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Abstract

Although a truly complete understanding of whole heart activation, contraction, and deformation 

is well beyond our current reach, a significant amount of effort has been devoted to discovering 

and understanding the mechanisms by which myocardial structure determines cardiac function to 

better treat patients with cardiac disease. Several experimental studies have shown that transmural 

fiber strain is relatively uniform in both diastole and systole, in contrast to predictions from 

traditional mechanical theory. Similarly, mathematical models have largely predicted uniform fiber 

stress across the wall. The development of this uniform pattern of fiber stress and strain during 

filling and ejection is due to heterogeneous transmural distributions of several myocardial 

structures. This review summarizes these transmural gradients, their contributions to fiber 

mechanics, and the potential functional effects of their remodeling during pressure overload 

hypertrophy.
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1. Introduction
1The motion of the ventricular walls during normal cardiac pump function is highly 

complex, involving the coordinated activation and contraction of electromechanically 

coupled myocytes, followed by relaxation, and refilling. Despite numerous studies 

attempting to describe and model cardiac biomechanics, significant gaps of knowledge 

remain regarding the mechanisms by which cross-bridge force generation and sarcomere 

shortening are integrated by the hierarchical intracellular and extracellular organization of 

the myocardium and the anatomy of the chambers to produce the driving pressures for blood 

Corresponding Author: Jeffrey H. Omens, University of California San Diego, Mail code 0613J, 9500 Gilman Drive, La Jolla, CA 
92093, jomens@ucsd.edu. 

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be 
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
1Abbreviations: LV, MRI, DT-MRI, ECM, MLC, MLCK, MHC, MHC-α, MHC-β, APD, Ito, Kcnk2, TREK-1, Cx43, SERCA2a

HHS Public Access
Author manuscript
Prog Biophys Mol Biol. Author manuscript; available in PMC 2017 December 01.

Published in final edited form as:
Prog Biophys Mol Biol. 2016 December ; 122(3): 215–226. doi:10.1016/j.pbiomolbio.2016.11.004.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



flow through pulmonary and systemic circulations. These gaps in knowledge represent 

potential opportunities for generating therapies or treatments for widespread cardiac disease, 

which remains the primary cause of death in the United States (Mozaffarian et al., 2016). 

Hence, it remains of central importance to study structure-function relationships determining 

myocardial mechanics in the normal and diseased ventricles.

Much work has been done to quantify the three-dimensional deformation patterns in the 

normal left ventricle (LV) by tracking myocardial tissue during relaxation and filling 

(diastole), as well as during contraction and ejection (systole). Likewise, efforts have been 

made to characterize the internal tissue forces (stresses), with experimental measurements 

and mathematical or computational models. These studies have brought to light the 

complexity of normal cardiac mechanics, including insights as to the mechanisms by which 

shortening along the axis of the myocytes drives circumferential and longitudinal shortening 

in the tissue, with concordant wall (radial) thickening and chamber torsion, to efficiently 

eject blood during systole, as well as the reverse process during diastole.

One notable feature that has been described is the surprisingly homogeneous transmural 

distribution of fiber strain and stress across the wall of the normal LV in several mammalian 

species, including humans. Because simple mechanical theory of thick-walled pressure 

vessels predicts transmural gradients of strain and stress, with higher levels in the 

subendocardium, researchers have sought to understand how and how this uniformity (which 

is an optimal design principle in engineering) is achieved in the normal heart. Studies have 

shown many structural and functional features of normal LV myocardium that have 

transmural gradients, that may contribute to maintaining uniformity of fiber stress and strain 

during LV ejection and filling. Alterations in these structure-function relationships could 

contribute to adverse remodeling and ventricular dysfunction in heart disease, particular in 

load-mediated remodeling processes such as cardiac hypertrophy.

In this article, we review studies of transmural gradients of myocardial structure, and how 

variations in regional architecture affect transmural distributions of strains and stresses in the 

myocardium. In particular, we aim to summarize the mechanisms by which the structural 

features that exhibit a transmural gradient may contribute to uniformity of fiber strain and 

stress, and how these distributions may change during disease. During remodeling processes 

in which mechanosensing and mechanotransduction are important, understanding 

mechanisms that regulate the distributions of stress and strain will help define interventions 

aimed and altering the course of detrimental myocardial remodeling. We focus on examples 

related to mechanical regulation of concentric hypertrophy due to pressure overload, noting 

the high prevalence of hypertension, with one in three adults in the U.S. alone having high 

blood pressure (Mozaffarian et al., 2016).

2. Fiber strain and stress

2.1 Fiber strain

While metrics of whole heart function such as ejection fraction, cardiac output, or wall 

thickening are informative and useful, especially for clinical classification of patients, the 

measurement of intra-myocardial deformation within the ventricle wall is imperative to fully 
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understand regional mechanical function in myocardial tissue, and how load/deformation-

related mechanisms of remodeling could be affected by regional variations in mechanics. 

Since consistent anatomic material landmarks are not readily detected in myocardial tissue, 

specialized techniques for imaging and recording the displacement of material points within 

the myocardium have been developed and used to quantify mechanical strain.

The measurement of strain within the ventricle walls has been achieved for decades using 

various techniques. In general, direct measurement of mechanical strain requires tracking of 

material points/markers in the tissue. Early, invasive studies involved the implantation of 

strain gauges, needles, radiopaque beads, ultrasonic crystals, or other markers whose 

positions were tracked in time (Arts and Reneman, 1980), (Ashikaga et al., 2004), (Cheng et 

al., 2005), (Cheng et al., 2008), (Costa et al., 1999), (Dieudonn, 1969), (Douglas et al., 

1991), (Elshuraydeh et al., 1981), (Fann et al., 1991), (Fenton et al., 1978), (Freeman et al., 

1985), (Guccione et al., 1995), (Hansen et al., 1988), (Ingels et al., 1971), (LeWinter et al., 

1975), (McCulloch et al., 1987), (McCulloch and Omens, 1991), (Meier et al., 1980), (Meier 

et al., 1982), (Omens et al., 1991), (Omens et al., 1993), (Osakada et al., 1980), (Prinzen et 

al., 1984), (Villarreal and Lew, 1990), (Waldman et al., 1985), (Waldman et al., 1988), (Yun 

et al., 1991). Non-invasive methods have become more available in animal model and 

humans, such as speckle tracking echocardiography (Bellavia et al., 2010), strain rate 

magnetic resonance imaging (MRI) (Dou et al., 2003), and tagged MRI (Azhari et al., 1993), 

