
Interplay between diet, gut microbiota, epigenetic events, and 
colorectal cancer

Scott J. Bultman1,*

1Department of Genetics and Lineberger Comprehensive Cancer Center, University of North 
Carolina, Chapel Hill, NC 27599, USA

Abstract

Despite the success of colonoscopy screening, colorectal cancer (CRC) remains one of the most 

common and deadly cancers, and CRC incidence is rising in some countries where screening is 

not routine and populations have recently switched from traditional diets to western diets. Diet and 

energy balance influence CRC by multiple mechanisms. They modulate the composition and 

function of gut microbiota, which have a prodigious metabolic capacity and can produce 

oncometabolites or tumor-suppressive metabolites depending, in part, on which dietary factors and 

digestive components are present in the GI tract. Gut microbiota also have a profound effect on 

immune cells in the lamina propria, which influences inflammation and subsequently CRC. 

Nutrient availability, which is an outcome of diet and energy balance, determines the abundance of 

certain energy metabolites that are essential co-factors for epigenetic enzymes and therefore 

impinges upon epigenetic regulation of gene expression. Aberrant epigenetic marks accumulate 

during CRC, and epimutations that are selected for drive tumorigenesis by causing transcriptome 

profiles to diverge from the cell of origin. In some instances, the above mechanisms are 

intertwined as exemplified by dietary fiber being metabolized by colonic bacteria into butyrate, 

which is both a short-chain fatty acid (SCFA) and a histone deacetylase (HDAC) inhibitor that 

epigenetically upregulates tumor-suppressor genes in CRC cells and anti-inflammatory genes in 

immune cells.
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Influence of Diet on Colorectal Cancer

Colorectal cancer (CRC) is among the three most diagnosed and deadly cancers in both men 

and women in the USA as well as globally (1, 2). It is estimated that 132,700 new CRC 

cases were diagnosed in the USA during 2015 along with 49,700 associated deaths (2). 

However, the good news is that these figures have been decreasing ~3% per year over the 
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past decade in the USA (2). This downward trend is attributed to more frequent colonoscopy 

screening leading to the early detection and removal of pre-cancerous adenomas (3). 

Although the CRC burden is stable or decreasing in the USA and other western countries, 

this is not the case elsewhere (4). In contrast, CRC incidence and mortality have been 

increasing in developing countries and newly industrialized countries such as China due to 

their populations adopting western diets and lifestyles. CRC rates have doubled in some 

Asian and Eastern European countries since the mid-1970s (4).

Notwithstanding the success of colonoscopy screening, the CRC burden could be diminished 

by ~50% via diet, physical activity, and weight management (5). Numerous prospective-

cohort epidemiology studies have identified specific dietary and lifestyle factors that either 

promote or protect against CRC (Table 1) (5). For example, consumption of red meat and 

animal fats increase risk, whereas dietary fiber decreases risk. Energy balance is particularly 

important, and the obesity epidemic will undoubtedly have a significant adverse impact. Due 

to the Warburg effect, cancer cells become addicted to glucose: glucose transporters 

(GLUTs) are upregulated, glucose uptake is ≥10-fold, and aerobic glycolysis is utilized to 

generate ATP in a relatively inefficient manner (6). Therefore, the high blood glucose levels 

that occur in obese individuals with metabolic syndrome, type-2 diabetes, and even pre-

diabetic insulin resistance represent a tumor-permissive environment that can metabolically 

drive cancer. This idea is supported by the clinical success of metformin, a diabetes drug that 

lowers blood glucose levels, for the prevention and treatment of CRC and other cancers (7, 

8).

A positive energy balance (i.e., caloric intake > energy expenditure) that results in insulin 

resistance usually leads to elevated circulating levels of insulin and insulin-like growth 

hormone (IGF) (also known as hyperinsulinemia) as a compensatory mechanism. Increased 

insulin or IGF in hyperinsulinemia can drive cancer by binding to their cognate tyrosine 

kinase receptors and upregulating pro-oncogenic growth factor signaling pathways such as 

PI3K-AKT-mTOR (which can trigger MDM2 degradation of p53) and RAS-RAF-ERK 

(which can upregulate c-MYC expression) that stimulate cell growth and proliferation while 

inhibiting apoptosis (9, 10). Although CRC incidence has reached a plateau and gone down 

over the past decade(s) in the USA, there has been a concomitant rise in early-onset cases 

(e.g., diagnosis <50 years of age, which is prior to the age of routine colonoscopy screening) 

not associated with familial cancer syndromes such as FAP and HNPCC/Lynch syndrome 

