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Abstract

Mitochondria are a major target in hypoxic/ischemic injury. Mitochondrial impairment increases 

with age leading to dysregulation of molecular pathways linked to mitochondria. The perturbation 

of mitochondrial homeostasis and cellular energetics worsens outcome following hypoxic-

ischemic insults in elderly individuals. In response to acute injury conditions, cellular machinery 

relies on rapid adaptations by modulating posttranslational modifications. Therefore, post-

translational regulation of molecular mediators such as hypoxia-inducible factor 1α (HIF-1α), 

peroxisome proliferator-activated receptor γ coactivator α (PGC-1α), c-MYC, SIRT1 and AMPK 

play a critical role in the control of the glycolytic-mitochondrial energy axis in response to 

hypoxic-ischemic conditions. The deficiency of oxygen and nutrients leads to decreased energetic 

reliance on mitochondria, promoting glycolysis. The combination of pseudohypoxia, declining 

autophagy, and dysregulation of stress responses with aging adds to impaired host response to 

hypoxic-ischemic injury. Furthermore, intermitochondrial signal propagation and tissue wide 

oscillations in mitochondrial metabolism in response to oxidative stress are emerging as vital to 

cellular energetics. Recently reported intercellular transport of mitochondria through tunneling 

nanotubes also play a role in the response to and treatments for ischemic injury. In this review we 

attempt to provide an overview of some of the molecular mechanisms and potential therapies 

involved in the alteration of cellular energetics with aging and injury with a neurobiological 

perspective.

1 Introduction

The world is experiencing considerable growth in its older population. Estimates from 2010 

suggest that there were 524 million people aged 65 or older, this is expected to triple by 

2050 (Suzman and Beard, 2011). Given these statistics, significant questions arise about 

productivity, health, well-being, independence, the need for social constructs to care for 
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them, and factors that can positively impact the health of these individuals. The effect of 

stress or injury in old age is becoming an increasingly greater challenge. Declining 

mitochondrial function with aging plays a fundamental role in altered cellular energetics 

with aging and contributes greatly to outcome following injury (Biala et al., 2015; Gomes et 
al., 2013; Poulose and Raju, 2014). In this review, we aim to address this specific aspect by 

discussing the role of mitochondria in hypoxic/ischemic injury and the influence of aging on 

organ function.

2 The Mitochondrial Theory of Aging

In 1956, Harman suggested that free radicals result in cellular damage that accrues over time 

and causes aging (Harman, 1956). He later added to his theory in what has now become 

known as the mitochondrial theory of aging. He suggested that aging is due to accumulated 

free radical damage to mitochondria, impacting their ability to function (Harman, 1972). 

However there are mounting evidences that challenge the mitochondrial theory of aging 

(Lapointe and Hekimi, 2010). Results from rodent models with overexpression of genes 

important in redox regulation and models with ablation of these genes failed to support this 

theory. The accumulation of somatic mutations on mitochondrial DNA (mtDNA) has also 

been suggested to be through random genetic drift (Elson et al., 2001). Further studies found 

that at least in short-lived animals, this model does not hold (Kowald and Kirkwood, 2013) 

and based on the relationship between transcription and mtDNA replication, the same 

authors recently reported that transcription could be the key to the selection advantage of 

mitochondrial deletion mutants in aging (Kowald and Kirkwood, 2014). Though theories 

built around mitochondria to address organismal aging remain controversial, the role of 

mitochondria in health, aging and disease is being increasingly recognized.

2.1 Structure and Function of Mitochondria

Mitochondria are a cellular organelle consisting of a simple outer phospholipid bilayer 

membrane, an intermembrane space, a complex inner phospholipid bilayer, and a 

mitochondrial matrix (Palade, 1953). The outer membrane contains VDACs, also known as 

mitochondrial porin proteins, which make it permeable to small molecules (Palade, 1953; 

Tomasello et al., 2009). The intermembrane space is between the inner and outer membranes 

and play critical role in the transport of proteins across mitochondrial membranes, and 

oxidative phosphorylation (Gellerich, 1992; Herrmann and Riemer, 2010). The inner 

membrane is freely permeable to oxygen, carbon dioxide, and water (Alberts, 2008). It 

contains multiple folds called cristae, which significantly increase the total surface area of 

the inner membrane, allowing it to contain many proteins (Alberts, 2008; Palade, 1953) 

including transport proteins, all the electron transport chain complexes, and the ATP 

synthase complex (Alberts, 2008). The inner mitochondrial matrix contains the citric acid 

cycle reaction enzymes and substrates (Alberts, 2008).

Mitochondria produce energy and their numbers are particularly prominent in cardiac 

muscle, skeletal muscle, liver, kidney, and neuronal cells as these cells require significant 

energy for function. Mitochondria use the electron transport chain to produce usable 

chemical energy from electron donors like reduced nicotinamide adenine dinucleotide 
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(NADH) via a series of oxidation/reduction reactions where molecules transfer electrons and 

facilitate transmembrane proton transport resulting in an electrochemical gradient that drives 

adenosine triphosphate (ATP) synthesis (Mitchell, 1961).

Recent reports have suggested that mitochondria undergo rapid and constitutive metabolic 

oscillations in a coordinated manner in individual cells as well as in supracellular networks 

in the tissue (Porat-Shliom et al., 2014). Reactive oxygen species (Aon et al., 2004) and gap 

junctions (Porat-Shliom et al., 2014) control the synchronization of mitochondrial activity, 

the oscillations were confirmed by intravital microscopy in living animals (Porat-Shliom et 
al., 2014) These oscillations were found to disappear with interruption of circulation, 

inhibiting complex I, and by scavenging ROS. However, they persist but are not coordinated 

when carbenoxolone, a gap junction inhibitor, is administered.

2.2 Mitochondrial Complexes and the Electron Transport Chain

The electron transport chain consists of five enzyme complexes that are comprised of 

integral inner membrane proteins. They are NADH-CoQ reductase, Succinate-CoQ 

reductase, CoQ-cytochrome c reductase, cytochrome c oxidase, and ATP synthase 

(complexes I-V, respectively). Ubiquinone (CoQ) and cytochrome c are two freely diffusible 

molecules that mediate the transfer of electrons between complexes (Gao et al., 2008). 

Oxygen is the final acceptor of electrons in this process.

2.2.1 Oxidative Stress—Oxidative stress arises when the system is unable to establish a 

balance between production and utilization of oxidant molecules. The excess production of 

ROS during oxidative stress has the potential to cause protein, DNA and lipid damage 

causing cellular injury, as observed in ischemia/reperfusion models (Bhat et al., 2015; 

Walters et al., 2016). Reactive oxygen species include hydrogen peroxide, hydroxyl radicals 

and superoxide anions. Nevertheless, it is known that cellular production of ROS is essential 

to the normal function of cells as they take part in specific signaling events (Finkel and 

Holbrook, 2000). ROS are produced inside the mitochondria as well as outside. The extra-

mitochondrial sources of ROS include lipoxygenases, peroxisomes and NADPH oxidases. 

However, mitochondria are the major site of ROS production, inside the mitochondria, 

complexes I and III are the major sites. Though mitochondrial ROS has been attributed to 

one of the causes of aging, there are evidences to the contrary (Wang and Hekimi, 2015).

2.2.2 Mitochondrial Complex I—NADH enters the electron transport chain at complex I 

(NADH-CoQ reductase, or NADH dehydrogenase). NADH binds to the complex and is 

oxidized, donating 2 electrons. Electrons are transferred through- complex I flavin 

mononucleotide (FMN) prosthetic group and it is converted to FMNH2 (Hirst, 2010). The 

electrons pass through a series of nine FeS clusters to Coenzyme Q (CoQ) (Murphy, 2009) 

and eventually to the primary electron acceptor, ubiquinone.(Sazanov and Hinchliffe, 2006) 

The fully reduced flavin in complex I also reduces O2 to superoxide (Hirst, 2010). This also 

results in transfer of four protons from the matrix into the intermembrane space to support 

the proton motive force that drives ATP synthesis. Both forward and reverse electron flow 

generate superoxide radicals (Schonfeld et al., 2010). Inhibition of complex I by rotenone 

increases superoxide production. The superoxide may be converted to hydrogen peroxide 
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(H2O2) by MnSOD within the mitochondria or react with NO to generate peroxynitrite 

(ONOO-).

2.2.3 Mitochondrial Complex II—Succinate-Q oxidoreductase (complex II) is the only 

enzyme that is part of both the citric acid cycle and the electron transport chain (Cecchini, 

2003). In this reaction, succinate is oxidized to fumarate through a flavin adenine 

dinucleotide (FAD) cofactor and iron sulfur clusters mediate electron transfer to coenzyme 

Q. A heme group is also present but is believed to decrease reactive oxygen species 

production (Yankovskaya et al., 2003). It does not contribute to the proton gradient by 

transporting protons.

2.2.4 Mitochondrial Complex III—Complex III has been known for a long time to be a 

significant site of ROS production in the ETC (Murphy, 2009). Q-cytochrome c reductase 

(complex III) is a dimer with each part containing protein subunits, iron sulfur clusters, and 

cytochromes (Iwata et al., 1998). In a two step process called the Q cycle, ubiquinol is 

oxidized and two molecules of cytochrome c are reduced, also resulting in four protons 

being added to the intermembrane space (Trumpower, 1990). An intermediate in this cycle is 

a free radical called ubisemiquinone, which can leak electrons directly to oxygen, resulting 

in superoxide. Superoxide production is further enhanced when complex III is inhibited by 

antimycin A.

2.2.5 Mitochondrial Complex IV—Cytochrome c oxidase (Complex IV) consists of 13 

subunits, two heme groups, and metal cofactors including magnesium, zinc, and three 

copper ions (Tsukihara et al., 1996). It mediates the transfer of electrons to O2, which is 

reduced to two H2O molecules. Four reduced cytochrome c molecules serve as electron 

donors and four protons are consumed from the matrix to make H2O. Four protons are also 

transferred from the matrix to the intermembrane space, increasing the electrochemical 

gradient and proton motive force. This complex is highly efficient and releases few partly 

reduced intermediates.

2.2.6 Mitochondrial Complex V—ATP synthase (complex V) is the final step of 

oxidative phosphorylation. It uses the proton motive force generated across the inner 

mitochondrial membrane to drive synthesis of ATP (Boyer, 1997). Three to four protons 

pass through the complex, driving molecular rotors named Fo and F1, and resulting in one 

unit of ATP (Fillingame and Steed, 2014; Jastroch et al., 2010).

2.2.7 Oxidative Products and Effects (Complexes 1-III)—Mitochondrial electron 

transport generates superoxide as an inevitable by-product at complexes I-III (Turrens, 

2003). So in the presence of oxygen, reactive oxygen species such as the superoxide radical 

(O2
−) are generated in low levels. Over time, however, small amounts of free radical induced 

oxidative damage may accumulate, particularly during hypoxic or ischemic episodes (Chan, 

2001). Glutathione peroxidase, catalase and superoxide dismutase are effective endogenous 

antioxidants that can help scavenge free radicals. In the absence of scavengers, ROS can 

cause deleterious effects on cellular functions. The transcription factors, Nrf-1 and Nrf-2 

have been shown to control the expression of antioxidant response genes (Ohtsuji et al., 
2008). A decreased expression of several antioxidant response genes have been observed in 
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mice deficient in Nrf-2 (Itoh et al., 1997). Environmental pollutants, therapeutics, and 

transient hypoxia have all been suggested and confirmed experimentally to be “hits” 

resulting in injury to mitochondria and specifically mitochondrial DNA (Nohl et al., 1997). 

Mitochondrial DNA is especially susceptible to free radical induced damage as it is in close 

proximity to reactive oxygen species production and superoxide is unable to diffuse through 

the mitochondrial membranes (Gao et al., 2008). Consequently, there is a major role for 

mitochondria in hypoxic-ischemic injury as well as age dependent decline in metabolic 

processes and organ function (Correia-Melo and Passos, 2015). Other neurodegenerative 

diseases such as Alzheimer’s disease (Aliev et al., 2002; Ng et al., 2014; Palacios et al., 

2011) and Parkinson’s disease (Snow et al., 2010; Wu et al., 2011) have also shown key 

roles of age dependent decline of mitochondrial function and increased oxidative stress, 

although the focus of this review is on hypoxic-ischemic injury.