(Bogaert and Rademakers, 2001), (Buchalter et al., 1990), (Chuang et al., 2010), (Clark et 

al., 1991), (MacGowan et al., 1997), (McVeigh and Zerhouni, 1991), (Rademakers et al., 

1994), (Young et al., 1994a), (Young et al., 1994b). MRI tagging is a technique whereby 

regions of myocardium are “tagged” with patterns of magnetization for a limited time as 

they deform through the cardiac cycle, thus enabling tracking of material point locations and 

strain calculations. The advantages of using tagged MRI include its non-invasiveness, 

relative ease of use, and comprehensive coverage of the ventricles at relatively high 

resolution. Difficulties include potentially low signal to noise ratio and the challenge of 

converting data from 2D tagged images to 3D displacements, which has been addressed in 

various ways (Azhari et al., 1993), (Chuang et al., 2010), (Ibrahim, 2011), (Young et al., 

1994b), (Zhong et al., 2008). Despite these few challenges, tagged MRI with harmonic 

phase material point tracking is one of the best methods for a full 3D description of tissue 

deformation (Osman et al., 1999), (Chuang et al., 2010).

To completely describe three-dimensional deformation in a given volume, the six unique 

components of the strain tensor are necessary, which can be defined with respect to any 

chosen coordinate system. Some natural reference frame options which have been used in 

the heart include “cardiac coordinates”, which locally correspond with circumferential, 

longitudinal, and radial directions of cylindrical or prolate spheroidal systems, “fiber 

coordinates”, in which the circumferential direction from cardiac coordinates is rotated by 

the fiber angle to align with the local myofiber direction resulting in fiber, cross-fiber, and 

radial directions (Waldman et al., 1988), and “material coordinates”, which align with local 

fiber, sheet, and sheet-normal directions (Costa et al., 1999). The latter two systems allow 

for quantifying strain aligned with the fiber axis, which is parallel to the long axis of the 

myocytes, and therefore the direction along which sarcomeres shorten during systolic 

contraction.
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The strain tensor describes shape change between two time points or states. Fiber strain 

measured with respect to the unloaded state in passively loaded isolated arrested hearts or 

measured in vivo at end-diastole, with respect to early diastasis, has been used to investigate 

resting tissue mechanics. End-systolic fiber strain in vivo, usually referenced to end-diastole, 

characterizes the regional systolic mechanics of the myocardium. Using the above-

mentioned techniques, researchers have sought to characterize fiber strains in the LV at end-

diastole and end-systole to better understand how fiber mechanics relate to pump function 

and remodeling.

2.1.1 End-diastolic fiber strain—End-diastolic fiber strain gives insight into the passive 

material properties of myocardium, and describes the state of the sarcomeres at the moment 

of electrical activation. McCulloch et al. (McCulloch et al., 1987) used radiopaque markers 

and biplane radiography to measure epicardial end-diastolic strains with respect to an 

unloaded state (i.e. LV pressure ≈0) in dog and found that epicardial stretch during passive 

loading is greatest along the axis of the fibers. The same authors in a subsequent study 

suggested that the consequent torsional shear strain may serve to minimize transmural 

gradients of fiber lengthening during filling (McCulloch et al., 1989).

Omens et al. (Omens et al., 1991) measured transmural end-diastolic strains with respect to 

an unloaded state in the canine left ventricle. A major finding of that study, that 

corresponded well with previous studies of systolic strain (Waldman et al., 1985), (Waldman 

et al., 1988), was that the end-diastolic principal strain axis did not vary nearly as much with 

the wall depth as the fiber orientations, and increased in magnitude toward the endocardium. 

Given the gradient in the orientations of the myofibers across the wall, this result indicated 

that the maximum principal end-diastolic strain aligned closely with the subepicardial fibers, 

but was roughly orthogonal to the subendocardial fibers, such that the subepicardial fiber 

orientation was the axis of maximum passive lengthening, but the subendocardial fibers 

were aligned with the axis of minimum in-plane strain. To examine this more directly, they 

used measured myofiber orientations in the tissues at the regions of the markers to resolve 

the strains with respect to fiber, cross-fiber and radial axes. They found that fiber strain at 

end-diastole is strikingly uniform across the wall, whereas the radial and cross-fiber strain 

components displayed transmural gradients (Omens et al., 1991) with significantly higher 

magnitudes on the endocardium than epicardium. This uniformity of fiber strain at end-

diastole has also been shown in other in-vivo studies including the rat (Omens et al., 1993) 

and dog (Takayama et al., 2002). End-diastolic fiber strain measured in these studies ranged 

from 0.05 to 0.15 at pressures of ∼8 mmHg up to ∼0.2 at 18 mmHg.

As early as 1982, mathematical models of the left ventricle were used to test how transmural 

fiber angle variations and ventricular torsion affect transmural strain (and stress) 

distributions (Arts et al., 1982). Simplified geometric models of the LV with spherical, 

cylindrical, and prolate spheroidal geometries, and anisotropy due to fiber orientation, have 

demonstrated uniformity in fiber strain across the wall at end-diastole with respect to an 

unloaded state (Choi et al., 2010), (Costa et al., 1996a), (Costa et al., 1996b), (Guccione et 

al., 1995). In agreement with the above experiments, end-diastolic strain values in these 

models were uniform and approximately 0.05-0.15 at 1.0 kPa filling pressure.
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2.1.2 End-systolic fiber strain—While measurements of fiber strains at end-diastole are 

necessary to describe myocardial passive mechanics, distributions of fiber strain at end-

systole are key to understanding systolic pumping mechanics. Fenton et al. (Fenton et al., 

1978) were among the first to measure transmural systolic strain distributions using 

implanted radiopaque beads as material markers. They did not measure fiber orientations, 

but their results suggested mostly uniform end-systolic fiber deformation. Many experiments 

following this approach have carefully quantified transmural fiber strain, including those in 

which the fiber orientations across the wall were measured by histology in the same region 

of the systolic strain measurement in dog and sheep LV (Ashikaga et al., 2004), (Cheng et 

al., 2005), (Cheng et al., 2008), (Costa et al., 1999), (Takayama et al., 2002), (Waldman et 

al., 1988). In every case, fiber strains at end-systole with respect to end-diastole were found 

to be quite uniform transmurally, with values typically around -0.1 (i.e. about 10% fiber 

shortening) in each case in open-chest anesthetized animals.

