likely to 

achieve pCR. The association of proliferation with chemosensitivity varies based on the 

subgroup, more prominent in higher proliferative subgroups (e.g. basal-like more than 

luminal A). These data support multivariate analyses in a prior gene expression study of an 

overlapping dataset(11) and work from Prat and colleagues on the PAM50 subtypes and 

Prosigna assay in NAC.(44, 45) A recent study retrospectively evaluated proliferation and 

PAM50 subtype in CALGB 9741, a clinical trial evaluating adjuvant dosing strategies of 

doxorubicin, cyclophosphamide, and paclitaxel in node-positive breast cancer patients.(46) 

A trend toward better prognosis for dose-dense chemotherapy with higher proliferation score 

suggests that the proliferation-chemosensitivity association may also be impacted by dosing. 

Most prognostic multi-gene expression assays used clinically are already heavily weighted 

toward proliferation-related genes, including OncotypeDX, Mammaprint, and Prosigna.(7, 

47, 48) As novel signatures are defined, reported, or brought into clinical practice, 

demonstrating predictive or prognostic significance above and beyond existing proliferation 

signatures could serve a benchmark for identifying novel, clinically relevant signatures.

In this study, using a linear modeling approach to identify proliferation-associated signatures 

and genes we find that the majority of the predictive capacity for response to neoadjuvant 

chemosensitivity within ER+ breast cancer is associated with proliferation: 90% of 

signatures and >95% of individual genes significantly associated with response to NAC can 

be attributed to proliferation. The striking degree to which proliferation accounts for 

predictive capacity of gene expression is supported by stratifying into the ER+ PAM50 

subtypes, luminal A and B, which are distinguished primarily based on proliferation. No 

signatures remained statistically significant for association with response to NAC in either 

luminal A or B after multiple-testing correction. Within TNBCs, proliferation remains 

important but accounts for a lesser extent of variation in response: approximately 65% of 

signatures and individual genes associated with response to NAC are proliferation-associated 

by our linear modeling approach. The smaller proportion of ‘proliferation-associated’ 

signatures in TNBCs may reflect less variation in proliferation among TNBCs relative to 

other breast cancer subtypes.(24) The differences between ER+/HER2- and TNBC, as well 
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as among PAM50 subtypes, suggest that subgroup-specific genomic predictors are more 

likely to provide optimal prediction of chemosensitivity and resistance.

A crucial next step is to understand what impacts chemosensitivity outside of proliferation. 

Our data suggest that immune activity plays a crucial role in response to NAC as multiple 

distinct immune signatures are associated with response to NAC, particularly in ER+/HER2- 

breast cancers, an observation that may have been masked in historical analyses by effects of 

proliferation.(16) These signatures appear to primarily reflect immune activation, as they are 

comprised of activating cytokines, chemokines, and immune response genes (Supplementary 

Table S1.). In transcriptional analyses of tumor biopsies, it is difficult to discern whether 

these signatures reflect tumor cell-intrinsic expression differences or, alternately, 

transcriptional programs of infiltrating lymphocytes. Tumor infiltrating lymphocytes (TILs), 

evidence of immune activation, have been shown to be a predictive marker of response to 

NAC primarily in HER2+ and TNBC breast cancer but to date the association has been less 

robust in ER+/HER2- breast cancers.(49, 50) We are currently evaluating the underlying 

cause or driver of these immune signatures.

From a clinical perspective, predictive markers of pCR are needed as we increasingly 

consider patients for NAC. This study supports expanded use of expression-based 

proliferation signatures, given our data regarding suggesting enhanced predictive capacity of 

proliferation signatures relative to individual proliferation gene expression, two prior studies 

demonstrating greater prognostic value of the 11-gene proliferation score than tissue-based 

Ki-67 staining,(32, 51) and ongoing debate regarding the reproducibility of 

immunohistochemical proliferation markers in clinical care.(52-55) The combination of a 

proliferation signature and an immune activation signature into a single ‘meta-signature’ 

demonstrated a higher predictive capacity than any other individual signature in ER+/HER2- 

breast cancers. More robust predictors for ER+/HER2- breast cancers would particularly 

useful those patients with ‘intermediate’ scores in proliferation-based assays like 

OncotypeDX or MammaPrint.