(4, 11), and this trend is believed to be due to the increased prevalence of obesity. One 

possibility is that obesity-induced activation of RAS-RAF-ERK and PI3K-AKT-mTOR 

signaling in both young and old individuals accelerates carcinogenesis by substituting for 

somatic mutations that genetically activate these same pathways but which occur over a 

longer timeframe (12). This idea is compatible with KRAS, BRAF, and p53 mutations being 

the primary drivers of CRC progression and which are mutated more frequently than any 

other gene except APC (which usually initiates CRC) (13). Indeed, when CRC exome 

sequencing data from The Cancer Genome Atlas (TCGA) were stratified according to body 

mass index (BMI), obese individuals were reported to have a lower frequency of mutations 

for driver genes in general and for KRAS in particular (12). These findings support the idea 

that the selective pressure for driver mutations is lost when the corresponding genes and 

genetic pathways are deregulated via perturbation of their cellular milieu.
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In addition to relatively direct effects of diet on CRC, as mentioned above, diet is likely to 

influence CRC indirectly by modulating the composition and metabolism of gut microbiota 

and by epigenetically regulating gene expression. These topics are covered in the next two 

sections.

Influence of Gut Microbiota on Colorectal Cancer

Our bodies harbor a huge number (≥1014) of microbial cells, and the lumen of the colon has 

the highest microbial density by far (14). Microbiome studies, which utilize metagenomic 

DNA sequencing approaches to catalog the diversity and abundance of bacteria in fecal 

samples or mucosal biopsies obtained by endoscopy, have demonstrated that the human gut 

microbiome is relatively stable in individuals over time except in the case of certain events 

such as food poisoning/infection or international travel (15, 16). This likely reflects the 

hegemony of long-term dietary patterns on our gut microbiome (17). Nevertheless, our gut 

microbiome does respond to short-term dietary interventions. For example, switching from a 

traditional diet that is high in plant polysaccharides including fiber and low in animal fat and 

processed sugar to a reciprocal western diet that is low in plant polysaccharides/fiber and 

high in animal fat and processed sugar (including the pervasiveness of high-fructose corn 

syrup) leads to a rapid shift (within a day) in the microbiome (18–20). Many observed 

changes are as expected and reflect natural selection or a similar process where certain 

bacterial clades or genera grow at the expense of others in response to an altered 

environment. For instance, the aforementioned dietary switch to a western diet resulted in a 

bloom of bile-tolerant bacteria such as Bilophilia and Bacteroides with a concomitant 

decline in Firmicutes such as Roseburia that metabolize plant polysaccharides (20). 

However, short-term dietary interventions tend to transiently affect the gut microbiome and 

are usually not maintained following a return to the long-term diet (17). For this reason, 

short-term dietary interventions are unlikely to be successful for reshaping the microbiome 

in a stable manner for CRC prevention as is known to be the case for weight loss. Finally, it 

should be noted that our knowledge is limited because diet probably has a much larger effect 

on the microbiome’s transcriptional output (i.e., the metatranscriptome) and metabolite 

production (i.e., metabolome) than the relative abundance of specific bacteria (21–24). 

These topics are currently being investigated and should further increase our understanding 

of the relationship between diet and the function of gut microbiota.

It is noteworthy that dietary fiber and red meat plus animal fats have particularly strong 

effects on microbiome structure because they have significant, diametrically opposed effects 

on CRC risk (as discussed above and listed in Table 1). This correlation supports the idea 

that long-term changes in our diet influence CRC via microbiome changes. Indeed, human 

microbiome studies have demonstrated that the bacterial community structure of the gut is 

often perturbed in CRC and in other disease states such as inflammatory bowel disease 

(IBD). Bacterial diversity is diminished in both CRC and IBD, and this is referred to as 

dysbiosis. Human microbiome studies have also identified significant changes in the 

abundance of specific bacteria in CRC cases compared to controls. For example, Escherichia 
coli strains containing a pks pathogenicity island, Fusobacterium nucleatum, and 

Providencia are overrepresented in CRC cases, whereas Lactobacillus and butyrate-

producing bacteria such as Roseburia and Fecalibacterium are underrepresented (25, 26). 
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However, metagenomic sequence data cannot establish causality because a particular 

microbiome change could be either a cause or a consequence of CRC. To overcome this 

limitation, germfree mouse models of CRC are colonized with one or more specific bacteria 

either enriched or depleted in human CRC cases while being maintained in gnotobiotic 

isolators (25). When these “humanized” mouse models have significantly different tumor 

burdens, Koch’s postulates are virtually fulfilled and causality is demonstrated. The bacteria 

can also be genetically modified in these studies as was done to demonstrate that the pks 
pathogenicity island, which encodes a toxin (colibactin) that induces DNA damage in the 

colonic epithelium, is responsible for the contribution of E. coli to CRC (27).