Biplane radiography of implanted radiopaque markers is quite invasive, and therefore not 

typically feasible in humans, though it has been done in donor hearts received by heart 

transplant recipients (Yun et al., 1991). A more feasible, non-invasive approach to regional 

strain recording in-vivo was developed using cardiac MRI (Buchalter et al., 1990), (Clark et 

al., 1991). Experiments using these non-invasive approaches, including MRI tagging for 

material point tracking, have found that transmural fiber strain is uniform at end-systole with 

respect to end-diastole in several animal species and humans (MacGowan et al., 1997), 

(Rademakers et al., 1994). The values of these measured end-systolic fiber strains are 

typically in the range of -0.1 to -0.2, corresponding to a uniform fiber shortening of about 

10-20%.

Several models were developed to aid in the description of fiber strains during active 

contraction of the myocardium (systole), most often at end-systole, with end-diastole or an 

unloaded configuration as the reference phase. Early models, using a cylindrical shape for 

the LV, showed that fiber strain was uniform at end-systole (Arts and Reneman, 1989). This 

result was confirmed by modeling multiple fiber angle distributions in an ellipsoidal model 

(Bovendeerd et al., 1992), in a more realistic geometry of dog LV (Guccione et al., 1995), 

and by iterative optimization of the fiber angle, which matched previously published 

measurements (Rijcken et al., 1997), (Rijcken et al., 1999).

A major result that surfaced from these models of myocardial mechanics is that anisotropy, 

fiber orientations, and the resultant torsion are key elements of myocardial structure in the 

development of homogeneous fiber strain distributions across the wall. The myocardium is 

stiffer in the fiber direction than in the cross-fiber direction, and the direction of torsion is 

the same at both the epicardium and endocardium. Since torsion is essentially a shear in the 

circumferential-longitudinal plane, in which the fibers lie, it acts to increase the stretch of 

epicardial fibers during filling. Conversely the same torsion on endocardial fibers reduces 

fiber stretch during diastole. During systole these mechanisms are reversed, increasing fiber 

shortening in the subepicardium and decreasing it in the subendocardium. These important 

features will be discussed in greater detail in section 3 below.
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With these key mechanisms accounted for, the consistent result of these experiments and 

mathematical models has been that fiber strain at end-systole is transmurally uniform, at a 

value of approximately -0.10 to -0.20, corresponding to about 10-20% fiber-aligned segment 

shortening from end-diastole.

2.2 Fiber stress

The direct experimental measurement of stress within the myocardium is extremely 

challenging, especially while preserving native tissue structure and function, although some 

groups have attempted to implant stress sensors to achieve this, with limited success (Burns 

et al., 1971), (Feigl et al., 1967), (McHale and Greenfield, 1973). However, the development 

of computational tools such as finite element modeling, and the measurement and 

optimization of tissue material properties ex vivo (Dokos et al., 2002), (Novak et al., 1994), 

(Humphrey et al., 1990a), (Humphrey et al., 1990b), (Yin et al., 1987) provide probably the 

best approach to estimate regional and 3D stresses given a set of reliable strains (Huisman et 

al., 1980), (Yin, 1981). A large number of such models have been developed to better 

understand regional cardiac mechanics (Hunter et al., 2003).

2.2.1 End-diastolic fiber stress—Early models of end-diastolic stress distributions by 

Beyar and Sideman report circumferential stress rather than fiber stress, but do note that 

allowing torsion in their prolate spheroidal model reduced the heterogeneity of wall stress at 

end-diastole (Beyar and Sideman, 1984), (Beyar and Sideman, 1986). Understanding true 

fiber stress, however, requires measurement of fiber orientations across the wall. One of the 

first modeling studies that reported end-diastolic fiber stress in models of rat and dog LVs 

under passive inflation showed relatively uniform fiber stresses, especially in the rat (∼1 

kPa), but less so in dog (2-9 kPa) (Omens et al., 1993). Other models of end-diastole 

confirmed transmural uniformity of fiber stress in cylindrical models with papillary muscles 

and valves (Arts and Reneman, 1989), radially symmetric canine LV geometry (Guccione et 

al., 1995), and prolate spheroids of varying sphericity (Choi et al., 2010), though still others 

reported a less uniform distribution in spherical, cylindrical, and prolate geometries (Costa et 

al., 1996a), (Costa et al., 1996b). The reported fiber stresses were approximately 1.9-2.5 kPa 

at a filling pressure of 1.0 kPa. In general, the stress distributions follow strain distributions, 

but several factors and mechanisms can alter this relationship as described in more detail 

below.

2.2.2 End-systolic fiber stress—As early as 1970, models were developed to quantify 

stresses at end-systole based on the measured distribution of fiber angles in the LV (Streeter 

et al., 1970). In this model, it was assumed that fiber stresses during systole were uniform 

across the wall (∼20 kPa), then compared circumferential and longitudinal stresses with 

those obtained from direct measurement, and found close agreement (Streeter et al., 1970). 

Subsequently, models wherein fiber stress and strain were calculated found strong 

uniformity in end-systolic (and end-diastolic) fiber stresses and strains across the wall, as 

long as appropriate physiological fiber orientations were included (Arts and Reneman, 

1989), (Bovendeerd et al., 1992), (Bovendeerd et al., 1994). A model with a more realistic 

geometry (though still radially symmetric), found strong uniformity of end-systolic fiber 

stress in the equatorial region, but a more heterogeneous distribution near the base and apex 
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(Guccione et al., 1995). In this model and others, end-diastolic and end-systolic in-plane (i.e. 

circumferential and longitudinal) strains matched measured data, but out of plane strain 

components (i.e. radial) generally did not (Guccione et al., 1995). Modeling the myocardium 

as orthotropic, i.e. material properties corresponding to both fiber orientation and the 

laminar sheets of tightly coupled muscle fibers, with these sheets oriented roughly 

perpendicular to ventricular wall (LeGrice et al., 1995a), improved the estimation of these 

out of plane strain components, but they still did not match directly measured strains (Usyk 

et al., 2000). Even recent computational models still cannot accurately predict all 

deformation and strain tensor patterns, even if bimodal sheet populations, which have been 

observed in animal studies (Kung et al., 2011), and whose supposed function has been 

modeled (Arts et al., 2001), are included (see e.g. (Carapella et al., 2014)). This indicates a 

lack of understanding of the mechanical contribution of sheet structures to material strains. 