3 Hypoxic-Ischemic Injury

3.1 Definitions

Hypoxia refers to low levels of oxygen in the body or tissue. Hypoxemia, on the other hand, 

refers to low levels of oxygen in the blood. Ischemia occurs with a lack of blood flow to 

tissues. Ischemia always results in tissue hypoxia. However, hypoxia can occur without 

ischemia as in acute lung injury (decreased oxygen entering blood), anemia (decreased 

carrying of oxygen by blood), carbon monoxide poisoning (decreased delivery of carried 

oxygen to tissues), and other mechanisms. Ischemia can be global or focal. Global ischemia 

can be produced by traumatic hemorrhage, cardiac or pulmonary failure, sepsis and other 

mechanisms. Focal ischemia can be produced by embolic or thrombotic processes, injury, 

surgical clamping of a blood vessel, during organ transplantation, and other mechanisms. 

Whether by hypoxia or ischemia, or both, a dearth of mitochondrial oxygen impairs 

oxidative phosphorylation and mitochondrial function. As hypoxic and ischemic events are 

increased in elderly individuals, they are particularly prone to the resulting mitochondrial 

dysfunction.

3.2 Effect of Hypoxia/Ischemia

Hypoxic/Ischemic insults are important in the generation of reactive oxygen species (ROS). 

In unstressed healthy individuals, ROS are generated during cellular metabolism. Sources of 

ROS include xanthine oxidase, nicotinamide adenine dinucleotide reduction, and adenosine 

triphosphate production via the mitochondrial electron transport chain (Cairns et al., 1997). 

Normally, cellular antioxidant systems effectively remove ROS. One mechanism by which 

this occurs is when superoxide dismutase reacts with superoxide radicals produced during 

cellular respiration to generate hydrogen peroxide, which is subsequently broken down by 

glutathione peroxidase and catalase (Winterbourn, 2013). However, during hypoxic/ischemic 

injury, ROS production by the mitochondria overwhelms antioxidant capacities, leading to 

cellular DNA damage, mitochondrial lipid peroxidation, disruption of Ca2 + homeostasis 

(Mattson et al., 2000) (Murphy and Steenbergen, 2008), and mitochondrial membrane 

depolarization (Lemasters et al., 2009). This results in cytochrome c release and cell death 

by apoptosis (Wu and Bratton, 2013). Thus, mitochondrial function is a crucial determinant 

of survival during ischemic injury (Brookes et al., 2004).
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3.3 Mitochondrial Trafficking

Intracellular trafficking of mitochondria is important in meeting local metabolic demand as 

well as in renewal and recycling of the organelle.(Chang and Reynolds, 2006). It has been 

suggested that motility of axonal mitochondria is important in plasticity and reliability of 

synaptic transmission (Sun et al., 2013b). Intercellular transfer of mitochondria have been 

demonstrated in both in vitro and in vivo models and are reported to be facilitated by cellular 

portals formed by tunneling nanotubes (TNTs) (Gerdes et al., 2007; Rogers and 

Bhattacharya, 2013). TNTs are cellular connections 100–800 nm in diameter and up to 100 

μm long that contain a small cytoplasmic bridge and a surrounding phospholipid bilayer 

(Gerdes et al., 2007). TNTs look like phyllopodia while forming and contain F-actin and 

motor proteins (Gerdes et al., 2007; Rustom et al., 2004). TNTs have been observed in 

various cell lines, including but not limited to adrenal cells (Bukoreshtliev et al., 2009), 

kidney cells (Gurke et al., 2008), and cardiac cells (Koyanagi et al., 2005; Plotnikov et al., 
2008).

Unidirectional mitochondrial intercellular transfer within nanotubes has been demonstrated 

(Koyanagi et al., 2005; Plotnikov et al., 2008). Vibration and chemical inhibitors of TNT 

formation are noted to prevent or decrease mitochondrial intercellular transfer (Gurke et al., 
2008; Rustom et al., 2004). Also, overexpression of the mitochondrial GTPase Miro1 has 

been shown to increase mitochondrial transfer and prevent lung injury by the mitochondrial 

poison rotenone, while knockdown leads to decreased transfer and loss of efficacy (Ahmad 

et al., 2014). Among other stressors, oxidative stress leading to p53 activation has been 

shown to be a stimulant for TNT development in stressed cells to non-stressed cells based on 

the concentration difference in the S100A4 protein (Wang et al., 2011c). Damaged neurons 

had decreased S100A4 and produced TNT, while cells with higher levels received the TNT. 

In another study, lung adenocarcinoma A549 cells without mitochondria due to treatment 

with ethidium bromide received mitochondria and recovered aerobic respiration from cells 

with functional mitochondria (Spees et al., 2006). Not only do the cells recover respiration, 

they are also protected from endotoxin induced acute lung injury associated with the transfer 

of functioning mitochondria (Islam et al., 2012). Another model using cigarette smoke also 

demonstrated that mitochondrial transfer from induced pluripotent cells decreased damage 

to lung epithelium (Li et al., 2014). Given these results, using stem or progenitor cells as a 

vehicle for healthy mitochondrial transfer to cells with damaged mitochondria as a result of 

hypoxia or aging, and potentiating this transfer with Miro1 may provide significant 

therapeutic value but needs more investigation, especially with neuronal cells as few studies 

have been performed in these cell populations at this time (Las and Shirihai, 2014). Apart 

from acting as a connecting bridge between cells for mitochondrial transfer, TNTs may also 

serve important intercellular communication during cellular stress (Wang and Gerdes, 2015).

3.4 Nuclear-Mitochondrial Cross-talk

Mitochondrial structure and function are controlled by the 37 genes encoded in mtDNA as 

well as a large number of genes in nuclear DNA (Poulose and Raju, 2014). Among the 37 

genes on the mtDNA, 13 code for proteins, 22 for tRNAs and 2 for ribosomal RNAs. The 

transcription and translation of the 13 genes coding for proteins on mtDNA involves a 

complex process participated by a number of proteins coded on the nuclear genome 
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(Hallberg and Larsson, 2014). Therefore the small number of genes on the mtDNA is not 

sufficient for the structure and function of mitochondria. The nuclear encoded proteins that 

are translated are translocated into the mitochondria by a well-orchestrated mechanism. 

Several molecular and genetic factors have broad impacts on the normal function of 

mitochondria as well as in the setting of age and ischemia. Therefore, nuclear-mitochondrial 

talk is an essential mechanism in mitochondrial homeostasis. In order to study nuclear-

mitochondria cross talk, our laboratory developed a mitochondrial gene chip with probe sets 

representing the transcriptome of the genes on the mitochondria and that of the nucleus 

important for the structure and function of mitochondria, together called the mitoscriptome 

(Raju et al., 2011). We found significant upregulation of genes involved in glycolytic 

pathways in cardiomyocytes subjected to hypoxia demonstrating a shift in energy production 

from mitochondria to glycolysis (Jian et al., 2011b). Recently it has been found that 

humanin, a mitochondria derived peptide, exhibits strong cytoprotective actions against 

various stress and disease models and suggested to be part of a retrograde signaling that 

involves nuclear-mitochondria crosstalk (Gong et al., 2014). This inter-organelle 

communication is important in the mitochondrial response to hypoxic-ischemic conditions, 

whether induced by stroke, myocardial-infarction or sepsis. About 1500 distinct proteins are 

estimated to be involved in the maintenance of mitochondrial structure and function (Calvo 

and Mootha, 2010), some of the master regulators that control physiological responses are 

well-studied.

3.3.1 Molecular Mediators of Mitochondrial Function in Hypoxic-Ischemic 
Injury—One of the hallmarks of hypoxia is the stabilization of HIF-1α and subsequent 

nuclear translocation with modulation of expression of a number genes important in energy 

metabolism (Ke and Costa, 2006; Salceda and Caro, 1997; Semenza, 2007). HIF-1 consists 

of two protein subunits: HIF-1β, which is constitutively expressed, and HIF-1α, which is 

continuously synthesized then degraded in a prolyl hydroxylase dependent manner (Solaini 

et al., 2010) by the ubiquitin-proteasome system under normoxic conditions (Salceda and 

Caro, 1997). During low oxygen tension, proline hydroxylation does not occur and HIF-1α 
rapidly accumulates, binds with the β subunit and is translocated to the nucleus where it 

serves as a transcriptional activator of over 100 genes (Semenza, 2007). Many of these genes 

are involved in glycolytic pathways and lead to a switch in energy production from oxidative 

phosphorylation to glycolysis (Semenza, 1996). HIF-1 enhances glycolysis by upregulating 

synthesis. of glycolysis enzymes (Semenza, 1996), increasing glucose transporters, and 

blocking mitochondrial energy metabolism (Semenza, 2011). HIF-1 facilitates activation of 

pyruvate dehydrogenase kinase (PdK)1, which phosphorylates and inhibits pyruvate 

dehydrogenase (PDH), the rate limiting step leading to oxidative phosphorylation, from 

converting pyruvate to acetyl CoA to fuel the mitochondrial TCA cycle (Papandreou et al., 
2006) and blocks assembly of Fe/S clusters required for oxidative phosphorylation 

(Semenza, 2011). It also concomitantly blocks nuclear-mitochondrial crosstalk inhibiting the 

expression of mitochondrial encoded subunits in oxidative phosphorylation complexes 

(Gomes et al., 2013). The Sinclair group (Gomes et al., 2013) suggested the development of 

a pseudohypoxic state with progressive aging and a role for HIF-1, independent of PGC-1α, 

in modulating mitochondrial function. HIF-1 has an interesting interplay with a pleotropic 

transcription factor called c-MYC. c-MYC binding canonical sequence segments are found 
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on several genes related to mitochondrial biogenesis (Kim et al., 2008; Li et al., 2005) and 

overexpression of c-MYC was shown to prevent loss of mtDNA and cellular ATP levels with 

upstream inhibition (Gomes et al., 2013). c-MYC appears to act via increasing transcription 

factor A mitochondrial (TFAM) and is critically important in hypoxia/ischemia. In a 

mitochondrial gene expression profiling of a rat model of hemorrhagic shock in our 

laboratory, c-MYC exhibited most change following the injury (Jian et al., 2011b).

The c-MYC -HIF-1 interrelationship and their role in cellular homeostasis remain unsettled. 

Though there are contradicting results, HIF-1 modulation of c-MYC is evident from many 

studies. c-MYC increases both glycolysis and mitochondrial oxidative phosphorylation. 

Both c-MYC and HIF-1α are upregulated with hypoxia, yet HIF-1 directs c-MYC 

repression and inhibition of oxidative phosphorylation (Kim et al., 2006), a result similar to 

Warburg reprogramming (Christofk et al., 2008; Warburg, 1956). HIF-1 also impacts 

neovascularization, angiogenesis and cell survival. It has also been shown to be a critical 

determinant of lifespan in C. elegans, a nematode frequently used in aging research (Leiser 

and Kaeberlein, 2010). While Warburg postulated aerobic glycolysis in cancer, 

notwithstanding the anaerobic environment in the core of solid tumors, injury conditions 

such as ischemia or hemorrhage reflect an anaerobic status with mitochondrial functional 

deficiency and promotion of glycolysis. This is clearly evident in models like hemorrhagic 

shock where increased plasma lactate and decreased tissue ATP levels are consistently 

observed (Jian et al., 2012; Pearce et al., 1985). These relationships and others are depicted 

in Figure 1. Further investigations on the fine balance of function between HIF-1 and c-

MYC in hypoxic/ischemic insult with the aging phenotype is likely to yield more 

information on the dysregulation of mitochondrial homeostasis.

One of the critical mediators of mitochondrial function is PGC-1α, the expression and 

activity of which have been demonstrated with several age-associated neurodegenerative 

diseases (Wenz, 2011). PGC-1α is a cofactor to peroxisome proliferator-activated receptor 

(PPAR) family transcription factors leading to increased mitochondrial fatty acid oxidation 

gene expression (Finck and Kelly, 2007). It also binds to and activates nuclear respiratory 

factor 1 (NRF1), a transcription factor that increases oxidative phosphorylation and also 

stimulates the synthesis of transcription factor A mitochondrial (TFAM), leading to mtDNA 

transcription, maintenance, and replication (Kang and Hamasaki, 2005). Additionally it 

targets and activates estrogen receptor related receptor (ERR) family proteins. ERRα 
increases nuclear respiratory factor 2 (NRF2), which regulates the cell cycle, cell 

differentiation, and mitochondrial biogenesis (Scarpulla, 2008). PGC-1α has also been noted 

to have effects on energy production and defense systems against ROS (Jian et al., 2011b). 

PGC-1α activity is modulated by nutrient availability, calcium, ROS, insulin, thyroid 

hormone, estrogens, hypoxia, ATP demand, cytokines, and c-MYC (Puigserver and 

Spiegelman, 2003). It has also been noted to decrease with age (Anderson and Prolla, 2009). 