Our findings implicate many processes other than proliferation in neoadjuvant 

chemosensitivity in TNBC and basal-like breast cancer. Sequencing of paired TNBC 

samples before and after NAC revealed few recurrent chemoresistance-related mutations, 

suggesting that mutations alone do not explain chemoresistance, potentially implicating 

transcriptional differences.(56) Proliferation-independent signatures predictive of response 

in our analysis include DNA damage/chromosomal instability, signaling pathway activation 

(PI3K, AKT, Ras, EGFR), and ‘stemness’ phenotypes. Signaling pathway activation 

signatures may appear paradoxical, as these are known to induce proliferation, but this 

analysis suggests that proliferation-independent components of these pathways also drive an 

association with response to chemotherapy in TNBCs. The phosphoinositide 3-kinase 

(PI3K) pathway is particularly of interest in TNBCs given evidence of activating PIK3CA 
mutations in the luminal AR subtype as well as pathway activation frequently by PTEN loss 

in non-luminal TNBCs. (24, 57, 58) Multiple immune signatures were associated with pCR 

in TNBCs, however, none remained statistically significant after proliferation adjustment. 

Despite the absence of a robust association between proliferation and immune signatures in 

TNBCs (Pearson's r2 <0.08 for all associations, data not shown), we are investigating 
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potential links between DNA damage, proliferation, and immune signatures as a possible 

explanation. Collectively, these data add to our growing understanding of the particularly 

complex nature of chemosensitivity in TNBC and suggest that stratifying TNBCs based on 

gene expression signatures may improve prediction of response to NAC in addition to 

existing expression-based tools/subgroups that rely heavily on proliferation.

Although pooled analyses of clinical trials have not validated the proportion of patients who 

achieve a pCR as a surrogate endpoint for event-free or overall survival, NAC remains 

valuable in clinical practice and as a research platform. Predictive markers of pCR are 

needed as we increasingly consider patients for NAC.(4) These data support consideration of 

expanded use of expression-based proliferation signatures, possibly in conjunction with 

immunohistochemical proliferation markers (e.g. mitotic index, Ki-67, or PCNA).(53-55) In 

ER+/HER2- disease, incorporating markers of immune activation may provide more robust 

gene expression-based predictors of response and help discern likelihood of response for 

those with ‘intermediate’ proliferation. In TNBC, this study provides candidate cellular 

processes that could be integrated into a unified tool or stratification approach to improve 

chemotherapy response prediction in this challenging subgroup.

Study Limitations

Our study should be interpreted in the context of several limitations. The inclusion criteria of 

the 17 trials varied and definition of pathologic complete response was primarily, but not 

exclusively, both breast and axillae. In addition, we defined response as pCR versus RD but 

analyzing by Miller-Payne(59) or RCB(60) may add information, particularly as there is 

evidence that RCB-1 may have similar long-term outcomes as RCB-0.(60) Although the 

chemotherapy agents used in the studies included are similar to those we use for standard of 

care today, there was variability in regimen and dosing. We focused our analysis exclusively 

on response to NAC and cannot extrapolate to the adjuvant or metastatic settings, although 

those analyses are ongoing. There are also general limitations to gene expression data, 

including failure to capture protein level effects (e.g. apoptotic/BH3 proteins).

Conclusions

In this gene expression-based meta-analysis, proliferation differences account for the 

majority of predictive capacity of gene expression signatures in neoadjuvant 

chemosensitivity for ER+/HER2- breast cancers and, to a lesser extent TNBCs. In ER+/

HER2- breast cancer, proliferation-independent signatures predictive of response were all 

related to immune activation. In TNBC, sensitivity and resistance to neoadjuvant 

chemotherapy is complex and associated with a diverse set of proliferation-associated and 

proliferation-independent signatures.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Statement of Translational Relevance

Expression-based signatures and genomic predictors are increasingly incorporated into 

clinical practice to predict benefit from chemotherapy. We evaluated 125 published gene 

expression signatures in a patient-level meta-analysis of gene expression data from breast 

cancer biopsies prior to neoadjuvant chemotherapy (NAC) to understand the contribution 

of proliferation and other processes in patient response to NAC. The majority of 

signatures associated with pathologic complete response (pCR) are proliferation-

associated within each receptor-based or PAM50 breast cancer subgroup. However, 

proliferation-independent signatures offer important insights into additional biological 

processes that contribute to chemosensitivity and resistance. Specifically, multiple 

distinct immune signatures are associated with response to NAC independent of 

proliferation in ER+/HER2- breast cancers while a diverse set of signatures predict 

response to NAC independent of proliferation in triple-negative breast cancers. We 

provide proof-of-concept that integrating proliferation and immune signatures results in a 

more robust biomarker for neoadjuvant chemosensitivity in ER+/HER2- breast cancer.
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Figure 1. Study Approach
Study and sample identification schema. pCR, pathologic complete response; RD, residual 

disease.
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Figure 2. Gene Expression Signatures
A. Gene expression signatures included in analysis categorized by reported target or 

phenotype.