Despite difficulty in predicting radial strains due to the complexity of myocardial structure 

and contractile function, the majority consensus from these modeling studies has been that 

fiber stress at end-diastole and end-systole is transmurally uniform.

2.2.3 Mechanisms for uniform fiber stress and strain—Overall, a consistent result 

from experiments and models is that fiber strain and stress are quite uniform transmurally 

both at end-diastole and at end-systole in the normal left ventricle. It is worth appreciating 

that classical engineering analyses of uniform thick-walled pressure vessels predict high 

stresses and strains on the inner surface (Demiray, 1976), (Mirsky, 1973), with large 

transmural gradients. This is a natural consequence of deformation of an incompressible, 

homogeneous thick-walled chamber under an internal pressure load. The endocardial 

circumference must increase more than the epicardial circumference during filling, and 

decrease more than the epicardial circumference during ejection, resulting in large 

transmural gradients of stress and strain. Thus, in both phases of the cardiac cycle, the 

circumferential filling (diastolic) and ejection (systolic) strains are higher on the 

endocardium, and experimental measurements consistently show this behavior. How then, 

can fiber strain (and stress) be uniform, especially since similar arguments can be made for 

longitudinal strain distributions?

The mechanisms leading to transmural uniformity of fiber stress and strain likely depend on 

specific transmural non-homogeneities in the myocardium. As mentioned previously and 

prominent among these is the fiber direction, which, along with chamber torsion, tends to 

normalize mechanical gradients. This has led several groups to propose that transmural 

uniformity of myocardial fiber stress and strain, and hence of regional myocardial work, is 

an important homeostatic principle of myocardial mechanics. It has been postulated that this 

uniformity may help maximize the efficiency with which regional contractile work is 

converted to pumping function and minimize vulnerability to ischemia or injury in systole 

(Vendelin et al., 2002) and diastole (McCulloch et al., 1989), (Omens et al., 1991). All else 

being equal, this idea implies that there must exist one or more transmural gradient in tissue 

properties, architecture, or cellular characteristics that normalizes fiber stress and strain 

across the ventricle wall. In reality, several such transmural gradients have been observed 

that may explain this phenomenon. Here, we discuss measured transmural gradients from 

the literature, and how they may contribute to uniform fiber stress and strain. We also 
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discuss effects of changes in these distributions during cardiac disease, with a focus on 

compensated concentric hypertrophy due to pressure overload.

3. Transmural gradients as mechanisms of uniform fiber stress and strain

3.1 Fiber angle and torsion

As previously mentioned, one of the most intriguing aspects of normal left ventricular 

function that has been observed for centuries is torsion or twist during the cardiac cycle. In 

the 17th century, Lower (Lower, 1669) described this phenomenon during systole as the 

“wringing of a linen cloth to squeeze out the water”, and it has since been well characterized 

(Sengupta et al., 2008). During isovolumic contraction, the ventricle rotates 

counterclockwise when viewed from the apex (Young and Cowan, 2012). During ejection, 

the base changes directions, rotating clockwise, while the apex continues its 

counterclockwise rotation. Studies have also shown that the heart untwists rapidly during 

early relaxation independent of any contractile activity (Ashikaga et al., 2004), (Bell et al., 

2000), (Rademakers et al., 1992). Many studies have measured torsion using various 

techniques, with spatial modulation of magnetization tagged cardiac MRI being the gold 

standard, and speckle tracking echocardiography as a relatively new and potentially valuable 

clinical approach (Rüssel et al., 2009). Interestingly, a transmural gradient of torsion appears 

to exist, with endocardial rotations being greater at apex, mid, and basal levels than 

epicardial rotation (Buchalter et al., 1990), (Lorenz et al., 2000), (Young et al., 1994a), 

(Zerhouni et al., 1988).

The muscle fiber architecture in the mammalian left ventricle is the fundamental cause of 

torsion. Since the histological studies of Streeter and colleagues in the 1960s (Streeter et al., 

1969) it has been appreciated that the orientation of myofibers in the left ventricle changes 

gradually from a left-handed helix with a pitch of 50-80 degrees on the epicardium, to a 

right-handed helix with a pitch of 60-90 degrees on the endocardium, with a smooth, nearly 

monotonic variation in between. Subsequent studies have verified this fiber architecture, and 

many have shown that it can be detected via Diffusion Tensor Magnetic Resonance Imaging 

(DT-MRI) (Holmes et al., 2000), (Hsu et al., 1998), (Scollan et al., 1998).

Of the reports mentioned previously, several models were employed to understand the 

influence of fiber angle distribution on LV mechanics. It was found that stresses and strains 

were highly sensitive to the fiber orientation distribution (Bovendeerd et al., 1992), 

(Guccione et al., 1991), (Huyghe et al., 1992), (Rijcken et al., 1997), (Rijcken et al., 1999). 

It has also recently been proposed that torsion may be important in stress sensing, which 

may help to protect the heart from injury due to excessive stresses (van Mil et al., 2016).

Because of the thick-walled shape of the left ventricle, the epicardial tissues have a larger 

radius from the LV center, and thus a greater lever arm during contraction-induced torsion. If 

all of the fibers across the wall were aligned with the same helical pitch, then this contractile 

force in the epicardium would obviously necessitate more shortening in the endocardium. 

However, because the helical pitches are opposite (approximately 120° separation) from 

epicardium to endocardium, shortening of the epicardium and its resultant torsion result in 

shortening in the cross-fiber direction in the endocardium. This allows the sarcomeres in the 

Carruth et al. Page 8

Prog Biophys Mol Biol. Author manuscript; available in PMC 2017 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



endocardial fiber direction to contract relatively independently from (orthogonal to) those of 

the subepicardium.