A SIRT1 pathway that regulates mitochondria independently of PGC-1α was recently 

postulated (Gomes et al., 2013). These researchers were able to revert key biochemical 

parameters in 22-month old mice to that of 6-month old mice by treating these mice with 

NAD+, a substrate and therefore a modulator of SIRT1 activity, indicating that regulation of 

mitochondrial function can alter aging trajectory.
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3.4.1 Age Related Effect of Hypoxia/Ischemia on Cells and Mitochondria—
Aging, as discussed by Harman, leads to mitochondrial dysfunction (Harman, 1972). 

Mitochondrial dysfunction causes energy failure and is associated with multi-organ 

dysfunction in severely injured patients (Cairns et al., 1997). Consequently, mitochondria are 

a common denominator in the increased mortality, injury, and organ dysfunction associated 

with aging during hypoxia and ischemia. Mitochondria are increasingly implicated as central 

players in the development of ischemic cell death both through impairment in generating 

ATP for cell function and as key mediators in cell death pathways (Sims and Muyderman, 

2010). This has been attributed to multiple mechanisms.

During hypoxia or ischemia, oxidative phosphorylation via the electron transport chain is 

inhibited or reduced, resulting in accumulation of superoxide radicals along with decreased 

ATP (Solaini et al., 2010). Superoxide at low levels does little cellular damage by itself; 

however, at higher levels, pathologic free radicals such as hydro-peroxyl radicals, hydroxyl 

radicals, and peroxynitrite (Stowe and Camara, 2009) result in oxidative stress that can 

damage DNA, lipids, and proteins, (Wheaton and Chandel, 2011). This oxidative stress, in 

conjunction with calcium increases due to glutamate toxicity (in the brain) and/or ischemia 

induced loss of efflux associated with less Na+/K+ ATPase and Na+/Ca+2+ exchanger 

activity, causes the inner mitochondrial membrane to become more permeable with resultant 

loss of the mitochondrial membrane potential (Green and Kroemer, 2004). This leads to 

mitochondrial swelling with release of cytochrome c and apoptotic protease activating 

factors (Murphy et al., 1999) into the cytoplasm. Together, they activate caspases and induce 

apoptosis (Zou et al., 1997). This process is amplified when aged cells are exposed to injury, 

particularly hypoxic/ischemic injury as progressive loss of mitochondrial function 

potentiates further injury. Less efficient mitochondria in aged cells have increased free 

radical generation and decreased energy production during stress (Nohl et al., 1997; Sasaki 

et al., 2008b). Consequently, not only is the damage greater in aged cells for a given degree 

of injury, the healing response is also diminished (Gupta et al., 2004). There are also age-

related decreases in the activities of mitochondrial carrier proteins—such as for phosphate, 

ATP/ADP (Paradies and Ruggiero, 1991; Tummino and Gafni, 1991) and Ca 2+ (Hansford 

and Castro, 1982), adenine nucleotide (Kim et al., 1988; Nohl and Kramer, 1980; Tummino 

and Gafni, 1991), and pyruvate (Paradies and Ruggiero, 1990). Humanin, a mitochondria-

derived small peptide has been shown to exhibit strong cytoprotective actions against 

pathological stress (Lee et al., 2013a). Interestingly this 24-amino acid peptide is derived 

from a 75bp open reading frame in the 16S ribosomal RNA sequence on the mtDNA. One 

recent study found that a humanin-derivative, AGA(C8R)-HNG17, enhanced the activity of 

ATP synthase complex (Cohen et al., 2015). Humanin is also implicated to play a role in 

lifespan extension (Gong et al., 2014). As such mitochondria are believed to be a key 

modulator of neuronal viability during hypoxic/ischemic stress.

3.4.2 Mitochondrial dynamics and role in cell death—Hypoxic-ischemic insults are 

associated with increased apoptosis (programmed cell death). Mitochondrial control of 

apoptosis has been extensively studied and a number of players included in this mechanism 

are known. During ischemia, increased levels of ROS and influx of calcium leads to 

membrane permeability transition, and release of cytochrome c from mitochondrial 
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intermembrane space leading to the activation of the apoptosome and caspase mediated 

apoptosis (Mattson et al., 2000) (Bonanni et al., 2006). Studies showed an increased release 

of cytochrome c with aging (Marzetti et al., 2013). Calcium mediated activation of 

mitochondrial calpains 1 and 10 results in the cleavage of AIF from inner membrane and 

translocation to nucleus facilitating caspase independent programmed cell death (Polster, 

2013). A growing number of known proteins are known to be involved in initiating and 

executing mitochondria-mediated apoptosis or inhibiting the process, and these include Bax, 

Bad, Bid, Apaf-1, Bcl-2, and Bcl-xL.

Cellular machinery is a robust biological system with meticulous built-in mechanisms to 

maintain homeostasis. Autophagy is one such mechanism that works together with the 

ubiquitin-proteosome system to recycle damaged organelles and act as a survival mechanism 

in nutrient poor conditions. Activation of autophagy has been observed following cerebral 

ischemia (Polster, 2013) and declining autophagy is noted with age (Wang et al., 2011a). 

Inhibition of mTOR by rapamycin was found to augment autophagy and consistent with this 

observation, rapamycin prolonged longevity in mice (Ehninger et al., 2014; Harrison et al., 
2009). These results demonstrate a key role for autophagy in the restoration of cellular 

homeostasis and aging phenotype. An autophagy process called mitophagy is utilized by 

cells to clear damaged mitochondria. This is a critical process for healthy mitochondrial 

biogenesis considering the dynamic nature of this organelle, which undergoes constant 

fission and fusion process. Mitophagy involves a selective recruitment of mitochondria into 

isolation membranes and fusion with lysosomes resulting in the elimination of entrapped 

mitochondria (Kane and Youle, 2010). However, it is not clear how soon this process is 

effected in the case of sudden injuries such as myocardial infarction, stroke or hemorrhagic 

shock. Nevertheless, it is known that one hour after induction of stress by mitochondrial 

uncouplers, Parkin can translocate from cytosol to mitochondria (Kane and Youle, 2010). 

PINK1 is required for the Parkin recruitment to mitochondria (Sebastian et al., 2012). In 

healthy cells, PINK1 is rapidly degraded by proteolysis and maintains low levels, where as 

PINK1 hydrolysis is inhibited in damaged mitochondria. Parkin inhibits mitochondrial 

fusion by ubiquitinylating mitofusins (Gomes et al., 2011). Dynamin-related protein 1 

(Drp1) and Fission 1 (Fis1) are fission-promoting proteins, whereas Mitofusin 1 and -2 are 

mainly responsible for outer membrane fusion, and Opa1 mediates inner membrane fusion. 

Mitofusin 2 is also reported to tether endoplasmic reticulum to mitochondria (Ding and Yin, 

2012). It has been shown that starvation resulted in elongated mitochondria, resulting in 

resistance to autophagic degradation. This is postulated to be due to increased cAMP and 

activation of protein kinase A resulting in phosphorylation of Drp1 (Gomes et al., 2011; 

Rambold et al., 2011). It may be noted that a major pathway implicated in caloric restriction 

mediated longevity is increase in the expression and/or activity of SIRT1, and SIRT1 is 

known to promote mitochondrial biogenesis. In lower organisms it has been shown that, 

though controversial, resveratrol can mimic the beneficial effects of caloric restriction. In 

addition, Bnip3 and Nix are highly induced during hypoxia and are important in 

mitochondrial autophagy. Mitochondrial fission and fusion control quality of the 

mitochondria, and together with mitophagy prevent accumulation of damaged mitochondria 

and maintain mitochondrial homeostasis.
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3.5 Age Related Effects of Hypoxia/Ischemia on Organ Function

3.5.1 Neurologic—The CNS is highly susceptible to mitochondrial impairment because of 

its aerobic requirements. It is reported that blood flow to an average brain is 15% of the 

cardiac output (Udomphorn et al., 2008). While the human brain comprises only 5% of the 

body, it is responsible for 20% of respiration and is dependent on glucose and oxygen for 

energy. More injury occurs with smaller insults compared to other tissues (Wang and 

Michaelis, 2010). It has been shown that young individuals have increased neuronal aerobic 

glycolysis compared to aged individuals (Goyal et al., 2014). Aerobic glycolysis, also 

known as Warburg reprogramming and first described in cancer cells, is defined as glucose 

utilization in excess of that used for mitochondrial respiration despite sufficient oxygen to 

completely oxidize glucose. Positron emission tomographgy based studies suggest that 

aerobic glycolysis commonly occurs in healthy adult brains (Fox and Raichle, 1986; Fox et 
al., 1988; Vaishnavi et al., 2010). Changes in brain energetics, neuronal phosphate, and ATP 

metabolism occur with age (Forester et al., 2010), and elderly individuals have virtually 

absent global neuronal aerobic glycolysis (Goyal et al., 2014), which creates a 

pseudohypoxic state. This is particularly relevant in the face of hypoxic injury, as aged 

individuals have less oxygen dependent cellular metabolism needed for post injury repair.

The unique structure of the neuron necessitates mitochondrial transport to facilitate local 

energy demand. Mitochondria are trasported to synaptic terminals along microtubules to 

meet the energy demand due to synaptic transmission (Ma et al., 2009). About 20–30% of 

axonal mitochondria are reported to be motile in mature neurons (Lin and Sheng, 2015), 

though the localized non-motile mitochondria serve local energy needs the motile ones may 

have complementary functions in energy needs. Furthermore it has been suggested that there 

is a correlation between mitochondrial membrane potential and the direction of 

mitochondrial transport (Miller and Sheetz, 2004). The speed of mobilization is important in 

critical events and influence of age and hypoxic/ischemic injury in mitochondrial trafficking 

may be an important factor in determining neuronal survival following injury.

Stroke is a major cause of death in the United States, with one person dying from stroke 

every four minutes (Mozaffarian et al., 2015). The incidence of stroke onset seems to be 

higher in men at middle age than older age, whereas women show fewer stroke incidences 

during middle age that increases significantly at older age. Several preclinical studies show 

that estrogen treatment is beneficial after stroke, but its effects have been found to be age 

and sex dependent and in particular estrogen therapy might be detrimental in aged women 

(Kim and Vemuganti, 2015).

Stroke may be associated with local or global ischemia depending on the nature of the 

initiating event. For example, embolic occlusion of the middle cerebral artery can result in 

focal ischemia while heart failure can cause a low flow state resulting in global ischemia. 

During stroke, in the penumbral region, large decreases are seen in ATP (Folbergrova et al., 
1995). Some of the ADP generated from ATP hydrolysis is further metabolised to AMP and 

ATP. The AMP in ischemic tissue is then converted to inosine and hypoxanthine resulting in 

overall depletion of the adenine nucleotide pool (Onodera et al., 1986). Ischemic 
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preconditioning has been suggested to modulate miRNAs that are upstream of 

neuroprotective signaling (Vemuganti, 2010).

Another frequent cause of neuronal injury is traumatic brain injury (TBI). Adults aged 75 

and older have the highest rates of traumatic brain injury related hospitalization and death 

(Thompson et al., 2006). Repeated stress prior to TBI increase expression of cerebral 

mitochondrial electron transport chain complex proteins (Xing et al., 2013). Traumatic brain 

injury frequently results in intracranial hemorrhage leading to increased intracranial pressure 

and reduced cerebral perfusion pressure, which causes ischemia. According to a 

Congressional Research Service report of 2014, over 300,000 Defense service personnel of 

the United States suffered traumatic brain injury during the period 2000–2014 which include 

wars in Iraq and Afghanistan (Fischer, 2014). Neurologic outcomes are worse for individuals 

at the extremes of age following ischemia. In one experiment, juvenile, young adult, middle-

aged, and aged (18–19 months) mice had transient middle cerebral artery occlusion. On 

postoperative day seven, aged mice had significantly increased infarct volume. In addition, 

aged mice had prolonged disability and less functional recovery after stroke. The aged 

animals had decreased mitochondrial function and less antioxidant detoxification following 

ischemia, thereby inducing oxidative damage (Li et al., 2011b). While the study by Li and 

coworkers implied the neurological deficits were associated with increased infarct volumes 

sustained with age, another study found that tissue loss failed to explain the increased 

functional deficits seen in aged animals and suggested that prolonged edema, increased 

opening of the blood-brain barrier and increased neurodegeneration were responsible for 

age-related differences in outcome (Onyszchuk et al., 2008). Some groups have suggested 

that altered apoptotic proteins with age play a role. There is age related increased expression 

of apoptosis proteins (heat shock protein 27, hippocalcin, and LANP [acidic nuclear 

phosphoprotein]) after injury (Sun et al., 2013a). Less cellular proliferation and 

differentiation into neurons after injury in aged animals has been noted (Sun et al., 2005). 

Electrolyte and neurotransmitter excess may also contribute to age related neurotoxicity. 