B. Correlation matrix of 125 signatures. Heatmap of Pearson's correlation coefficient of 

pairwise correlation of each signature, clustered by association. ER, estrogen receptor; EMT, 

epithelial-to-mesenchymal transition.
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Figure 3. Gene Expression-Based Proliferation Signatures and Response to Neoadjuvant 
Chemotherapy
A. 15-day time course experiment of MCF10A immortalized mammary epithelial cells in 

3D in vitro culture. Proliferation signature value for five proliferation signatures(10, 15, 24, 

31, 32) indicated in color with error bars representing standard deviation. Percent 

proliferating cells (in G2-S phase) by DNA content in dashed black line. B. Comparison of 

11-gene PAM50 proliferation signature(32) with estimated tumor purity; line indicates best 

fit. C. & D. Percent pathologic complete response (pCR) by proliferation quartile for each of 

five proliferation signatures in Affymetrix dataset (C.) and Agilent dataset (D.). Error bars 
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indicate standard deviation. E. & F. Percent pCR within subgroups of breast cancer by low 

proliferation (quartile 1) versus high proliferation (quartile 4) by receptor-based subtype (E.) 

or PAM50 subtype (F.). TNBC, triple-negative breast cancer.
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Figure 4. Signatures Associated with Response to Neoadjuvant Chemotherapy: Proliferation-
Associated versus Proliferation-Independent
A. & B. 125 gene expression signatures ordered from top to bottom by significance of 

association with response to neoadjuvant chemotherapy in estrogen receptor-positive/HER2-

negative (ER+/HER2-; A.), and triple-negative breast cancer (TNBC; B.). Proliferation-

associated signatures by correlation to the 11-gene PAM50 proliferation signature (32) 

(Pearson's r >0.40) indicated in red. Pie graphs indicate proportion of signatures 

significantly associated with response (FDR p<0.05) by correlation matrix-based signature 

category (Figure 2B.) C. & D. Venn diagrams of the number of signatures significantly 
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associated with response in original dataset (red) versus proliferation-normalized dataset 

(purple). ESR1+/ERBB2- indicates tumors positive for ESR1 gene expression and negative 

for ERBB2 gene expression. TNBC, triple-negative breast cancer.
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Table 2
Patient Characteristics

Affymetrix Dataset Agilent Dataset Total

Characteristic n=1033 (%) n=386 (%) n=1419 (%)

Age

 <50 461 (49) 116 (52) 577 (49)

 >50 488 (51) 108 (48) 596 (51)

Histologic Grade

 Grade: 1 60 (7) 29 (8) 89 (7)

 Grade: 2 347 (40) 178 (49) 525 (42)

 Grade: 3 469 (54) 156 (43) 625 (50)

ER Status

 ER pos 508 (49) 218 (58) 726 (52)

 ER neg 521 (51) 160 (42) 681 (48)

HER2 Status

 HER2 pos 135 (12) 72 (20) 207 (14)

 HER2 neg 993 (88) 292 (80) 1285 (86)

Clinical Subtype

 ER 465 (49) 183 (48) 648 (49)

 HER2 135 (14) 91 (24) 226 (17)

 TNBC 340 (36) 106 (28) 446 (34)

PAM50 Subtype

 LumA 280 (27) 108 (28) 388 (27)

 LumB 197 (19) 82 (21) 279 (20)

 Her2 124 (12) 38 (10) 162 (11)

 Normal 95 (9) 48 (12) 143 (10)

 Basal 337 (33) 110 (28) 447(32)

Anthracycline

 Anthracycline: Yes 970 (94) 250 (65) 1220 (86)

 Anthracycline: No 63 (6) 134 (35) 197 (14)

Alkylator

 Alkylator: Yes 1037 (93) 160 (42) 1197 (80)

 Alkylator: No 84 (7) 224 (56) 308 (20)

Taxane

 Taxane: Yes 765 (74) 291 (76) 1056 (75)

 Taxane: No 268 (26) 93 (24) 361 (25)

Combination Chemotherapy

 Anthra + Tax +/- Alk 722 (76) 156 (45) 156 (41)

 Anthra +/- Alk 183 (19) 53 (15) 57 (15)

 Taxane Only 43 (5) 4 (1) 136 (35)
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Affymetrix Dataset Agilent Dataset Total

Characteristic n=1033 (%) n=386 (%) n=1419 (%)

 Anthtra + Plat 0 136 (39) 35 (9)

Abbreviations: Anthra, Anthracycline; Tax, Taxane; Alk, Alkylator; Plat, Platinum.
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