It is apparent that the transmural fiber orientation gradient in normal hearts is important in 

dictating normal torsion and in normalizing fiber stress and strain across the wall. 

Perturbations to this fiber architecture could contribute substantially to altered cardiac 

function. Several studies have sought to determine if fiber orientations change during 

disease. An early study showed a decrease in fiber inclination angle only in the 

subendocardium in eccentric and concentric hypertrophy, though less so in concentric 

(Tezuka, 1975). However, a later study reported more longitudinal fibers in pressure 

overload (concentric) hypertrophy and no change in exercise or volume overload (eccentric) 

hypertrophy (Carew and Covell, 1979). Omens, et al. later found no difference in fiber angle 

in pressure overloaded rat hearts (Omens et al., 1995), (Omens et al., 1996). However, fiber 

orientations were measured in mice with left ventricular hypertrophy using DT-MRI, and 

slight but statistically significant differences in helix and inclination angles were found in 

the free wall and septum (Schmitt et al., 2009). Also, the fiber orientation and dispersion in 

the right ventricle changed with pulmonary artery constriction (Hill et al., 2014).

For the most part, it appears that pressure overload hypertrophy minimally affects fiber angle 

distributions in the LV, though some small changes may occur. Together with the high level 

of conservation of this pattern in mammalian hearts, this fact suggests that the native fiber 

orientation is highly important and needs to be preserved in order to maintain normal cardiac 

function.

3.2 Material Anisotropy

Material anisotropy in most biological tissues is a direct determinant of local mechanical 

function. Myocardium is no different as it has a distinct fiber architecture, as well as laminar 

sheets that create a mechanically and electrically orthotropic material wherein fiber, sheet, 

and sheet-normal directions and function can be defined at any location in the ventricle wall 

(Anderson et al., 2009), (Gilbert et al., 2011), (LeGrice et al., 1995a), (LeGrice et al., 

1995b), (Usyk et al., 2000). Early biomechanical and electrophysiological modeling studies 

assumed transverse isotropy, however, several invaluable biomechanics studies have shown 

that ventricular tissue is in fact orthotropic (Dokos et al., 2002), (Novak et al., 1994), and 

these directional properties related to fiber and sheet architecture play a significant role in 

determining tissue stress and strain.

Biomechanical experiments by Humphrey and Yin showed that the anisotropy of myocardial 

tissue may vary as a function of wall depth (Yin et al., 1987), (Humphrey and Yin, 1989). 

Novak, et al. (Novak et al., 1994) later demonstrated that while myocardial tissue anisotropy 

is qualitatively uniform (i.e. the form of anisotropy does not change) in the canine left 

ventricle, it is quantitatively different between epicardium and mid-myocardium. Lin and 

Yin (Lin and Yin, 1998) also showed that the material properties of active myocardium are 

different than that of passive myocardium, and are of course anisotropic, with significant 

development of cross-fiber stresses during contracture. Most recently, Sommer, et al. have 

shown the orthotropic mechanical properties of human myocardium (Sommer et al., 2015b), 

(Sommer et al., 2015a).
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Arts et al. (Arts and Reneman, 1977) showed the importance of anisotropy in their early 

models of LV mechanics, but the significance of the orthotropic nature (i.e. the sheet 

structure) of the myocardium has surfaced more recently (Arts et al., 2001), (Ashikaga et al., 

2005), (Ashikaga et al., 2008), (Chen et al., 2005), (Cheng et al., 2005), (Cheng et al., 2008), 

(Coppola and Omens, 2008), (Costa et al., 1999), (Covell, 2008), (Nikou et al., 2015), (Pope 

et al., 2008). Since it is commonly argued that sheet structures contribute to wall thickening 

by allowing large shear deformations to occur (Costa et al., 1999), (Cheng et al., 2005), the 

orientation, dispersion, and mechanical properties of these sheets are undoubtedly important 

factors contributing to fiber stress and strain. The conduction of the electrical signal along 

the sheets is faster than across them, so timing of contraction is also affected by sheet 

structures (Hooks et al., 2007), which in turn also affects regional stresses and strains 

(Krishnamurthy et al., 2013).

Pressure overload induces hypertrophic remodeling of the extracellular matrix (ECM) by 

fibrosis (increase in collagen content) and collagen remodeling by fibroblasts (Bishop and 

Laurent, 1995), (Bursac, 2014), (Moore-Morris et al., 2014), (Pick et al., 1989). Since the 

ECM is a major load-bearing component of cardiac tissue, fibrosis directly affects passive 

tissue properties (Conrad et al., 1995), (Fomovsky et al., 2010), (Hess et al., 1981), 

(Thiedemann et al., 1983). Additionally, disorder of sheet structures has been measured in 

hypertensive heart disease (LeGrice et al., 2012). The implications of this reorganization of 

sheet structures combined with fibrosis, mechanical stiffening, and other forms of 

remodeling on tissue mechanics require further study. Nonetheless, collagen content and 

remodeling and fiber and sheet reorganization undoubtedly alter tissue anisotropy and the 

distribution of fiber stresses and strains.

3.3 Residual stress

Another potential mechanism contributing to uniform fiber stress and strain is that 

ventricular tissue is residually stressed (i.e. the unloaded, resting ventricle has internal 

stresses) and that the observed residual stress is non-uniform transmurally. Omens and Fung 

(Omens and Fung, 1990) first examined residual stress and strain in the rat LV following 

similar approaches used in other tissues, such as blood vessels (Chuong and Fung, 1986). 