Higher levels of K+ and glutamate with aging disrupt ionic and neurotransmitter homeostasis 

in neuronal cells through injury induced activation of AMPA (non NMDA) and NMDA 

receptors leading to calcium influx (Yi and Hazell, 2006) and apoptosis. This glutamate 

mediated excitotoxicity is known to cause expansion of the injury; however, glutamate 

receptor antagonists have been ineffective (Yi and Hazell, 2006). Others have suggested 

metabolic differences contribute, noting that brain pH and high energy phosphate levels 

remain lower for longer in older gerbil brains during transient ischemia (Funahashi et al., 
1994). The authors suggested that brain mitochondria from older animals are less capable of 

responding to oxidative stress brought on by ischemia and that oxidative damage 

accumulates as the pH stays lower. Increased oxidative damage due to amplified levels of 

free radicals with age is another mechanism by which neurologic outcomes are worse after 

cerebral ischemia (Buga et al., 2008; Itoh et al., 2013). Superoxide levels are greater in the 

brains of aged mammals and birds during oxidative stress (Sasaki et al., 2008b). This is 

likely due to not only increased superoxide generation (Sasaki et al., 2008b), but also 

reduced antioxidant levels following ischemic stroke (Flamm et al., 1978). Importantly, a 

recent study identified that cardiolipin oxidation generates mitochondrial death signals and 

the global lipodomics-based study in an experimental traumatic brain injury model 
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demonstrated significant oxidation of polyunsaturated cardiolipin following the injury (Ji et 
al., 2012).

The changes to neuronal mitochondria during ischemic stress in aged individuals have been 

studied by multiple groups. A study of age related changes in the blood brain barrier 

revealed altered function that was associated with a decrease in the number of mitochondria 

in endothelial cells of brain capillaries in monkeys (Mooradian, 1988). Not only are there 

less mitochondria, but the remaining neuronal mitochondria have associated functional 

decline (Xu et al., 2008). The etiology of the functional decline is likely multifactorial. The 

age related mutations of mitochondrial DNA lead to less effective production of various 

proteins needed for respiratory chain function (Bowling et al., 1993). Over time various 

studies have reported a decline in mitochondrial function in aged rats associated with 

impairment of complexes in the respiratory chain (Davis et al., 1997; Tatarkova et al., 2011).

3.5.2 Cardiac—Aging increases propensity for cardiac ischemia injury. Aged individuals 

have demonstrated higher mortality after myocardial infarction despite similar infarct size to 

younger patients (Corsini et al., 2006; Day et al., 1987). It has been reported that ROS 

generated from mitochondria is significantly elevated in the heart with progression of age 

(Judge et al., 2005). One study examined the cardiac effects of ischemia in aged versus adult 

rat hearts and found that age results in greater tissue damage (creatine kinase measurements 

3.4 times greater) and limits hemodynamic recovery (pressure 31% vs 57% of preischemic 

baseline) (Lesnefsky et al., 1994). Consequently, aged hearts are more susceptible than the 

adult hearts to ischemia-reperfusion injury. There are likely multiple mechanisms by which 

this occurs; ionotropic, metabolic, genetic, oxidative stress, and hormonal pathways have all 

been suggested. Many of these mechanisms involve the mitochondria.

A component of the increased cardiac injury seen with aging may be ionic imbalance (Tani 

et al., 1997). Aged individuals start with higher intracellular sodium levels and have greater 

sodium increase with injury associated with a decline in myocardial function. The lack of 

cellular ATP due to hypoxia and mitochondrial dysfunction with aging may limit the 

function of the sodium-potassium ATPase, resulting in higher intracellular sodium levels.

Changes in metabolism due to altered mitochondrial gene expression in aged individuals 

following hypoxia/ischemia may also explain the increased cardiac injury. A number of 

genes related to cellular energetics are altered with age following trauma-hemorrhage based 

on an analysis with a custom-made rodent mitochondrial gene chip (RoMitochip) in 6 and 

22 month old rats (Jian et al., 2011b). Aged rats had a decline in the number and amplitude 

of expression of mitochondria-related genes compared to the younger rats following trauma-

hemorrhage.

Aged animals appear to have less ability to withstand significant oxidative stress and have 

more oxidative injury following cardiac ischemia. One study found that aging selectively 

decreases the oxidative capacity of rat heart interfibrillar mitochondria. They found 

increased oxidative damage occurs in aged hearts, noted via increased oxidation of 

cardiolipin in the inner mitochondrial membrane following ischemia (Lesnefsky et al., 
2009).
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Hormonal changes may also account for the increased cardiac injury with aging seen 

following hypoxic/ischemic injury. Based on proteomic screens of mitochondria, there 

appears to be a highly selective response to estradiol (E2) deficiency in aged versus adult rat 

hearts (Korzick and Lancaster, 2013) after ischemic injury. They suggested that estradiol 

deficiency induced perturbations of electron transport chain (ETC) proteins may upset the 

stoichiometry of the ETC and contribute to increased ROS production and cardiac injury 

with aging.

There is an association between higher levels of mitochondrial DNA damage and coronary 

atherosclerotic heart disease (Ballinger, 2005; Corral-Debrinski et al., 1992). Corral and 

coworkers specifically noted that in subjects with coronary artery disease certain 

mitochondrial DNA deletions were increased 7,220-fold over age-matched controls (Corral-

Debrinski et al., 1992). So not only are there increased errors in mitochondrial DNA, there 

are also decreased absolute amounts. In a model of coronary artery disease where the left 

anterior descending artery was ligated for 4 weeks, the mitochondrial DNA copy number 

was noted to decrease significantly. Interestingly, associated decreased complex I, complex 

III, and complex IV levels and activities were also observed (Ide et al., 2001). Therefore, 

worse outcomes in aged individuals with cardiac ischemia are associated with mitochondrial 

DNA damage leading to decreased mitochondrial function. Consequently, modulation of 

mitochondrial respiration and function during and immediately following an episode of 

ischemia can attenuate the extent of myocardial injury (Chen et al., 2007) and may maintain 

cardiac function in the context of injury and aging (Judge and Leeuwenburgh, 2007).

3.5.3 Interconnectedness of Mitochondria in Different Tissues, Mitokines—
Interestingly, a recent study showed that mitochondrial perturbations in one tissue may 

trigger mitochondrial stress response in distal tissues (Durieux et al., 2011). This provides a 

mechanism by which multiorgan dysfunction and survival can be affected in aged 

individuals exposed to ischemic insults in one tissue. Retrograde signaling by mitochondrial 

unfolded protein response (UPR) to the nucleus is suggested to be a likely mechanism of 

mitochondrial control of metabolic events following stress. Extension of such signaling 

events through hypothesized “mitokine” messengers to the distal parts of the body needs 

further investigation to substantiate (Riera and Dillin, 2015). One study that may support this 

hypothesis is the demonstration that neuronal ROS signaling through SKN/NRF2 may be 

sufficient to extend lifespan extension in C. elegans (Schmeisser et al., 2013). If such a 

scenario exists, as a result of multi-tissue extension of mitochondria dysfunction, increased 

age significantly increases predisposition to critical illness, complications, and poor healing 

and is a strong independent risk factor for mortality after focal ischemia.

3.5.4. Age Related Effects of Global Hypoxia/Ischemia on Survival—While focal 

ischemia as described frequently has organ specific effects, global ischemia can cause 

multiple organ system failure. Traumatic hemorrhage is one of the models used to 

investigate the effects of global hypoxia and ischemia. In fact, almost half of deaths due to 

trauma are due to hemorrhage or its resultant hypoxic/ischemic injury (Curry et al., 2011). 

Following hemorrhagic shock, aging has been shown to increase tissue damage (Mees et al., 
2008) and particularly amplified the effects of hypoxia/ischemia after trauma (Gong et al., 
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2004; Gong et al., 2005; Thompson et al., 2006). Shock index (heart rate/systolic blood 

pressure) has been found to be an indicator of mortality in trauma patients (King et al., 
1996) and age multiplied by shock index is an even better predictor of early mortality in 

elderly patients (Zarzaur et al., 2008). Consequently, increased age is associated with worse 

prognosis in these scenarios.

4 Pharmacologic Therapies

While time dependent thrombolytic agents like tissue plasminogen activator (tPA) exist to 

restore blood flow, few treatments improve outcomes once ischemic injury has occurred or 

after the three hour time window, especially in aged individuals. Several agents that are 

shown to have profound effect on mitochondrial function and have therapeutic potential for 

hypoxic/ischemic injury are being investigated in multiple laboratories.

4.1 Agents with Multiple Mechanisms

4.1.1 Sirtuins and Resveratrol

4.1.1.1 Overview: In response to acute injury conditions, cellular machinery can rapidly 

mobilize molecular pathways through posttranslational modifications, rather than relying 

solely on transcriptional control. Therefore processes such as phosphorylation-

dephosphorylation and acetylation-deacetylation become important in restoration of cellular 

homeostasis underlining the significance of regulatory mediators like sirtuins, AMPK and 

PGC-1 in the control of mitochondrial function. Sirtuins are a class of NAD+ dependent 

histone deacetylases (Imai et al., 2000; Landry et al., 2000; Smith et al., 2000) that may also 

have mono-ADP ribosyl transferase (Frye, 1999; Haigis et al., 2006), demalonylation (Du et 
al., 2011), and desuccinylation activities (Du et al., 2011). They were first discovered in 

yeast as a transcriptional repressor called silent information regulator 2 protein (Sir2) (Klar 

et al., 1979; Rine and Herskowitz, 1987). All eukaryotes encode sirtuins in their genomes as 

sirtuins have important functions in regulating cellular stress responses (Brunet et al., 2004; 

Dai et al., 2014; Maksin-Matveev et al., 2015), mitochondrial biogenesis (Brenmoehl and 

Hoeflich, 2013), apoptosis (Alcendor et al., 2004; Motta et al., 2004), metabolism 

(Purushotham et al., 2009), fatty acid oxidation (Hirschey et al., 2010), and inflammation 

(Cao et al., 2013; Liu and McCall, 2013).

4.1.1.2 Types of Mammalian Sirtuins: Mammals have seven sirtuins (SIRT 1–7) 

distributed in different subcellular compartments. SIRT 1 and 2 are located in the nucleus 

and cytoplasm, SIRT 3, 4, and 5 are located in the mitochondria, and SIRT 6 and 7 are 

located in the nucleus (Haigis and Guarente, 2006; Michishita et al., 2005). SIRT 1–3 

primarily function by deacetylation, and deacetylation of histones leads to DNA coiling and 

gene silencing (Braunstein et al., 1993). SIRT 4–7 have weaker deacetylase activity (Du et 
al., 2011; Haigis et al., 2006; Michishita et al., 2008). SIRT 4 has ADP ribosyl transferase 

activity (Haigis et al., 2006), and SIRT 5 also has demalonylation and desuccinylation 

activity (Du et al., 2011). SIRT1 is the most well studied among all sirtuins.

4.1.1.3 Regulators and Targets: SIRT1 is the mammalian ortholog of yeast Sir2 and has 

numerous regulators and targets. SIRT1 expression and activity have been shown to increase 
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after exercise (Ferrara et al., 2008) and with ischemic preconditioning (Hsu et al., 2010). 

SIRT1’s activity is NAD+ dependent (Imai et al., 2000). Nicotinamide 

phosphoribosyltransferase (Nampt) catalyzes the production of nicotinamide 

mononucleotide (NMN) and is the rate limiting enzyme in NAD+ production (Imai, 2011). 

Nampt levels are reduced with aging and stress (Hsu et al., 2009), resulting in decreased 

NAD+ and decreased SIRT1 activity (Imai, 2011). Accordingly, overexpression of Nampt in 

the heart (Hsu et al., 2009) and brain (Erfani et al., 2015) has been shown to reduce infarct 

size and apoptosis in response to ischemia and reperfusion. In a negative feedback loop, 

Nampt is also regulated by SIRT1 mediated deacetylation and inactivation of its 

transcription factors (Ramsey et al., 2009).