Gut microbiota can either promote or protect against CRC by several mechanisms. First, 

dietary and digestive factors are metabolized by microbiota into putative oncometabolites 

and tumor-suppressive metabolites (Figure 1) (28). To exemplify the promotion of 

carcinogenesis, red meat and bile acids produced in response to the digestion of animal fats 

are converted by gut bacteria into hydrogen sulfide and secondary bile acids such as DCA, 

respectively. To exemplify cancer prevention, plant-based polyphenols and fiber are 

converted by gut microbiota into equol or urolithins and short-chain fatty acids (SCFAs) 

such as butyrate, respectively. Second, gut microbiota affect intraepithelial lymphocytes and 

immune cells in the lamina propria to modulate inflammatory responses (Figure 1). 

Inflammation is recognized as a hallmark of cancer (29), and CRC is particularly sensitive to 

inflammation considering that aspirin and NSAIDs diminish CRC risk to a larger extent than 

any other cancer (30, 31). In further support of the microbiota-inflammation-CRC link, 

microbiota play a key role in IBD, and IBD patients with colonic inflammation have a 2–10 

fold increased risk of CRC (32). In addition to directly affecting immune cells, the gut 

microbiota can influence the permeability of the colonic epithelium and barrier function 

(Figure 1), which, in turn, determines the extent to which luminal bacteria and bacterial 

antigens such as LPS and flagellin come into contact with immune cells. Furthermore, 

obesity is associated with increased intestinal permeability (which may involve microbiota) 

and inflammation (33, 34), which strongly suggests that it exacerbates CRC independent of 

energy balance.

Gut microbiota can also influence CRC and other cancers indirectly by affecting energy 

balance. The gut microbiome changes in response to diet, as discussed above, and the 

Bacteroides-to-Firmicutes ratio is shifted downward in obese individuals (35). The “obese 

microbiota” are enriched for genes involved in carbohydrate and lipid metabolism, which 

enables more calories to be extracted from energy-rich diets (18). To address the issue of 

cause versus effect, fecal microbiota from obese versus lean and normal versus 

malnourished donors have been transplanted into germfree mice in gnotobiotic isolators. 

Comparisons of FMT outcomes support the idea that gut microbiota modulate energy 

balance and adiposity (36–38). The gut microbiome will affect many specific components of 

our diets including additives and preservatives in processed foods. One example is the 

central role of our gut microbiota in the observation that artificial sweeteners (e.g., diet soda) 

induce glucose intolerance (39). Another example is emulsifiers such as 

carboxymethylcellulose and polsorbate-80 that can induce low-grade inflammation, obesity/

metabolic syndrome, and colitis in gnotobiotic mouse models (40).
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Finally, it should be emphasized that gut microbiota are not only relevant for cancer 

prevention but are also emerging targets for therapy. For example, irinotecan (also known as 

camptothecin 11) is a topoisomerase I inhibitor commonly used as a chemotherapeutic agent 

for the treatment of CRC. As part of normal drug metabolism, it is inactivated via 
glucuronidation in the liver and excreted through the GI tract, but bacterial β-glucuronidases 

cleave the glucuronide group as an energy source, which reactivates the active 

chemotherapeutic in the gut to harm or kill rapidly dividing intestinal epithelial cells and 

cause severe GI distress including diarrhea (41). Antibiotics does not represent a preferred 

treatment option because the indiscriminate killing of bacteria can be deleterious (including 

the onset of C. difficile infections) so pharmacologic inhibitors of bacterial β-glucuronidases 

were developed. Oral administration of these inhibitors is effective at alleviating the GI 

toxicity of irinotecan in mouse models (41), and this approach may allow the dose or 

duration of irinotecan to be ramped up in human CRC patients. One might expect these 

inhibitors to be effective in combination with additional drugs that are glucuronidated in the 

liver and reactivated by bacterial β-glucuronidases in the gut including other 

chemotherapeutics and NSAIDs (which cause intestinal bleeding when reactivated in the 

intestine). Another good example comes from immunotherapy, which is currently the 

vanguard of anti-cancer therapy. Antibodies that inhibit either CTLA-4 or PD-L1 have 

shown particular promise by triggering a checkpoint blockade that unleashes a robust 

immune response against cancer cells. Interestingly, the efficacy of anti-CTLA4 and - PD-L1 

treatments is dependent on the composition of the patients’ gut microbiota and its ability to 

induce the maturation of dendritic cells followed by a robust response from tumor 

infiltrating T cells (42, 43). In addition to FMTs, specific bacteria were identified (e.g., 

Bifidobacterium and Bacteroides such as B. fragilis), and “therapeutic feeding” of one these 

bacteria improved the efficacy of immunotherapy in a mouse model (42, 43). The studies 

cited here focused on melanomas, but immunotherapy is being evaluated for the treatment of 

other cancers including CRC, and probiotics clearly represent a potential adjuvant treatment.