Residual stress in cylindrical or spherical vessels is known to reduce stress concentrations at 

the inner surfaces, and this same mechanism is thought to occur in biological tissues. In the 

heart, it was found that making a radial cut in an equatorial cylindrical slice of rat left 

ventricle relieves circumferential residual stress, and results in an “opening angle” of 

approximately 45° (Omens and Fung, 1990). This suggests that resting, unloaded ventricular 

tissue supports internal, residual stresses. It was shown that this residual stress is regionally 

variable as expected for the geometry of the ventricle, with endocardial residual stress being 

compressive, whereas epicardial residual stress is tensile. This work was later extended to 

show a linear transmural gradient in sarcomere length that becomes uniform when residual 

stress is released by a radial cut in the rat LV (Rodriguez et al., 1993). Similar results were 

observed in chick embryo (Taber et al., 1993) and dog (Costa et al., 1997). Subsequent 

studies showed that 3D residual stress was even more complex with functional implications 

for distributions of normal and shear stresses during inflation (Omens et al., 2003).
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Since normal, resting ventricular myocardium is residually stressed in this manner (with 

compressive stress in the subendocardium and tensile stress in the subepicardium), it is 

reasonable to postulate that fiber stress and strain are normalized by residual stress. Indeed, a 

cylindrical model showed that residual stress, together with anisotropy and torsion, 

normalize fiber stresses transmurally during filling (Guccione et al., 1991). Rodriguez et al. 

(Rodriguez et al., 1993) commented that Starling's law likely works in combination with 

shortening deactivation and force-velocity relationship effects to normalize fiber stresses 

during systole, and that end-diastolic sarcomere length is likely the primary factor that 

determines developed tension.

Residual stress has been shown to change in biological tissues due to external pressure 

overloads (Fung and Liu, 1989). It was postulated that residual stress would increase under 

pressure overload hypertrophy (Rodriguez et al., 1994). Residual strain of the pressure 

overloaded left ventricle has been measured in rat (Omens et al., 1996) and chick embryo 

(Taber and Chabert, 2002). No significant difference in the opening angle was observed in 

rat, despite the reasonable hypothesis that it would increase with cell cross-sectional area 

(Omens et al., 1996). Similarly, chick embryo opening angles did not change or even 

decreased (Taber and Chabert, 2002). Although residual stress has not clearly been shown to 

change with hypertrophic remodeling in the heart, residual stress does change in other cases 

such as extra-cellular matrix disease (Weis et al., 2000) and with normal cardiac growth 

(Omens et al., 1998). With increased wall thickness without chamber dilation in pressure 

overload, residual stress is likely maintained in the tissue, indicating that the distribution of 

residual stress may be important for regulating fiber mechanics in both diastole and systole.

3.4 Protein densities

In addition to tissue-scale properties that can modulate stress and strain gradients in the 

ventricles, molecular-scale distributions and gradients of structural and functional proteins in 

myocytes and ECM may contribute to uniformity of fiber stress and strain by modulating 

individual myocyte electromechanical functions, and the interplay between cells and the 

supporting ECM. Many of the reports summarized in the following sections describe 

heterogeneous protein distributions in the ventricles, with implications for active and passive 

function, as well and long-term remodeling in response to altered external loading 

conditions. We review here several such proteins with transmural gradients that could affect 

fiber stress and strain distributions, mechanisms by which they might do so, and how 

disease-induced remodeling of those distributions may alter fiber stress and strain.

3.4.1 Passive structural proteins

3.4.1.1 Collagen: Collagen is a key structural component of the ECM and is therefore 

important in determining the passive mechanical properties of myocardial tissue (MacKenna 

et al., 1994), (Fomovsky et al., 2010). Collagen type I is predominant in the ventricles, and 

although its volume fraction is unchanged as a function of wall depth in rat LV, the form that 

collagen takes varies from subendocardium to subepicardium, in that the sheet structures 

mentioned above are clearly defined in the subendocardium and midwall, whereas toward 

the epicardium, collagen takes the form of longitudinal (parallel to the myocytes) cords 

(Pope et al., 2008). This implies that the form and organization of collagen, rather than its 
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content, may play a dominant role in terms of its transmural functional effects (MacKenna et 

al., 1997).

Fibrosis is a well-documented remodeling response during pressure overload (Bing et al., 

1971), (Bishop and Laurent, 1995), (Caspari et al., 1977), (Conrad et al., 1995), (Weber et 

al., 1989), and will certainly affect stress and strain distributions in this type of remodeling. 

Although the exact micromechanical-based contributions of ECM components and structure 

to the anisotropic passive material properties of myocardium in normal and fibrotic tissue 

are still mostly undefined, the form, distribution, and advanced glycation end-product 

mediated cross-linking of different types of collagen each can modulate cardiac stiffness 

(Fomovsky et al., 2010), (Herrmann et al., 2003), (Hess et al., 1981), (Mukherjee and Sen, 

1990), (Thiedemann et al., 1983). Thus it is reasonable to expect collagen/ECM remodeling 

to modulate diastolic mechanics, possibly with regional variations due to the 3D laminar 

sheet architecture in the ventricular walls.

3.4.1.2 Titin isoform: Titin also represents a major component of passive mechanical 

properties in the cardiomyocytes. Two major isoforms, N2B and N2BA, are found in cardiac 

muscle. The shorter isoform, N2B, is stiffer than the larger N2BA isoform, and is 

predominant in human hearts (Williams et al., 2009). Species-specific differences in the 

N2BA:N2B ratio exist, and it is thought that changes in this ratio modulate myocyte 

stiffness, where a higher ratio of N2BA:N2B corresponds with more compliant tissue, and 

vice versa (Neagoe et al., 2003). Additionally, a transmural gradient of the N2BA:N2B ratio 

was observed in pig and canine hearts where a higher N2BA:N2B ratio exists in the 

subendocardium than in the subepicardium (Bell et al., 2000), (Cazorla et al., 2000). 

Cazorla, et al. (Cazorla et al., 2000) speculated that inter-species variations in cell-to-cell 

stiffness is related to strain normalization of myocytes in different regions of the ventricular 

walls. This is consistent with the fact that the endocardial layer deforms more during a 

normal heart beat than the epicardium. The transmural gradient in the titin isoform ratio 

could suggest that stiffness along the fiber axis may also vary transmurally, leading to 

altered regional diastolic anisotropic material properties.

It has been shown that the N2BA:N2B ratio is decreased in spontaneously hypertensive rats 

(Warren et al., 2003), and in human patients with aortic stenosis (Williams et al., 2009), both 

of which are forms of pressure overload. In hearts that underwent two weeks of pacing 

tachycardia, the transmural gradient in titin ratios was exaggerated, and was postulated to 

contribute to a reduction in restoring forces after systolic contraction (Bell et al., 2000). The 

changes to this isoform ratio in pressure overload need to be further examined, as well as the 

functional implications postulated by the resultant changes in muscle stiffness. It is possible 

that this ratio is modulated to offset fibrotic stiffening during disease in order to maintain 

ventricular compliance and/or contractility.