Many other regulators have also been shown to influence SIRT1 activity. Hu antigen R 

(HuR) is one that dissociates from SIRT1 mRNA during oxidative stress thereby 

destabilizing it (Abdelmohsen et al., 2007). Other regulators include but are not limited to C-

Jun N-terminal kinase 1 (JNK1) (Nasrin et al., 2009), cyclin B/cyclin-dependent kinase 1 

(Cdk1) (Sasaki et al., 2008a), small ubiquitin-related modifier 1 (SUMO1)/sentrin specific 

peptidase 1 (SENP1) (Yang et al., 2007), caspases (Ohsawa and Miura, 2006), MicroRNAs, 

(miR-34a (Yamakuchi et al., 2008), miR-134 (Gao et al., 2010), miR-199a (Rane et al., 
2009), and miR-217 (Menghini et al., 2009)), insulin-like growth factor 1 (Vinciguerra et al., 
2010), hypermethylated in cancer (repressor) (Chen et al., 2005b) and deleted in breast 

cancer 1 (repressor) (Zhao et al., 2008)

Histones are a significant target of SIRT1. When activated, SIRT1 deacetylates histones, 

such as the lysine 26 residue of histone 1 (H1K26), lysine 9 residue of histone 3 (H3K9), 

and lysine 16 residue of histone 4 (H4K16). This results in tight DNA coiling and 

transcriptional silencing (Vaquero et al., 2004; Vaquero et al., 2007). SIRT1 is known to 

have two nuclear localization signals and two nuclear export signals have been noted (Tanno 

et al., 2007). During ischemic stress, SIRT 1 is shuttled out of the nucleus and into the 

cytoplasm leading to decreased deacetylation and decreased SIRT1 function in aged hearts 

compared to young hearts (Tong et al., 2013). Preferentially overexpressing nuclear SIRT1 

has been shown to suppress apoptosis in cells exposed to oxidative stress (Tanno et al., 
2007). SIRT1 also has multiple non-histone targets. It binds to and deacetylates hypoxia 

inducible factor 1α (HIF-1 α) at Lys674, which inactivates it leading to repression of HIF-1 

target genes (Lim et al., 2010). SIRT1 also catalyzes PGC-1α deacetylation which impacts 

cellular metabolism and mitochondrial biogenesis (Nemoto et al., 2005). PGC-1α and 

SIRT1 appear to be part of a pathway also involving adenosine monophosphate activated 

protein kinase (AMPK), a master switch sensing and regulating cellular energy processes 

(Canto et al., 2009). AMPK activation increases NAD+ levels, leading to SIRT1 activation 

and deacetylation of targets such as PCG-1α and forkhead box proteins (FOXO1 and 

FOXO3a) (Canto et al., 2009), transcription factors for genes that modulate metabolism, 

upregulate manganese superoxide dismutase, and apoptosis (Hsu et al., 2010). SIRT1 also 

stimulates AMPK by deacetylating serine/threonine kinase 11 (LKB1), an upstream kinase 

of AMPK (Wang et al., 2011b). SIRT1 represses genes controlled by the beta oxidation 

regulator peroxisome proliferator-activated receptor-gamma (PPAR-γ) by docking with its 

cofactors nuclear receptor co-repressor and silencing mediator of retinoid and thyroid 
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hormone receptors leading to attenuated adipogenesis, lipolysis, and increased lifespan 

(Picard et al., 2004).

SIRT1 inactivates p53 by deacetylating the C-terminal Lys382 residue and inhibits stress 

induced p53 transcription (Cheng et al., 2003; Vaziri et al., 2001). Active Regulator of 

SIRT1 (AROS) facilitates this process (Kim et al., 2007b). This leads to increased anti-

apoptotic molecules like thioredoxin-1 and Bcl-xL, and decreased pro-apoptotic molecules 

like Bax and cleaved caspase-3 (Hsu et al., 2010). Additionally, the cell-cycle and apoptosis 

regulator E2F1 induces SIRT1 expression while SIRT1 inhibits E2F1 activity (Wang et al., 
2006).

SIRT1 has a complex feedback loop with the inflammatory cytokine NF-κB. SIRT1 directly 

inhibits NF-κB signaling via deacetylating its p65 subunit and indirectly by increasing NF-

κB inhibitors such as AMPK, PPARα and PGC-1α (Kauppinen et al., 2013). NF-κB 

diminishes SIRT1 activity through miR-34a, IFN-γ, and ROS (Kauppinen et al., 2013). 

Nitric oxide, another molecule implicated in inflammatory processes, also diminishes SIRT1 

activity by nitrosylation (Shinozaki et al., 2014).

4.1.1.4 Sirtuin Activators – Resveratrol: One of the most studied sirtuin activators is 

resveratrol. Resveratrol is a naturally occurring polyphenol compound synthesized in many 

plants, such as peanuts, blueberries, pine nuts, and grapes, which protects them against 

fungal infection and ultraviolet irradiation (Bavaresco, 2003). It is a significant component 

of red wine and has been suggested to explain the “French paradox” in which the 

southwestern population of France has a low occurrence of coronary heart diseases and 

cardiovascular diseases despite a high saturated fat diet (Renaud and de Lorgeril, 1992). It 

has anti-cancer (Udenigwe et al., 2008), anti-inflammatory (Chen et al., 2005a; Udenigwe et 
al., 2008), antiapoptotic (Baarine et al., 2011; Nicolini et al., 2001), antioxidant (Chang et 
al., 2012; Spanier et al., 2009), antidiabetic (Chang et al., 2012), and antiviral (Clouser et al., 
2012) properties. It is a potent activator of SIRT1 by lowering SIRT1’s Michaelis constant 

for its acetylated substrate and NAD+ (Howitz et al., 2003). Consequently, it is often used to 

increase sirtuin activity as well as expression in in vitro as well as in vivo models. While this 

effect is strongly supported (Alcain and Villalba, 2009; Pervaiz, 2003; Raval et al., 2008; 

Sun et al., 2010), the underlying mechanisms are not fully understood (Zhang et al., 2011). 

Recently it has been suggested that the effect of resveratrol on SIRT1 is a secondary effect of 

its cognate inhibitory interaction with phosphodiesterase (PDE) (Chung et al., 2012; Park et 
al., 2012) as shown in Figure 2. The investigators demonstrated a rolipram mimicking effect 

for resveratrol, resulting in increased cAMP, activation of AMPK and augmented levels of 

NAD+. AMPK phosphorylates the mitochondrial biogenesis factor PGC-1α and augmented 

NAD+ levels lead to enhanced SIRT1 activity and deacetylation of PGC-1α. 

Phosphorylation and deacetylation are the necessary and sufficient condition for the 

activation of PGC-1α. However later studies by Sinclair and colleagues demonstrated a dose 

dependent target specificity for resveratrol, with SIRT1 being the primary target at low 

concentrations and PDE at higher concentrations (Price et al., 2012). Further studies are 

necessary to determine whether additional targets exists for resveratrol and the contribution 

of SIRT1 activation in in vivo studies using resveratrol. A recent study published from our 
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laboratory demonstrates that salutary effect of resveratrol in prolonging life after severe 

hemorrhage could be at least partially mimicked by the STAC SRT1720 (Ayub et al., 2015).

In one study it was found that oral administration of resveratrol is associated with 70% 

absorption, but a bioavailability of 1% (Walle, 2011). It has a half-life of approximately 9 h 

and its phenol groups are rapidly conjugated in the liver with sulfate and glucuronic acid 

(Walle et al., 2004). Its metabolites remain in the plasma significantly longer (Pervaiz and 

Holme, 2009). It is distributed to the liver, kidney, heart, and brain, among others (Andres-

Lacueva et al., 2012; Clark et al., 2012; Walle, 2011). Greater than 50% of resveratrol and its 

metabolites are protein bound in plasma (Burkon and Somoza, 2008; Jannin et al., 2004). It 

is predominately eliminated by the kidneys (Boocock et al., 2007). In summary, resveratrol 

is frequently used experimentally to increase sirtuin activity and also has pleotropic 

downstream effects. Many other SIRT1-activating compounds (STACs) have been 

synthesized and analyzed (Lavu et al., 2008). Many appear to stimulate SIRT1’s enzymatic 

activity allosterically (Dai et al., 2010). Clinical trials on diabetes, aging, obesity, 

cardiovascular disease and neurologic disease are in progress to evaluate the efficacies of 

resveratrol formulations and STACs such as SRT501, SRT2104, and SRT2379 (Camins et 
al., 2010).

4.1.1.5 Role of SIRT1 and Resveratrol in Hypoxia, Ischemia, and Reperfusion: Sirtuins 

play a key role in the cellular response to injury by influencing metabolic pathways, cell 

death, and repair (Poulose and Raju, 2015). After the publication of mechanistic studies 

linking SIRT1 and resveratrol to longevity, a large number of laboratories began 

investigating them in a number of models in health and disease, both in vitro and in vivo. 

However human and non-human primate studies have lagged behind. SIRT1 and AMPK, 

irrespective of whether direct or indirect target of resveratrol, are stress dependent metabolic 

sensors that respectively deacetylate and phosphorylate PGC-1α to affect mitochondrial 

function and biogenesis (Canto and Auwerx, 2009). After ischemia and reperfusion, studies 

have noted a reduction in SIRT1 mRNA and protein expression (Hsu et al., 2010). The effect 

on and modulation of SIRT1 levels with ischemia/reperfusion has been studied in multiple 

tissues.

4.1.1.5.1 Neurologic: SIRT1’s neuroprotective effects have been demonstrated in multiple 

studies of ischemic stroke, traumatic brain injury, and other neurodegenerative diseases. A 

direct role for SIRT1 in ischemic stroke is suggested by the fact that SIRT1 knockout mice 

have increased infarct size when subjected to middle cerebral artery occlusion (Hernandez-

Jimenez et al., 2013; Liu et al., 2013a). SIRT1 activators decrease infarct size (Gao et al., 
2006; Huang et al., 2001; Li et al., 2012; Lu et al., 2006; Tsai et al., 2007; Yousuf et al., 
2009) while SIRT1 inhibitors had an adverse effect (Hernandez-Jimenez et al., 2013). 

Administration of the SIRT1 activator resveratrol remarkably enhances glucose and ATP 

levels and decreases lactate levels in ischemic brain (Li et al., 2011a). It also improves blood 

brain barrier function via PPAR mediated regulation of MMP-9 and TIMP-1 (Cheng et al., 
2009), increases functional outcomes, and lessens brain edema (Yousuf et al., 2009). Studies 

have also demonstrated increased survival (Wang et al., 2014). The neuroprotective effects 
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of SIRT1 activators appear to be mediated by mitochondrial anti-oxidative, anti-apoptotic, 

and anti-inflammatory pathways (Shin et al., 2012).

Rodents treated with resveratrol demonstrate decreased mitochondrial swelling, improved 

mitochondrial membrane potential, and less mitochondria in autophagosomes after cerebral 

ischemia (Wang et al., 2014). The activity of mitochondrial respiratory complexes I, II and 

III in the hippocampus of resveratrol treated rodents exposed to middle cerebral artery 

cerebral ischemia were improved (Yousuf et al., 2009). The mitochondrial/glycolytic master 

switch in hypoxia, HIF1α, is downregulated in hypoxic glioblastoma cells in a SIRT1 

dependent manner, which determines mitochondrial metabolism (Yoon et al., 2014). There is 

also a marked decrease in mitochondrial cytochrome c release leading to less apoptosis 

(Yousuf et al., 2009).

Apoptosis associated with ischemic brain injury is associated with multiple pathways 

influenced by SIRT1. Mechanisms in addition to decreased mitochondrial cytochrome c 

release include but are not limited to Akt:MAPK:CREB:Bcl-2 (Pugazhenthi et al., 2000), 

poly(ADP-ribose)polymerase activation and depletion of NAD+ (Endres et al., 1997; Meli et 
al., 2003), and p53 (Hernandez-Jimenez et al., 2013). Resveratrol increases serine/threonine 

kinase Akt (a downstream effector of phosphatidylinositol 3-kinase) and mitogen-activated 

protein kinases (extracellular signal-regulated kinase1/2 [ERK1/2] and p38) 

phosphorylation, which is known to be important for cellular survival after stroke (Irving 

and Bamford, 2002). Their antiapoptotic activity is associated with the transcription factor 

cyclic AMP response element-binding protein (CREB), which modulates the anti-apoptotic 

gene Bcl-2 (Pugazhenthi et al., 2000). Furthermore, direct (Wang et al., 2008) and indirect 

(Wang et al., 2011b) NAD+ replacement reduces ischemic brain injury. Indirect NAD+ 

replacement can be accomplished by nicotinamide phosphoribosyltransferase (NAMPT) 

administration which increases the NAD+ salvage pathway via a SIRT1-dependent 

adenosine monophosphate-activated kinase (Wang et al., 2011b). This results in a SIRT1 

dependent decrease in apoptosis and increase in autophagy through the TSC2-mTOR-S6K1 

signaling pathway (Wang et al., 2012). Additional SIRT1 dependent anti-apoptotic effects 

during brain ischemia are associated with deacetylation and inhibition of p53 (Hernandez-

Jimenez et al., 2013), apoptotic FOXO proteins (Yang et al., 2013), as well as decreased pro-

apoptotic protein Bax (Li et al., 2012).