Influence of Epigenetics on Colorectal Cancer

Tumorigenesis is driven not only by mutations but also by dysregulated epigenomic 

alterations that cause the transcriptome profile of a cancer cell to diverge from the cell of 

origin (44). This process includes the inappropriate addition or removal of acetyl and methyl 

marks at specific histone residues. These histone modifications often lead to a corresponding 

gain or loss of DNA methylation at CpG dinucleotides, which can stably maintain the 

altered epigenomic state through numerous cell divisions (45, 46). Aberrant epigenetic 

modifications, which are sometimes referred to as “epimutations”, occur at promoters or 

enhancers of tumor-suppressor genes and proto-oncogenes and are often selected for during 

tumorigenesis. Epimutations are well documented in CRC where many genes (e.g., APC, 
LKB1, GATA4, p16INK4a, MLH1) and genetic pathways are common targets (47). 

Epigenetic inactivation of MLH1 and other mismatch repair genes results in a dramatic 

increase in mutations within the tumor (i.e., a mutator phenotype manifest by microsatellite 

instability), which demonstrates that there can be a causal relationship between epimutations 

and mutation burdens that contribute to genomic instability. Histone 3 lysine 9 acetylation 

(H3K9ac) and H3K27ac are particularly relevant because these marks are highly enriched at 
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active gene promoters and enhancers, respectively (29, 48, 49). Furthermore, H3K27ac has 

been used (along with H3K4me1) to define variant enhancer loci (VEL) that are 

differentially acetylated/activated in normal colonic tissue versus CRC samples in humans 

(48). H3K9 and H3K27 residues are also noteworthy because they can be modified by either 

active acetyl marks or inactive methyl marks (with H3K27 methylation being catalyzed by 

the EZH2 component of PRC2), and this yin-yang relationship is often in a state of flux. 

Histone acetylation is regulated by the balance between histone acetyltransfereases (HATs) 

and histone deacetylases (HDACs), which add and remove acetyl groups, respectively. Non-

histone proteins including p53 are also direct targets that can be relevant. An imbalance in 

HAT and HDAC enzymatic activities underlies a variety of cancers. For example, HDACs 1, 

2, 3, and 6 are recurrently upregulated in CRC and other cancers, and genetic knockdown of 

these genes in tumor-derived cell lines induces cell-cycle arrest and apoptosis (50). HDAC 

inhibitors are being developed by biotechnology and pharmaceutical companies for anti-

cancer chemotherapy, and vorinostat (also known as SAHA) and romidepsin have already 

been approved by the FDA (albeit for the treatment of lymphomas rather than CRC) (50).

Epigenetics also represents a mechanism that links diet and nutrient availability with 

regulation of gene expression to maintain homeostasis. The basis for this mechanistic link is 

the fact that most epigenetic enzymes utilize energy metabolites or redox factors as essential 

co-factors (51). DNA methyltransferases and histone methyltransferases utilize S-

adenosylmethionine, a product of 1-carbon metabolism, as the methyl-group donor; histone 

acetyltransferases (HATs) utilize acetyl-CoA, a central component of energy metabolism, as 

the acetyl-group donor; class III HDACs (also known as sirtuins) are dependent on the redox 

factor NAD+; TET and JmjC dioxygenases require the TCA cycle intermediate α-

ketoglutarate to demethylate DNA and histones, respectively. In certain cases, diet 

influences gene expression to an extent that influences phenotypic outcomes and disease 

states. For example, dietary supplementation of 1-carbon cycle micronutrients (e.g., folate, 

vitamin B12, choline) influences coat color, obesity, and tumorigenesis in genetically 

identical viable-yellow mice (51–53). And children conceived during the Dutch hunger 

winter of 1944–1945 and other famines have had increased incidence of schizophrenia and 

other ailments later in life, which in some cases have been associated with altered CpG 

methylation profiles of target genes such as IGF [albeit in peripheral blood cells, which may 

or may not be representative of the diseased tissue (e.g., CNS) or relevant to the disease state 

(e.g., complex behaviors)] (54). There is precedent for energy metabolites functioning in 

human cancer. The oncometabolite 2-hydroxyglutarate, which arises because of neomorphic 

IDH mutations in lymphomas and gliomas, is sufficient to promote neoplasia (55). It is 

generated in cancer cells at the expense α-ketoglutarate and inhibits both TETs and JmjC 

enzymes to alter DNA and histone methylation (55). The TCA cycle intermediates succinate 

and fumarate also function in this capacity in response to oncogenic mutations in genes 

encoding TCA cycle enzymes (56). Finally, considering the prodigious metabolic capacity 

of the gut microbiome, bacteria will likely convert dietary factors and digestive components 

into metabolites that regulate epigenetics in cancer. A recent comparison of colonic 

epithelial cells from germfree and conventional mice revealed surprisingly few differences in 

chromatin accessibility (57), but this does not rule out other possible differences such as 
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local histone modifications. Although our knowledge in this area is limited, the next section 

provides a proof of principle for a bacterial metabolite in histone acetylation.