3.4.2 Active sarcomere dynamics proteins

3.4.2.1 Myosin regulatory light chain phosphorylation: Myosin light chain (MLC) 

phosphorylation via myosin light chain kinase (MLCK) has been shown to increase the 

sensitivity of MLC to Ca2+, and is therefore a key determinant of tensile force produced in 
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myofibers (Morano et al., 1985), (Olsson et al., 2004). Davis et al. (Davis et al., 2001) 

observed a transmural gradient of phosphorylated regulatory light chain in normal mouse 

left ventricle, with increasing levels of phosphorylation from endocardium to epicardium. 

They postulated that this gradient was required to facilitate normal LV torsion. Additionally, 

double mutant mice, in which MLC cannot be phosphorylated, had decreased performance 

and an eccentric hypertrophy phenotype with decreased LV torsion (Sheikh et al., 2012). 

This study confirmed that MLC phosphorylation facilitates LV torsion, a key component of 

normalizing fiber stress and strain.

The latter study also proposed that phosphorylation of MLC is indispensable in regulating 

actin-myosin crossbridge dynamics and plays an important role in heart failure (Sheikh et 

al., 2012). Toepfer, et al. (Toepfer et al., 2013) also demonstrated that increased 

phosphorylation in rat trabeculae enhanced myocardial performance and suggested that 

decreased MLC-phosphorylation in cardiac disease is a key contributor to impaired cardiac 

contractile function. MLC phosphorylation levels were significantly reduced in pressure 

overloaded and failing hearts (Kotlo et al., 2012), but heart failure was prevented in MLC 

kinase-overexpressing mice (Warren et al., 2012). Additionally, constitutively 

phosphorylated cardiac MLC in mice was sufficient to prevent a hypertrophic 

cardiomyopathy phenotype (Karabina et al., 2015), (Yuan et al., 2015). Conversely, 

knockout of MLC induced heart failure (Massengill et al., 2016). These studies highlight the 

importance of MLC phosphorylation, including its transmural gradient, in the development 

of normal LV torsion and contraction, and a possible role in heart disease.

3.4.2.2 Myosin heavy chain isoforms: Myosin heavy chain (MHC) forms the head/neck 

region of the myosin crossbridge. Two major isoforms exist with different functionality. The 

α isoform (MHC-α) is faster and stronger but less energy-efficient than the β isoform 

(MHC-β). MHC-β is predominant in human hearts, whereas MHC-α is more highly 

expressed in rodents. Stones et al. (Stones et al., 2007) measured a transmural gradient in 

MHC-β mRNA in rat LV, with more found in subendocardium than subepicardium. No 

gradient in MHC-α was found in rat ventricular myocytes (Campbell et al., 2013), but it has 

been shown in porcine hearts that greater expression in MHC-α isoform expression in the 

subepicardium contributes to differing mechanical function and timing, both of which may 

modify fiber stresses and strains (Stelzer et al., 2008). Specifically, epicardial fibers were 

activated and developed force at higher rates than endocardial fibers (Stelzer et al., 2008). It 

is likely that the faster and supposedly stronger contraction of the MHC-α isoform will 

result in increased compressive stresses and strains in the fiber direction than that of the 

MHC-α isoform. This difference in the timing and rate of force production between 

epicardial and endocardial myocytes therefore is likely a major contributor to the 

distribution of fiber stresses and strains.

In small rodents, shifts in isoform expression toward MHC-α are associated with cardiac 

disease, including hypertrophy and failure (Herron and McDonald, 2002), (Krenz and 

Robbins, 2004), (Nakao et al., 1997). This may suggest that cardiomyocytes attempt to 

improve their efficiency during increased workload demand, but some have reported that this 

shift may be maladaptive (Krenz and Robbins, 2004). Regardless, even small changes in 

MHC isoform levels during hypertrophic or other remodeling will likely contribute to altered 
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LV functional mechanics by regulating the timing and force of contraction (Herron and 

McDonald, 2002).

3.4.3 Electrophysiological proteins

3.4.3.1 Ito proteins: KChIP/Kv4.2/Kv4.3: A well-known feature of myocardium is the 

difference in action potential duration (APD) across the wall, which, together with the 

activation sequence results in a positive QRS complex and a positive T-wave of the ECG 

(Antzelevitch et al., 1991). This transmural gradient in APD is in part due to the transient 

outward potassium current (Ito). This current is comprised of contributions from Kv4.2, 

Kv4.3, and KChIP proteins. Interestingly, Kv4.2 but not Kv4.3 showed a transmural gradient 

in rat LV (Dixon et al., 1996). Similarly, there was only a slight gradient in Kv4.3 found in 

mouse, compared to more marked gradients in Kv4.2 and KChIP (Teutsch et al., 2007). 

Canine and human LV showed no gradient in Kv4.3 but a significant gradient in KChIP 

(Rosati et al., 2001), (Rosati et al., 2003). The KChIP and Kv4.2 expression patterns almost 

universally had higher levels in epicardium than endocardium. These gradients explain the 

observed phenomenon of differing APD across the wall (Clark et al., 1993).

The Kv4.2 protein is a subunit of voltage-gated potassium channel in cardiac myocytes, 

partially responsible for generating the Ito during the early plateau phase of the action 

potential, wherein Ca2+ ions are released and bind troponin C to initiate contraction. In rat, 

human, dog, and other mammals, Kv4.2 is denser in subepicardium than subendocardium. It 

is well known that endocardial cells are typically activated earlier than epicardial cells, and 

that the duration of the action potential in endocardial cells is longer than that of epicardial 

cells, so that they are repolarized after their epicardial counterparts. One of the potential 

reasons for this is the greater concentration of Kv4.2 in epicardial cells, which are 

responsible for phase 1 early repolarization of the action potential in these cells. The early 

repolarization phase of the action potential is nearly nonexistent in subendocardial 

myocytes. This suggests that the endocardial myocytes are activated for a longer period of 

time than epicardial myocytes in the same heartbeat. Thus, the potential exists for more 

cross-bridges to be activated and to a greater extent. This would imply that higher strains 

(and stresses) may exist in the subendocardium due to this electrophysiology-based 

mechanism.