Protective effects of resveratrol in ischemic brain tissue are also due to decreases in 

oxidative stress. PGC-1α, a master regulator of antioxidants and a SIRT1 target protein (St-

Pierre et al., 2006), regulation is a key method by which resveratrol modulates oxidative 

stress (Zhu et al., 2010). Antioxidant enzymes that are downstream mediators of PGC-1α 
include SOD1, SOD2 (Wang et al., 2014), GPx1, and catalase (St-Pierre et al., 2006). 

Resveratrol treatment also significantly decreases oxidants such as xanthine oxidase, 

malondialdehyde, hypoxanthine, and xanthine (Li et al., 2011a). Other studies have 

demonstrated ischemic neuroprotection against oxidative stress in rodents by resveratrol 

associated with decreased hydroxyl radicals (Lu et al., 2006), modulation of nitric oxide 

(Tsai et al., 2007), increased mitochondrial glutathione (GSH) and glucose 6-phosphate 

dehydrogenase (G6PD) (Yousuf et al., 2009), and decreased mitochondrial lipid 

peroxidation (LPO), protein carbonyl and intracellular H2O2 content (Yousuf et al., 2009). In 
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contrast, SIRT1 mediated deacetylation of Nrf2 (nuclear factor erythroid 2-related factor 2) 

inhibits its transcriptional activity of antioxidant genes (Kawai et al., 2011). Resveratrol 

attenuated neuronal death, decreased the generation of ROS, and brought antioxidant and 

Na(+)K(+)-ATPase activity in the cortex and hippocampus back to normal levels (Simao et 
al., 2011). Anti-inflammatory targets decreased by SIRT1 include NFκB (deacetylates the 

p65 subunit at Lys310) (Hernandez-Jimenez et al., 2013; Yeung et al., 2004).

Not only does SIRT1 activation have acute benefits during cerebral ischemia, it also has 

delayed benefits. Resveratrol increases angiogenesis after brain ischemia by increasing 

matrix metalloproteinase-2 (MMP-2) and vascular endothelial growth factor (VEGF) levels 

(Dong et al., 2008). It also preserves cerebral blood flow (Hattori et al., 2015) by 

deacetylating endothelial nitric oxide synthase, leading to increased nitric oxide production 

and vasodilation (Hattori et al., 2014).

Inhibition of SIRT1 with sirtinol abolishes ischemic preconditioning-induced 

neuroprotection in the CA1 region of the rat hippocampus, while resveratrol pretreatment 

mimics ischemic preconditioning’s effects (Raval et al., 2008) (Raval et al., 2006). Both 

resveratrol and ischemic preconditioning increase brain SIRT1 and reduce uncoupling 

protein 2 levels (Della-Morte et al., 2009). SIRT1 has also been shown to be instrumental in 

neuroprotection with ischemia afforded by tetrahydroxystilbene glucoside (Wang et al., 
2009), leptin (Avraham et al., 2010), and icariin (Zhu et al., 2010).

Traumatic brain injury is another model in which SIRT1 modulation has shown promise 

which also involves ischemic processes associated with brain edema limiting blood flow. 

SIRT1 knockdown is associated with increased traumatic brain injury, whereas SIRT1 

overexpression reduces neuronal apoptosis also via the MAPK/ERK pathway (Zhao et al., 
2012b). Resveratrol also attenuates early brain injury after subarachnoid hemorrhage 

through inhibition of NF-kappaB-dependent inflammatory/MMP-9 (Shao et al., 2014). 

Protection against other neurodegenerative diseases such as Alzheimer’s (Kim et al., 2007a), 

Parkinson’s (Wu et al., 2011), Huntington’s (Jiang et al., 2012), amyotrophic lateral 

sclerosis (Kim et al., 2007a), and multiple sclerosis (Tegla et al., 2014) has also been shown 

with SIRT1.

4.1.1.5.2 Cardiac: In the murine heart, ischemia results in decreased levels of SIRT1, and 

this decrease is accentuated with aging (Jian et al., 2011a; Lu et al., 2014; Tong et al., 2013). 

Furthermore, overexpression of SIRT1 in mice results in decreased ischemia reperfusion 

induced myocardial infarction while decreased expression potentiates the degree of 

infarction (Hsu et al., 2010). This was associated with 1) an increase of prosurvival 

molecules such as thioredoxin-1 and Bcl-xL; 2) a decrease of the proapoptotic molecules 

Bax and caspase-3; 3) decreased oxidative stress with FoxO1 dependent increases in 

manganese superoxide dismutase. Other studies have demonstrated anti-inflammatory 

mechanisms of SIRT1 after myocardial ischemia. In mice hearts, SIRT1 decreases the 

transcriptional activity of the inflammatory cytokine NF-κB through deacetylation of RelA/

p65, a subunit of NF-κB (Nadtochiy et al., 2011a). Additionally, the Nampt-SIRT1 pathway 

stimulates autophagy and prevents cell death during myocardial ischemia (Hsu CP, 2009). 

Through SIRT1 mediated deacetylation of FoxO1, autophagic proteins such as Rab 7 are 
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upregulated (Hariharan et al., 2010). SIRT1 also deacetylates and activates the autophagy 

proteins Atg 5, 7, and 8 (Lee et al., 2008). However, as excessive autophagy during 

reperfusion could worsen injury, the degree and length of ischemia and reperfusion may 

affect SIRT1 related changes in survival associated with increased autophagy. Fructose 

feeding, an intervention known to decrease myocardial ischemia/reperfusion injury in the rat 

heart (Jordan et al., 2003) appears to act via a SIRT1 dependent mechanism (Pillai et al., 
2008), and also reduces the switch in myosin isoforms from α to β myosin heavy chain 

leading to less cardiac hypertrophy (Mercadier et al., 1981). Ischemic preconditioning, 

another intervention known to decrease cardiac injury during ischemia/reperfusion (Yang et 
al., 2010), is also SIRT1 dependent (Nadtochiy et al., 2011b). In mice hearts, SIRT1 

overexpression resulted in cytosolic lysine deacetylation and was protective against 

ischemia-reperfusion injury, while SIRT1 deficient hearts had increased cytosolic lysine 

acetylation and could not be preconditioned. The SIRT1 inhibitor splitomycin inhibited 

cardioprotection (Nadtochiy et al., 2011b). The cardiac protection associated with ischemic 

preconditioning decreases with age, and while SIRT1 also decreases with age, one study 

suggested these factors are independent (Adam et al., 2013). The cardiac protection in long 

term caloric restriction also is associated with an increase in nuclear but not total SIRT1 

(Shinmura et al., 2008). Interestingly, in a later study, the authors suggested that 

deacetylation of mitochondrial electron transport chain proteins is responsible for preparing 

mitochondria for ischemic stress, a task performed by mitochondrial sirtuins, not nuclear 

sirtuins like SIRT1. Activation of SIRT1 has also been shown to be associated with 

cardioprotection during ischemia afforded by insulin like growth factor 1 (Vinciguerra et al., 
2010) and sildenafil (Shalwala et al., 2014) in mice. SIRT1 is also a direct target of 

miR-199a, a microRNA which is acutely downregulated during cardiac hypoxia resulting in 

rapid upregulation of its target, HIF1-α. miR-199a induced activation of SIRT1 destabilizes 

HIF-1α, resulting in its degradation and countering its cellular effects and associated injury. 

These data suggest that sirtuins play a central role in multiple known mechanisms of 

cardioprotection.

Administration of the sirtuin activator resveratrol in the setting of hemorrhagic shock 

restores SIRT1 activity and improves left ventricular function, cardiac contractility, and 

survival in resuscitated animals and improves lifespan in non-resuscitated animals (Ayub et 
al., 2015; Jian et al., 2012) A shift in cellular energetics from oxidative phosphorylation in 

the mitochondria to glycolysis in the cytosol associated with increased PDK1 (an inhibitor 

of pyruvate dehydrogenase complex) after severe hemorrhage is reversed with 

administration of resveratrol (Jian et al., 2014). Resveratrol also abolished the increase in c-

MYC levels (Yuan et al., 2009), and decreased PGC-1α, NRF2, and mitochondrial complex 

I activity associated with hemorrhage (Jian et al., 2014). It holds promise to reverse 

cardiovascular decline in aged animals with ischemia (Jian et al., 2011a). Consequently, 

resveratrol induced increases in SIRT1 activity after hemorrhage appear to improve 

outcomes by affecting mitochondrial function (Jian et al., 2014). Similar experiments on the 

effect of hemorrhage on rat myocytes have demonstrated that resveratrol inhibits apoptotic 

pathways, Akt (protein kinase B) dependent inflammation, and injury (Tsai et al., 2012). 

Consequently, SIRT1 may be a potential target to alleviate cardiovascular decline due to 

mitochondrial dysfunction in aged animals.
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Resveratrol attenuates hepatocyte (Powell et al., 2014; Yu et al., 2010b), intestinal (Yu et al., 
2011), lung (Wu et al., 2008), kidney(Wang et al., 2015a) and endothelial (Yu et al., 2010a) 

injury during hemorrhage induced ischemia. The accumulation and activity of the 

mitochondrial/glycolytic master switch in hypoxia, HIF1-α, is regulated by SIRT1 in 

hypoxic hepatocellular (Laemmle et al., 2012), kidney, colorectal, gastric cancer, cervical, 

lung, fibrosarcoma, glioblastoma and prostate cancer cells (Yoon et al., 2014). Modulating 

SIRT1 or downstream targets of SIRT1 may allow us to protect from ischemia, reperfusion, 

and hypoxic injury (Yamamoto and Sadoshima, 2011).

4.1.1.6 Other Sirtuins: Although the majority of studies have focused on SIRT1, a limited 

number of other sirtuins have been investigated in the setting of hypoxic, ischemic, and 

reperfusion injury and/or aging. SIRT2, is upregulated by anoxia-reoxygenation in H9c2 

cells, while downregulation is protective by decreasing 14-3-3-zeta and translocating the 

Bcl-2-associated death promoter (BAD) from the mitochondria to the cytosol (Lynn et al., 
2008). SIRT3 knockdown is known to result in increased infarct size in murine hearts 

associated with decreased Cx1 and SOD activity and increased oxidative damage (Porter et 
al., 2014). SIRT3 also appears to be an important contributor to the pathway by which 

exercise training results in cardioprotection (Jiang et al., 2014). Increased SIRT3 levels, 

AMPK phosphorylation, and mitochondrial biogenesis were found in post myocardial 

infarction rats exposed to aerobic interval training, which is known to improve outcomes 

(Godfrey et al., 2013; Wan et al., 2007). Resveratrol has also been shown to upregulate 

SIRT3 expression in the mitochondria resulting in decreased oxidative stress in human 

vascular endothelial cells (Zhou et al., 2014) and improved cardiac function (Chen et al., 
2015). The mitochondrial sirtuin SIRT4 is down-regulated in hypoxia in H9c2 

cardiomyoblast cells, and SIRT4 overexpression decreases their apoptosis (Liu et al., 
2013b). SIRT5 has also been shown to be a determinant of apoptosis in heart and lung cells 

(Liu et al., 2013c; Wang et al., 2015b). SIRT6 overexpression in male mice increases life 

span with associated lower levels of insulin like growth factor 1 (Kanfi et al., 2012). A few 

studies in the context of cerebral ischemia have been performed. Decreased expression of 

sirtuin 6 in rats is associated with release of high mobility group box-1 after cerebral 

ischemia, resulting in inflammation (Lee et al., 2013b). In brain endothelial cells deprived of 

oxygen, sodium sulfide has a SIRT6 dependent neuroprotective effect (Hu et al., 2015).