The fiber-microbiota-butyrate axis in epigenetics and CRC prevention

Dietary fiber is defined as “the edible part of plants or their extracts, or analogous 

carbohydrates, that are resistant to digestion and absorption in the small intestine, but are 

utilized after partial or complete fermentation in the large intestine by resident microbiota” 

(58). Fiber includes polysaccharides (e.g., resistant starch, cellulose, hemicellulose, pectins, 

and gums), oligosaccharides, and lignins. Although fiber has been investigated for many 

years, it continues to be studied and provide new insights. A particularly strong study was 

recently published in which native Africans and African Americans participated in a 2-week 

dietary intervention (59). Native Africans, who have a low rate of CRC (<5 per 100,000), 

switched from their traditional high-fiber diets to low-fiber western diets, while African 

Americans (who have a >10-fold higher rate at 65 per 100,000) switched from their western 

diets to high-fiber, traditional diets. The dietary changes affected the gut microbiome and led 

to reciprocal changes in metabolites such as SCFAs including butyrate and mucosal 

biomarkers of cancer risk (59).

Increased fiber consumption has the potential to decrease CRC risk by two general 

mechanisms that are not mutually exclusive. First, insoluble fiber speeds colonic transit and 

may diminish the exposure of colonic epithelial cells to ingested carcinogens such as 

heterocyclic amines from charred meat (Figure 2). Second, soluble fiber is fermented by 

certain clades of bacteria into butyrate and other potentially beneficial metabolites (Figure 

2). Although dietary fiber is generally believed to diminish CRC risk, there has been a lack 

of consensus because of conflicting results from prospective-cohort epidemiology studies 

(60). These studies have been reliant on self-report questionnaires to track participants’ 

dietary habits for ~3 years so compliance is a concern that probably hinders reproducibility. 

Another limitation is that meta-analyses must be conducted carefully because different 

studies utilize different fiber sources, which are metabolized to different extents and yield 

different levels of metabolites. ≥5 microbiome studies have reported a significant decrease in 

butyrate-producing bacteria in human CRC cases compared to controls, but it is not clear 

whether this is a cause or a consequence of the disease (25, 61). Although most research 

using mouse models support the idea that butyrate is tumor suppressive (25, 62), a recent 

study suggested that butyrate promotes CRC (63). This study utilized a mouse model with 

impaired mismatch repair, but it is not clear whether this is sufficient to reconcile the 

contradictory findings (64).

To investigate dietary fiber and butyrate in a highly controlled manner, a mouse model of 

CRC was polyassociated with several bacteria in a gnotobiotic isolator and provided control 

or high-fiber diets that were otherwise isocaloric and virtually identical (65, 66). The high-

fiber diet was provided from weaning (prior to tumor initiation) until the time of sacrifice 

and had a protective effect in mice colonized with a wild-type butyrate-producing bacterium 

but not in mice lacking a butyrate producer (Figure 3). The same mice colonized with a 

mutant strain of the butyrate-producing bacterium, which harbors a small deletion in the 

butyryl CoA synthesis operon and produces diminished levels of butyrate, had an attenuated 
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protective effect with an intermediate tumor burden (Figure 3). Furthermore, mice that 

completely lacked butyrate-producing bacteria but were provided a diet fortified with 

butyrate had a lower tumor burden than any of the other treatment groups (Figure 3). This is 

arguably the most convincing evidence that butyrate is a causal factor because it 

demonstrates that the fiber-microbiota tumor-suppressive effect can be recapitulated by 

exogenous butyrate. Future studies will need to be performed where the high-fiber, 

“butyrogenic” diet is provided after tumorigenesis is initiated to determine whether it is still 

protective.

The above study also explored the molecular mechanism of how butyrate functions as a 

dietary- and microbiota-derived tumor-suppressive metabolite (65). Unlike most cell types in 

the body, which utilize glucose as their primary energy source, normal colonocytes rely on 

butyrate for ~60–70% of their energy (67–69). As a fatty acid, butyrate undergoes β-

oxidation in the mitochondria (67), and this supports energy homeostasis necessary for the 

rapid cell proliferation of the colonic epithelium (Figure 2). The colonic and small intestinal 

epithelium arguably turn over faster than any other tissue in the body (every ≤7 days) with 

rapid cell proliferation near the base of the crypt counterbalanced with apoptosis near the 

lumen. In contrast, CRC cells (and cancer cells in general) undergo the Warburg effect and 

switch to glucose utilization and aerobic glycolysis (6) (Figure 2). As a result of this 

metabolic shift, butyrate is not metabolized in the mitochondria of CRC cells to the same 