Wang et al. (Wang et al., 2007) confirmed the native gradient in Kv4.2 in mice, and found 

that pressure overload reduced subepicardial Kv4.2 levels and current, eliminating the 

transmural gradient found in normal mice. Thus action potential-mediated myocyte function 

could play a role in hypertrophic remodeling.

3.4.3.2 Kcnk2 (TREK-1): The potassium channel subfamily K, member 2 (Kcnk2), or 2-

pore domain potassium channel TWIK-related K+ (TREK-1) has been extensively studied, 

and is thought to modulate the APD regionally and during sympathetic activation (Bodnár et 

al., 2015). The TREK-1 gene, mRNA, and protein expression levels were greater in 

endocardial cells than epicardial cells (Kelly et al., 2006), (Stones et al., 2007), (Tan et al., 

2004), (Wang et al., 2013). Interestingly, the gradient of this potassium channel is in the 

opposite direction to that of the Kv4.2 and KChIP channels, all of which contribute to 
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repolarization, though with differing kinetics they are responsible for acting during different 

portions of the action potential (Grant, 2009), (Nerbonne and Kass, 2005).

In hypertrophy, the levels of TREK-1 increased everywhere, such that the normal transmural 

gradient was maintained (Wang et al., 2013). Similar to the discussion for the Ito proteins 

above, this protein's expression level is important in determining the sequence of activation 

and deactivation, and can thus impact regional stress and strain by impacting regional APD.

3.4.3.3 Connexins (Cx43): Another important determinant of electrical conduction through 

cardiac muscle tissue is its anisotropy, which is dictated in part by the presence of gap 

junction channels, which primarily localize to the ends of the long, rod-shaped myocytes, 

reducing resistance to electrical conduction along the fiber direction. Connexin plaques are 

also found coupling adjacent cells, contributing to lateral propagation of activation (Lackey 

et al., 2011). The presence of the sheet structures makes this conduction orthotropic (Hooks 

et al., 2007). In ventricular myocytes, gap junctions are primarily formed by connexin-43 

(Cx43). Yamada et al. (Yamada et al., 2004) found transmural gradients of Cx43 in the 

mouse LV, with a greater abundance in the subendocardium and mid-myocardium than 

subepicardium. This pattern, however, was not observed in rat LV. A similar pattern to that 

in the mouse was seen in dog (Poelzing et al., 2004) and rabbit (McLachlan et al., 2003). It 

is not straightforward to draw a connection between increased Cx43 expression and fiber 

strain, especially considering that expression may not necessarily influence conduction 

velocity per se. The use of finite element modeling of electromechanics in the ventricles 

with regionally variable fiber conduction would therefore be a useful study to help define the 

role of this transmural gradient for regional mechanical function.

Poelzing and Rosenbaum (Poelzing and Rosenbaum, 2004) also showed that Cx43 

expression is significantly reduced uniformly in dogs with heart failure, such that the 

gradient observed in normal dogs was preserved. In humans with aortic stenosis, 

connexin-43 amounts increased during compensated hypertrophy, then decreased during 

decompensated hypertrophy (Kostin et al., 2004). An important feature of Cx43 remodeling 

during disease, including pressure overload and MI, is that of lateralization, which 

undoubtedly affects conduction anisotropy and velocity (Emdad et al., 2001), (Kostin et al., 

2004), (Qu et al., 2009), (Schwab et al., 2013). The effects of such remodeling on 

electromechanics require further study.

3.4.4 Calcium handling proteins

3.4.4.1 SERCA2a: The sarco-/endoplasmic reticulum calcium ATPase pump (SERCA2a) is 

a primary factor in removing Ca2+ ions from the cytosol following activation. Laurita et al. 

(Laurita et al., 2003), (Laurita and Katra, 2005) determined that more SERCA2a is 

expressed in the subepicardium than in the subendocardium in canine hearts, then showed 

using optical mapping how such differences may lead to altered activation patterns. Others 

confirmed this pattern in dog as well as both non-failing and failing human hearts (Anderson 

et al., 2011), (Lou et al., 2011), (Prestle et al., 1999). However, this pattern was not observed 

in rat (Feldman et al., 1993).
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Cordeiro et al. (Cordeiro et al., 2004) also showed a difference in calcium transients in epi-, 

mid-, and endocardial cells from canine hearts. Their results suggested that differences in 

calcium homeostasis regulate synchronization of ventricular contraction across the wall, 

despite different electrical activation times. Computational models of these differences in 

Ca2+ dynamics within a finite element model of LV mechanics showed that this was not a 

factor in regulating end-systolic fiber strain, but that the effect of these gradients on fiber and 

cross-fiber strains in the LV is most apparent at early systole, rather than end-systole 

(Campbell et al., 2009). Even so, SERCA2a activity has been shown to affect contractility 

and relaxation in disease (Erkens et al., 2015), (Frank et al., 2003), and changes in regional 

distributions may play a role in mechanical function of the myocardium.

In severe pressure overload, SERCA2a expression was decreased in the whole rat heart (de 

la Bastie et al., 1990), (Wong et al., 1997). This reduction in SERCA2a level was found to 

be nonhomogeneous throughout the LV (Anger et al., 1998), however the transmural pattern 

of SERCA2a decrease has not to our knowledge been reported.

4. Summary and Conclusion

Transmural uniformity of fiber stress and strain at end-diastole and end-systole appears to be 

a common finding from both experiments and mathematical models. Researchers have 

sought to understand the fundamental reasons for this homogeneity in function, postulating 

that uniform fiber stress and/or strain is likely important in improving ventricular pump 

efficiency. Several structural and functional factors in the normal myocardium that vary 

transmurally may be mechanisms contributing to the normalization of fiber stress and strain. 

In diseases such as pressure overload hypertrophy, several structural factors in myocytes and 

ECM may change, mediating the role of stress and strain in cardiac remodeling. The “holy 

grail” of work in this field would be to fully describe the contributions each transmural 

gradient to ventricular mechanics, and the mechanisms by which they do so. Computational 

modeling, in conjunction with continued experimental measurements, constitute a 

challenging but tractable method to accomplish those goals.
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