4.1.1.7 Role in Aging: Sirtuins influence the aging process and are involved in age related 

changes (Tissenbaum and Guarente, 2001). This was initially demonstrated with Sir2 in 

saccharomyces cerevisiae (Kaeberlein et al., 1999), but was also shown in Caenorhabditis 

elegans (Tissenbaum and Guarente, 2001), drosophila (Whitaker et al., 2013) and in rodents 

(Kanfi et al., 2012; Satoh et al., 2013). Rafael de Cabo’s group recently demonstrated that 

the SIRT1 activator SRT1720 extends lifespan in adult mice fed a standard diet (Mitchell et 
al., 2014). They observed delayed onset of age-associated metabolic diseases and improved 

health in these mice, including inhibition of proinflammatory gene expression in liver and 

muscle. Sir2 loss of function mutations decrease lifespan in yeast, while increasing Sir2 

expression increases lifespan (Kaeberlein et al., 1999) by increasing mitochondrial oxidation 

and respiration (Lin et al., 2002). Sir2’s role in calorie restriction has been questioned by 

other studies (Kaeberlein et al., 2004; Kaeberlein et al., 2006; Tsuchiya et al., 2006). In C. 
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elegans, a suggested mechanism for Sir2 effect on lifespan is through its impact on the 

forkhead transcription factor DAF-16, which is typically associated with reduced IGF-1 

signaling (Berdichevsky et al., 2006). In this study, overexpression of the Sir2.1 gene 

extended lifespan during stress in a 14-3-3 protein dependent manner by increasing DAF-16 

activation. Increased autophagy has also been suggested to play a primary role as the life 

span extending effects of SIRT1 activators are lost in autophagy-deficient C. elegans 
(Morselli et al., 2010). Aged human arteries have decreased SIRT1 expression and activity 

possibly via cyclin-dependent kinase 5 phosphorylation at the serine 47 residue, suggesting 

that SIRT1 activators or CDK-5 inhibitors may halt vascular aging (Bai et al., 2014). In the 

heart, carbonyl modification of SIRT1 is noted to contribute to aging related ischemic 

intolerance (Gu et al., 2013). SIRT6 in mice affects lifespan by altered phosphorylation 

levels of major components of IGF1 signaling (Kanfi et al., 2012). Sirtuin activators such as 

resveratrol have been shown to mimic caloric restriction induced longevity in yeast (Howitz 

et al., 2003) and animals (Wood et al., 2004). In obese mice on a high calorie diet, 

resveratrol significantly increased survival and healthspan via increased insulin sensitivity, 

reduced insulin-like growth factor-1 (IGF-I) levels, increased AMP-activated protein kinase 

(AMPK), increased peroxisome proliferator-activated receptor-gamma coactivator 1 alpha 

activity, and increased mitochondrial number (Baur et al., 2006). However, non-obese/

standard diet mice do not have increased lifespan but do have improved markers of aging 

and increased health when treated with resveratrol (Miller et al., 2011; Pearson et al., 2008; 

Strong et al., 2013). Consequently, given its multiple mechanisms of influencing 

mitochondrial function in aging and injury, sirtuin activators are a promising way to improve 

outcomes in elderly individuals sustaining hypoxia or ischemia.

4.1.2 MitoQuinone—MitoQuinone (MitoQ) is a ubiquinone (coenzyme Q10 of the 

respiratory chain) derivative with a covalent attachment to a lipophilic 

triphenylphosphonium cation (TPP) through a 10 carbon alkyl chain. Due to significant 

mitochondrial membrane potential (negative inside), the cationic part of the molecule is 

directed into mitochondria, while the lipophilic part targets it to the mitochondrial lipid 

bilayer (Smith et al., 2003). Ubiquinol reduces oxygen radicals, specifically superoxide, and 

prevents oxidative damage. The respiratory chain then regenerates ubiquinol so it can reduce 

more radicals. It also has been noted to prevent caspase-independent cell death and prevent 

lipid peroxidation (McManus et al., 2014). MitoQ accumulates in metabolically active 

tissues such as the heart, liver, brain, and skeletal muscle (Smith et al., 2003). Fibroblasts 

pretreated with MitoQ prior to oxidative stress have significantly attenuated free radical 

production and increased lifespan (Saretzki et al., 2003). They also demonstrated a reversal 

of telomere shortening. MitoQ prevents hydrogen peroxide-induced apoptosis in mammalian 

cell culture studies (Kelso et al., 2001) and pretreatment modulates oxidative injury induced 

by dichlorvos (Wani et al., 2011). Dichlorvos is a synthetic organophosphate insecticide that 

inhibits neural acetylcholinesterase, mitochondrial complex I, and cytochrome oxidase, 

resulting in generation of reactive oxygen species. In the study, MitoQ ameliorated 

dichlorvos induced oxidative stress by decreasing ROS production, increasing MnSOD 

activity, and increasing glutathione levels. There was also decreased lipid peroxidation, 

protein oxidation, DNA oxidation, DNA fragmentation, cytochrome c release, and caspase-3 

activity. Electron microscopy revealed that MitoQ attenuated dichlorvos induced 
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mitochondrial swelling, loss of cristae, and chromatin condensation. (Wani et al., 2011). 

Each of these experiments demonstrates good results in the setting of oxidative stress (not 

induced by ischemia) and pretreatment. Few studies have been performed evaluating it in the 

context of ischemia, and even fewer with post injury treatment.

One study evaluated MitoQ in the context of obesity and chronic myocardial ischemia via 

intermittent left anterior descending artery occlusion. Chronic administration increased 

obese animals’ collateral blood flow and decreased ROS to levels comparable to lean 

animals (Pung et al., 2012). Another study in a model of cardiac ischemia-reperfusion injury 

found that feeding MitoQ to rats significantly decreased heart dysfunction, cytochrome c 

release, caspase 3 upregulation leading to cell death, and mitochondrial damage (Adlam et 
al., 2005). MitoQ has also been shown to be effective for ischemia/reperfusion injury in the 

liver (Mukhopadhyay et al., 2012). When animals were pretreated or treated at the time of 

ischemia, MitoQ dose-dependently attenuated I/R-induced liver dysfunction and damage 

(manifested by decreased AST, ALT, and histologic changes), but not when given after 

ischemia and reperfusion. Pretreated animals had significantly improved complex I activity, 

but unchanged complex II and IV activity. There was less oxidative and nitrative stress 

response (HNE/carbonyl adducts, malondialdehyde, 8-OHdG, and 3-nitrotyrosine 

formation), as well as delayed inflammatory cell infiltration, DNA fragmentation, caspase3 

activity, and cell death (Mukhopadhyay et al., 2012). MitoQ appears to have significant 

positive effects for pretreatment of ischemia/reperfusion.

As opposed to pretreatment, one recent study evaluated MitoQ used after ischemic liver 

injury (Powell et al., 2015). Powell and coworkers used a model of hemorrhagic shock and 

reperfusion in rats. Arterial blood was withdrawn to a mean arterial pressure of 25 +/− 2 mm 

Hg for 1 hour before resuscitation and MitoQ was administered intravenously after 30 

minutes of ischemia and intraperitoneally after resuscitation. Some positive effects were 

demonstrated, but results were varied. It decreased markers of inflammation (IL-6 and 

TNFα) and reduced morbidity. It also increased glutathione activity, but decreased catalase 

activity, increased liver peroxidation, and did not change superoxide dismutase activity or 

the degree of liver necrosis. (Powell et al., 2015). MitoQ appears to have varied, but overall 

beneficial effects when given after hemorrhage.

While no studies of MitoQ’s effect on ischemia in the context of aging have been published, 

MitoQ appears to be able to reverse some age related changes. It has been studied in a model 

evaluating arterial endothelial function with age (Gioscia-Ryan et al., 2014). In this 

experiment, acute and chronic administration of MitoQ to aged mice restored ex vivo carotid 

artery endothelium-dependent dilation by improving nitric oxide bioavailability. There were 

increases in antioxidants with normalization of age-related increases in superoxide 

production and oxidative stress. When arterial cells were treated with rotenone, a compound 

that inhibits the transfer of electrons from iron-sulfur centers in complex I to ubiquinone, 

MitoQ reversed the age-related increase in endothelial dysfunction (Gioscia-Ryan et al., 
2014). Consequently, via a mitochondria dependent mechanism, it may be able to improve 

blood flow during ischemia, thereby lessening injury in aged individuals, but has not yet 

been investigated in this manner. One concern about MitoQ is that at higher concentrations. 

it may act as a prooxidant (Antonenko et al., 2008). Studies have been reported using other 
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antioxidants such as vitamin E. In a recently published study using mitochondrial targeted 

vitamin E (Mito-Vit E) and non-targeted vitamin E, Mito-Vit-E exhibited significant efficacy 

to reduce cytokine and cardiac inflammation in a sepsis model (Zang et al., 2012). Future 

preclinical and clinical testing of mitochondrial antioxidants may have potential translational 

significance (Zang et al., 2014).

4.1.3 Estrogens—Rates of ischemic events in women increase after the age of menopause 

(Rosamond et al., 2007) which raises the question whether increased incidence is due to 

aging or to hormone status (Cui et al., 2013). At the molecular and cellular level, estrogens 

appear to decrease mitochondrial-dependent apoptosis (Liou et al., 2010). This study noted 

that ovariectomied animals that receive 17β-estradiol have decreased ovariectomy-induced 

cell death. They found that increases in t-Bid, Bax, Bax-to-Bcl2 ratio, Bax-to-BclXL ratio, 

activated caspase 9, activated caspase 3, anti-apoptotic Bcl2 and Bcl-XL with ovariectomy 

were countered by estrogen administration (Liou et al., 2010). Mechanistic studies have 

shown that estrogen receptor beta (ERbeta) is imported into the mitochondria where it 

affects gene transcription through the interaction with estrogen response elements (ERE) and 

transcription factors (Simpkins et al., 2008). Conversely, human studies have investigated the 

influence of estrogen deficiency and/or supplementation on ischemic processes, and there 

have been conflicting results over the years. Some studies have shown no convincing 

relationships between postmenopausal status and cardiovascular disease (Atsma et al., 
2006), while others have shown a benefit of hormone replacement (Barrett-Connor and 

Grady, 1998). Another meta-analysis actually showed that hormone replacement therapy 

increased the risk of coronary artery disease, stroke, and other thromboembolic processes 

(Nelson et al., 2002). The Women’s Health Initiative among 16,608 women found that 

estrogen plus progestin increased ischemic stroke risk by 44% (Wassertheil-Smoller et al., 
2003). After an initial stroke, estrogen alone increases the rate of recurrent fatal stroke and 

causes an early rise in overall stroke rate in the first 6 months (Viscoli et al., 2001). Another 

hormone replacement study showed that treated patients had increased coronary events, 

strokes, and pulmonary emboli. Consequently, while animal and mechanistic studies have 

been promising, human trials have demonstrated adverse effects (Prentice, 2014).

4.1.4 Calpain inhibitors—Calpains are calcium-dependent, non-lysosomal cysteine 

proteases whose activation increases ischemia/reperfusion injury (Yousefi et al., 2006). A 

review (Neuhof and Neuhof, 2014) recently demonstrated that calpain inhibition in animal 

experiments showed an enhanced tolerance towards ischemia (Neuhof et al., 2003), a 

reduction of myocardial infarction and reperfusion injury (Hernando et al., 2010; Khalil et 
al., 2005; Neuhof et al., 2008; Neuhof et al., 2004), and less remodeling (Ma et al., 2012). 

Other experiments have also shown neuronal preservation during ischemia with calpain 

inhibition (Nath et al., 2000). Calpain I and 10 are localized in mitochondria. Calpain 

activation results in cleavage of several mitochondrial proteins including complex I subunits 

of the electron transport chain (Arrington et al., 2006) and calpain inhibitors restore 

respiration during ischemia/reperfusion (Neuhof et al., 2003). Calpain inhibitors also prevent 

mitochondrial membrane permeability transition (Neuhof et al., 2003), attenuate calpain 

induced cleavage of the pro-apoptotic Bcl-2 family member Bid to an active state (Chen et 
al., 2001), and prevent calpain from cleaving and releasing apoptosis inducing factor (AIF) 

Ham and Raju Page 25

Prog Neurobiol. Author manuscript; available in PMC 2018 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



from mitochondria (Chen et al., 2011). It also appears to affect autophagy with aging. When 

old hepatic cells were pretreated with a calpain inhibitor, there was less Atg4B (autophagy 

related protein) loss, increased autophagy and mitophagy, and decreased cell death (Wang et 
al., 2011a). The authors suggested that more mitophagy results in timely clearance of injured 

or injury prone mitochondria leading to better outcomes with ischemia/reperfusion in aged 

individuals (Wang et al., 2011a). Given that calpain has multiple targets for cleavage that 

have many different functions, inhibition of specific downstream targets affecting ischemia/

reperfusion tolerance could help prevent the increased injury associated with aging.

4.1.5 Melatonin—Melatonin, the chief secretory product of the pineal gland that functions 

as a regulator of sleep, circadian rhythm, and immune function, is also a direct free radical 

scavenger and indirect antioxidant (Poeggeler et al., 1994). It been shown to reduce 

oxidative stress by quenching the hydroxyl radical (Li et al., 1997), superoxide anion radical, 

singlet oxygen, peroxyl radical, and the peroxynitrite anion (Mayo et al., 2005). It stimulates 

superoxide dismutase, glutathione peroxidase, glutathione reductase, and glucose-6-

phosphate dehydrogenase and inhibits nitric oxide synthase. It also stabilizes cell 

membranes (Rodriguez et al., 2004), modulates the gene expression of protective enzymes 

that reduce apoptosis such as Bcl2 (Ling et al., 1999), inhibits autophagy (Zheng et al., 
2014), and decreases lipid peroxidation (Wakatsuki et al., 1999), and prevents mitochondrial 

inhibition thereby promoting ATP production (Reiter et al., 1998). Melatonin deficient rats 

have been shown to have increased brain damage after stroke (Manev et al., 1996), while 

administration of melatonin reduces neuronal injury (Cho et al., 1997) and increases survival 

(Cuzzocrea et al., 2000a). In neonatal hypoxia/ischemia, melatonin preserves sirtuin 1 

expression thereby resulting in neuroprotection. Preadministration of melatonin attenuated 

renal ischemia/reperfusion injury in rats (Ahmadiasl et al., 2014) and decreases hepatic 

ischemia/reperfusion injury (Kireev et al., 2012). Melatonin is noted to decrease with age 

which may be a factor in increased oxidative damage in the elderly (Reiter et al., 1998).