extent and accumulates in the nucleus where it functions as an HDAC inhibitor to 

epigenetically regulate gene expression (65, 70) (Figure 2). In support of this model, 

butyrate (detected by LC-MS) and global histone acetylation levels (detected by 

immunohistochemistry and western blots) were elevated in tumors from mice that were 

colonized with the wild-type butyrate producer and provided a high-fiber diet, and this 

correlated with a lower tumor burden (Figure 3). Butyrate is a well-established HDAC 

inhibitor (71, 72), and butyrate target genes in tumors from mice provided a high-fiber diet 

included Fas and p21, which promote apoptosis and inhibit cell-cycle progression, 

respectively. This finding is compatible with the diminished tumor burden in these mice and 

the idea that butyrate is a tumor-suppressive metabolite.

The tumor-suppressive mechanism(s) is probably more complicated than described above. 

Insoluble fibers such as cellulose are not fermented by gut microbiota and speed colonic 

transit as mentioned above. Soluble fibers are fermented into SCFAs other than butyrate, 

such as acetate and propionate, and these or other metabolites could also contribute to CRC 

prevention. Propionate is also an HDAC inhibitor although it is not as potent as butyrate and 

has broader bioavailability with less accumulation in colonocytes (73). Finally, butyrate is a 

pleiotropic molecule and may prevent cancer via additional mechanisms. In addition to 

functioning as an HDAC inhibitor, it can signal through certain G protein coupled receptors 

(74, 75). Butyrate may diminish tumorigenesis by attenuating inflammation. Butyrate 

enemas strongly ameliorate colonic inflammation associated with inflammatory bowel 

diseases (IBD) such as colitis and Crohn’s disease in both rodent models and human patients 

(72). This is noteworthy because colitis patients have up to a 10-fold increased risk of CRC 

as mentioned above (32, 76), which is consistent with the link between inflammation and 

cancer (29). A series of recent studies demonstrate that butyrate activates FoxP3 expression 

in naïve CD4+ T cells and dendritic cells and induces the differentiation and expansion of 
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immunosuppressive regulatory T (Treg) cells (77–84). Another recent study demonstrates 

that butyrate downregulates the production of pro-inflammatory cytokines by intestinal 

macrophages (85). Butyrate is also known to affect colonocyte permeability and barrier 

function (86, 87). In other words, butyrate participates in each functional category illustrated 

in Figure 1. This example demonstrates that diet and gut microbiota can interact to influence 

multiple mechanisms relevant to cancer including epigenetics and inflammation.

Lack of consensus and unresolved issues regarding fiber and the gut 

microbiome

Diet may have a more modest effect on the composition and function of gut microbiota in 

humans than mice, and there is currently a lack of consensus regarding the effect size in 

humans. For example, a recently published study comparing vegans to omnivores in the 

USA, which included a 10-day dietary intervention trial, detected relatively subtle 

differences in the composition of gut microbiota (88). Furthermore, butyrate and other SCFA 

levels were not significantly different between the two groups although fiber intake was 

higher in vegans. These findings are different than what has been observed in Native 

Africans that still rely on a traditional, high-fiber diet (59). One possibility is that the 

capacity of an individual’s microbiome to ferment fiber into SCFAs might become 

constrained after a prolonged (i.e., years or lifetime) low-fiber diet. One might also expect 

transgenerational effects because an individual “inherits” their microbiota from their mother 

at birth and usually adopts a similar diet. Therefore, a diminished capacity to ferment fiber 

into SCFAs could be amplified after two or more generations of low-fiber consumption. This 

idea is supported by another recent study that provided a low-fiber diet to mice colonized 

with human microbiota and observed diminished microbiome diversity (89). Interestingly, 

this microbiome change was initially reversible (within one generation) but became 

progressively irreversible with diet-induced extinctions after several generations. In a 

situation like this, prebiotics (e.g., a high-fiber diet) will not be sufficient, and probiotics will 

be necessary to re-introduce specific gut bacteria into the gut ecosystem to produce SCFAs. 

In the absence of the appropriate diet (e.g., low-fiber diet), however, it might be necessary to 

develop something analogous to a gene-drive system (as has been proposed for eradicating 

malaria) to select for the re-introduced beneficial bacteria.

Other diet- and microbial-derived metabolites implicated in cancer 

prevention

The previously cited study identified 92 out of 361 metabolites (25%) that had significantly 

different concentrations in plasma from vegans versus omnivores (88). Although these 

changes did not correlate with microbiome changes, another study utilizing germfree mice 

estimated that 10% of plasma metabolites are influenced by microbiota (90). Therefore, it 

stands to reason that many diet- and microbe-derived metabolites will influence colorectal 

cancer and other cancers.

Dietary polyphenols, which include flavonoids (e.g., quercetin and kaempferol), phenolic 

acids, anthrocyanins, and lignins present in tea, wine, fruits, nuts, and vegetables, have 
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received extensive attention because of their chemoprotective effects in mouse models and 

human epidemiology studies. Resveratrol has probably received the most attention because 

it is a caloric-restriction mimetic that is pleiotropic and benefits health in multiple ways. 

However, it is not the best example for being metabolized by gut microbiota. In contrast, 

ellagic acid is a polyphenol present in certain berries and nuts that is an anti-oxidant with 

cancer-preventive properties. Ellagic acid is metabolized by colonic microbiota into 

urolithins that have pro-estrogenic and anti-estrogenic activities in a context-dependent 

manner (91). Urolithins can also downregulate COX-2 to lower prostaglandin production 

and inflammation so the anti-cancer effects apparently involve multiple pathways. Another 

polyphenol is daidzein, which is a soy-based isoflavone metabolized by gut microbiota into 

equol. Some epidemiologic studies have reported correlations between equol or equol-

producing bacteria and diminished breast cancer risk in women and diminished prostate 

cancer risk in men. However, these correlations have been observed in Asian populations but 

not European populations (91). It is not clear whether these ethnic disparities are due to 

differences in genetics, microbiota, or diet (e.g., soy consumption), and more work will be 

required to strengthen the link between equol and cancer prevention. Interestingly, only 30–

40% of westerners are able to produce equol, whereas 60–70% of Asians are able to do so 

(91). Although the reason for this difference is not understood, it could be due, in part, to the 

relative abundance of specific bacteria. In the previously cited study, only 40% of the vegans 

had detectable equol in their plasma despite similar levels of isoflavone intake (88). This 

suggests that long-term diet and transgenerational effects may lead to irrevocable changes in 

the microbiome and metabolome that are relevant to both fiber/SCFA- and soy isoflavone/

equol-mediated cancer susceptibility.

Cruciferous vegetables such as broccoli and cabbage contain high levels of glucosinolates. 

When these vegetables are uncooked and either chopped or chewed, plant-derived 

myrosinases convert the glucosinolates to isothiocyanates (ITC) such as sulforaphane, which 

is an HDAC inhibitor like butyrate, that have anti-carcinogenic properties in cell lines and 

mouse models and might diminish human cancer risk. The evidence is strongest for 

colorectal, lung, breast, prostate, and prostate although the epidemiology results are mixed. 

However, cruciferous vegetables are usually cooked. Although heat denatures the plant-

derived myrosinases, bacteria-derived thioglucosidases convert glucosinolates into ITC in 

the gut to exert their beneficial effects (91).

Linoleic acid is an omega-6 polyunsaturated fatty acid (PUFA) that is a constituent of 

vegetable oils. Because linoleic acid is a precursor of arachadonic acid, which gives rise to 

prostaglandins and inflammation, high intake of vegetable oils can alter the omega-6 to 

omega-3 ratio and be deleterious. However, certain gut microbiota, including strains of 

Lactobacilli and Bifidobacteria used in probiotics, can conjugate linoleic acid (91). Not only 

does this bacterial conjugation diminish linoleic acid levels, but some conjugated linoleic 

acid isomers are reported to have anti-inflammatory and anti-carcinogenic properties.

Future of probiotics and prebiotics in cancer prevention and therapy

As our knowledge of bioactive food components and microbiota increases, it is likely that 

prebiotics and probiotics will play a bigger role in cancer prevention and anticancer therapy. 
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Prebiotics are defined as indigestible food ingredients that selectively stimulate the growth 

and/or activity of certain gut microbiota that confer a health benefit. Probiotics correspond to 

the consumption of live microbiota present in foods or dietary supplements that confer a 

health benefit. Perhaps the best-known example of probiotics involves Lactobacillus in 

yogurt for promoting general GI health and preventing lactose intolerance. Streptococci and 

Bifidobacteria in cheeses and other foods and drinks are also commonplace. FMTs can also 

be considered a probiotic and are noteworthy because of their tremendous success in treating 

otherwise lethal Clostridium difficile infections, which usually arise because antibiotics 

eliminated commensal bacteria that are capable of displacing or suppressing C. difficile. 

Although there is not much evidence for specific microbiota in cancer prevention or 

treatment, this is likely to change. The most immediate measurable progress will probably 

involve Bifidobacterium and Bacteroides such as B. fragilis as adjuvants for immunotherapy 

as discussed above (42, 43). Another interesting possibility for cancer prevention or therapy 

involves genetically modified microbiota that provide additional value or benefit. For 

example, Lactobacillus strains have been engineered to overexpress the antioxidant 

superoxide dismutase or an anti-inflammatory protein (91). However, because even normal 

strains Lactobacillus have a very minor and transient impact on the gut microbiome, it might 

be necessary to develop a strategy to select for these microbes in the gut similar to the 

proposed gene-drive systems being utilized for sexually reproducing species such as 

mosquitoes in the case of malaria. In this regard, it is possible that CRISPR might be 

utilized, and this should be relatively efficient because most bacteria produce their own Cas9 

so it does not need to be delivered exogenously. If successful, engineered microbiota could 

add to the fast-growing functional food/nutraceutical industry.
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GLUTs glucose transporters

ATP adenosine triphosphate
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FDA food and drug administration

SCFA short-chain fatty acid

EZH2 enhancer of zeste 2

PRC2 Polycomb repressive complex 2

HDACs histone deacetylases

HATs histone acetyltransferases

DCA dichloroacetate

TCGA the cancer genome atlas

FAP familial adenomatous polyposis

HNPCC hereditary nonpolyposis colorectal cancer
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Figure 1. 
Gut microbiota influence CRC by multiple mechanisms. Schematic of colon showing 3 

compartments: top, the lumen containing dietary/digestive components (black), microbiota 

(gray), and metabolites (colors); middle, a single layer of epithelial cells; bottom, an 

underlying lamina propria containing immune cells. Gut bacteria can promote CRC by 

metabolizing oncogenic dietary/digestive components such as meat and bile acids into 

oncometabolites such as secondary bile acids (e.g., DCA) and hydrogen sulfide. Conversely, 

gut bacteria can protect against CRC by metabolizing beneficial dietary/digestive 

components such as plant-based polyphenols and fiber into tumor-suppressive metabolites 

such as butyrate. Bacteria (and their metabolites and antigens) can have direct effects on 

normal or cancerous colonocytes (left arrow) or influence immune cell activation and 

inflammation, which can occur directly (right arrow) or by maintaining colonocyte 

permeability and barrier function of the epithelium (middle arrow).
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Figure 2. 
Mechanism of fiber- and butyrate-mediated tumor suppression. Insoluble fiber speeds 

colonic transit to minimize carciongen exposure, while soluble fiber is fermented by gut 

bacteria into butyrate (left). In normal colonocytes (right, top), butyrate is utilized as the 

primary energy source to maintain homeostasis. Because it is readily metabolized in the 

mitochondria via fatty acid oxidation, relatively little accumulates inside the nucleus. In 

cancerous colonocytes (right, bottom), glucose is the primary energy source due to the 

Warburg effect. Butyrate is still transported into the cell via monocarboxylate transporters 

but is not metabolized in the mitochondria, which allows it to accumulate in the nucleus and 

function as an HDAC inhibitor to epigenetically regulate genes involved in cell proliferation 

and apoptosis.
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Figure 3. 
Dietary fiber protects against colorectal cancer in a microbiota- and butyrate-dependent 

manner in a gnotobiotic mouse model. Mice were colonized with several bacteria that either 

excluded or included a butyrate producer as indicated at the top. A wild-type and mutant 

strain of the butyrate producer was utilized in separate gnotobiotic isolators (depicted by 

boxes around each group of mice). In each isolator, the mice received control or high-fiber 

diets (6% fructo-oligosaccharides/inulin but otherwise virtually identical to the control diet) 

except for a butyrate-fortified diet in the isolator at the far right. Arrows at the bottom 

indicate relative levels of luminal butyrate along with global histone acetylation levels and 

tumor burden after tumorigenesis was initiated 5 months earlier. Butyrate production was 

attenuated, but not completely abolished, in the mutant strain when provided a high-fiber 

diet as denoted by one upward butyrate arrow instead of a downward arrow or two upward 

arrows. The yellow ovals highlight experimental conditions that yield a lower tumor burden, 

and this correlates with higher butyrate levels and histone acetylation levels.
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Table 1

Dietary and lifestyle factors that influence CRC risk.

Strength of Evidence Increased CRC Risk Decreased CRC Risk

Probable or Convincing Red meat
Processed meat
Alcoholic drinks
Obesity

Physical activity
Dietary fiber
Garlic
Milk
Calcium

Suggestive Foods containing iron
Cheese
Foods containining animal fats
Foods containing sugars

Nonstarchy vegetables
Fruits
Fish
Foods containing folate
Foods containing selenium
Foods containing vitamin D
Selenium

Inconclusive Cereals (grains) and their products; potatoes; poultry; shellfish and other seafood; other dairy products; total fat; 
fatty acid composition; cholesterol; sugar (sucrose); coffee; tea; caffeine; total carbohydrate; starch; vitamin A; 
retinol; vitamin C; vitamin E; multivitamins; non-dairy sources of calcium; methionine; beta-carotene; alpha-
carotene; lycopene; meal frequency; energy intake

Adapted from American Institute of Cancer (AICR) 2nd Annual Expert Report (5)
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