4.1.6 Hydrogen Sulfide (H2S)—Hydrogen sulfide (H2S) is historically known as a toxic 

environmental pollutant with various deleterious effects on organ systems (Beauchamp et al., 
1984). However, H2S along with nitric oxide (NO) and carbon monoxide (CO) is 

increasingly recognized as an endogenously produced gaseous signaling molecule (Lowicka 

and Beltowski, 2007). It is now recognized as an antioxidant that modulates glutathione 

levels (Kimura and Kimura, 2004; Yang et al., 2011) and can antagonize apoptosis in the 

setting of ischemia and reperfusion (Biermann et al., 2011; Elrod et al., 2007). Endogenous 

H2S levels are markedly reduced by hypoxia, and over-expression of cystathionine-beta-

synthase (CBS), the main producer of hydrogen sulfide in the brain, as well as 

administration of Na2S prevents hypoxia induced cell apoptosis via the K(ATP)/PKC/

ERK1/2/Hsp90 pathway (Tay et al., 2010). In oxygen and cortical neuron glucose 

deprivation/reperfusion experiments, H2S reduces intracellular ROS, caspase 3 activation, 

damage of mitochondrial membrane potential, leading to decreased apoptosis (Luo et al., 
2013). It has also been shown to be effective in cardiac H9c2 cells exposed to chemical 

hypoxia by inhibiting ROS-mediated activation of ERK1/2 (Dong et al., 2012). Another 

study found that aged healthy mice have high levels of CBS and suggested that maintenance 

(and increase) of CBS levels may sustain cortical function, preclude neuronal loss, and 
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extend survival (Bruintjes et al., 2014). Other studies have corroborated their suggestions, 

finding that H2S prolonged survival in C. elegans (Qabazard et al., 2013; Qabazard et al., 
2014). Consequently, modulation of H2S may be a viable strategy to maintain mitochondrial 

function and improve outcomes in aging individuals exposed to hypoxic ischemic injury.

Ginkgo biloba extract is a free radical scavenger that may counter the increased oxidative 

stress with aging.

4.1.7 Methylene Blue—Methylene blue (MB) is a heterocyclic aromatic compound that is 

FDA-approved for methemoglobinemia and an antidote to cyanide poisoning. MB is known 

to improve mitochondrial function (Atamna et al., 2008; Tokumitsu and Ui, 1973) by 

increasing the utilization of oxygen and increasing complex IV activity. It also is an 

alternative electron carrier that shuttles electrons between NADH and cytochrome c (cyt c) 

so that electrons are rerouted with complex I and III inhibition thereby attenuating ROS 

overproduction. Its neuroprotective effects have also been attributed to mitophagy (Di et al., 
2015), stimulation of HIF-1α (Ryou et al., 2015), and improved cerebral metabolic and 

hemodynamic function (Lin et al., 2012). MB significantly decreases infarct volume after 

middle cerebral artery occlusion in animal models (Di et al., 2015; Shen et al., 2013). Given 

its current use in clinical settings and known side effects, it may easily be a promising 

translational treatment for the mitochondria dysfunction seen with aging in ischemia (Wen et 
al., 2011).

4.2 Other Antioxidants

4.2.1 Tempol—Tempol (4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl) is a nitroxide 

compound that has been extensively studied as an antioxidant as it functions as a superoxide 

dismutase mimetic (Wilcox, 2010). Pretreatment with tempol has been shown to attenuate 

ischemia/reperfusion damage in the kidney (Chatterjee et al., 2000; Patel et al., 2002), heart 

(McDonald et al., 1999), liver (Sepodes et al., 2004) and brain (Cuzzocrea et al., 2000b). It 

has also demonstrated protection against shock from hemorrhage (Mota-Filipe et al., 1999). 

Additionally, it appears to be effective when given intravenously at the time of reperfusion 

as it reduced lipid peroxidation and the infract size in the brain. However, if given 15 

minutes before reperfusion, it was not effective (Kato et al., 2003).

Tempol appears to specifically target mitochondrial reactive oxygen species. When 

administered orally in an experiment with cardiac cells, tempol prevented O2
− production by 

mitochondrial complex 1 when tumor necrosis factor alpha was administered (Mariappan et 
al., 2009). It has also been shown to prevent angiotensin II from stimulating mitochondrial 

ROS (Kimura et al., 2005). Tempol attenuates ROS and prevents hepatic mitochondrial 

damage and dysfunction associated with increased angiotensin II production in renin-2 

transgenic rats (Wei et al., 2009). However, it did not preserve mitochondrial function in a 

model of spinal cord injury where Ca2+ overload was the major factor contributing to 

mitochondrial dysfunction rather than ROS (Patel et al., 2009).

Efforts have been made to target tempol to mitochondria by complexing it with ubiquinone 

and gramicidin S with generally good results although one study showed no difference 

(Dessolin et al., 2002). Studies have shown increased mitochondrial uptake, less activation 
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of mitochondrial uncoupling proteins (Murphy et al., 2003), less complex I dysfunction 

(Esplugues et al., 2006), decreased H2O2-induced apoptosis (Kelso et al., 2001), and less 

ischemia–reperfusion injury (Esplugues et al., 2006) when tempol is conjugated with 

ubiquinone. Conjugation with gramicidin S also enhances tempol concentration in 

mitochondria and decreases apoptosis (Jiang et al., 2007; Wipf et al., 2005).

Tempol has been also been effective in reversing changes associated with aging. Tempol 

increases the lifespan of Drosophila melanogaster (Izmaylov and Obukhova, 1996), and 

mice fed tempol from birth live significantly longer than controls (Mitchell et al., 2003). By 

lowering oxidative stress, tempol has been shown to normalize the age-related decline in 

dopamine receptor function (Fardoun et al., 2006). Additionally, the altered regulation of 

vascular tone with aging is countered by tempol, as it has been shown to restore the decline 

in nitric oxide (NO) induced inhibition of cardiac O2 usage (Adler et al., 2003) and restore 

the decreased arteriolar response to endothelial derived relaxing factor (EDRF) seen with 

aging (Durrant et al., 2009; Lesniewski et al., 2009; Mayhan et al., 2008; Payne et al., 2003). 

It appears to function in aged animals by substituting for superoxide dismutase, an 

antioxidant whose expression is decreased with aging (Lund et al., 2009). Therefore, tempol 

likely has a role in preventing the increased injury seen with aging during hypoxic ischemic 

injury (Wilcox, 2010), but its therapeutic value, especially in human studies, remains 

unclear.

4.2.2 Schisandrin B—Schisandra fruits have been traditionally used in East Asia for 

numerous diseases, and Schisandrin B, a dibenzocyclooctadiene derivative from Schisandra 

fruit extract, has been shown to be protective during ischemia to the brain (Lee et al., 2012), 

liver, and heart (Chiu et al., 2006). During focal cerebral ischemia in rats Schisandrin B 

administered before and after ischemia reduced infarct volumes up to 53.4% with reduced 

expression of TNF-α and IL-1β, and degradation of MMP-2 and MMP-9 (Lee et al., 2012). 

Another study noted that Schisandrin B improved glutathione, alpha-tocopherol and Mn-

superoxide dismutase levels, while preserving mitochondrial structure and function (Ca2+ 

loading, cytochrome c release, and permeability transition) (Chen et al., 2008). Improvement 

in antioxidant status is noted with chronic administration (Chiu et al., 2006). Following brain 

anoxia in mice another study noted decreased swelling and disintegration of brain 

mitochondria with improved membrane fluidity and increased production of cytosol 

glutathione-peroxidase (Xue et al., 1992). Protection has been demonstrated in both young 

and aged animals (Chiu et al., 2006). Therefore, by improving cerebral mitochondrial 

antioxidant status, aged individuals may be protected against ischemia/reperfusion injury 

with administration of Schisandrin B, although human studies are lacking.

4.2.3 Uric Acid—Uric acid is a well-known antioxidant produced through the metabolic 

breakdown of purine nucleotides such as ATP. Uric acid protects cultured rat hippocampal 

neurons against cell death through suppression of oxygen and nitrogen radical accumulation 

(hydrogen peroxide and peroxynitrite), stabilization of calcium homeostasis, preservation of 

mitochondrial function, and by decreasing exposure to the excitatory amino acid glutamate 

and the metabolic poison cyanide (Yu et al., 1998). It is neuroprotective in rats one hour 

following reperfusion in cerebral ischemia and improves behavioral outcome (Yu et al., 

Ham and Raju Page 28

Prog Neurobiol. Author manuscript; available in PMC 2018 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1998). Uric acid has low solubility in water resulting in pathogenic processes such as gout 

and kidney stones. Consequently, soluble analogs have also been synthesized, studied, and 

shown to be neuroprotective in ischemic brain injury in mice (Haberman et al., 2007). 

Dietary restriction, an intervention known to increase ischemic tolerance, has also been 

shown to increase uric acid levels thereby augmenting the anti-oxidative defense system 

with aging (Chung and Yu, 2000).

4.2.4 Alpha-phenyl-tert-butyl-nitrone (PBN)—PBN is a free-radical spin trap that also 

inhibits cyclooxygenase-2 activity and nitric oxide synthase (iNOS) (Durand et al., 2008). In 

aging rat brain following cardiac arrest and resuscitation, the antioxidant alpha-phenyl-tert-

butyl-nitrone (PBN) improves mitochondrial respiratory function and reduces lipid 

peroxidation (Xu et al., 2008). A follow up study in also in aged rats demonstrated improved 

overall survival and increased hippocampal CA1 neuron survival with PBN treatment (Xu et 
al., 2010).

4.2.5 Mannosylated Liposomal Cytidine 5′ Diphosphocholine—Cytidine 5′ 
diphosphocholine (CDP-Choline), an intermediate in the generation of phosphatidylcholine 

from choline, has some studies in human trials illustrating its effectiveness in stroke (Warach 

et al., 2000). Some studies have even reported substantially reduced frequencies of death and 

disability (Saver, 2008) although a large randomized placebo controlled study failed to show 

any difference (Davalos et al., 2012). One challenge is drug delivery, as CDP-choline is 

frequently broken down after administration and must reform. An alternative strategy 

involves conjugating the drug to mannosylated liposomes. Liposomes are known to be an 

effective drug carrier especially during ischemia and reperfusion (Fresta and Puglisi, 1997) 

and mannose receptors expressed on brain cells facilitate endocytosis (Regnier-Vigouroux, 

2003). CDP-Choline in a mannosylated liposome delivery system exerts increased protection 

against global cerebral ischemia and reperfusion induced mitochondrial damage in young 

and aged rats (Ghosh et al., 2010). Treatment decreased membrane lipid peroxidation, 

reactive oxygen species, and mitochondrial cytochrome c release, while increasing 

superoxide dismutase and catalase levels.

4.2.6 Luteolin—Luteolin is a polyphenol compound found in many fruits such as Perilla 

frutescens, vegetables, and herbs (Zhao et al., 2010) that possesses anti-inflammatory, 

antiallergic, anticarcinogenic, and immune-modulating properties (Zhao et al., 2012a). It 

scavenges superoxide radicals using its polyphenolic hydroxyl groups and has been shown 

to reduce inhibition of mitochondrial function, decrease reactive oxygen species, and 

increase catalase and GSH levels in primary neurons treated with H2O2 (Zhao et al., 2012a). 

Liposome-encapsulated luteolin administered after ischemia also prevents ischemia-

reperfusion injury with middle cerebral artery occlusion model in rats. Treated animals 

demonstrated decreased symptom scores, improved balance, and behavioral improvement 

(Zhao et al., 2011).

4.2.7 Selenium Compounds—Diphenyl diselenide (PhSe)2 is a potent antioxidant that 

exhibits glutathione peroxidase-like activity and decomposes H2O2 or other radicals. 

(PhSe)2 administered 30 minutes prior to bilateral common carotid artery occlusion in rats 
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improved cerebral levels of malondialdehyde (MDA), ROS, nitrate/nitrite and antioxidant 

defenses (catalase and superoxide dismutase), proinflammatory cytokines, tissue damage 

markers (creatine kinase and α-1-acid glycoprotein), and histological outcomes compared to 

untreated rats exposed to I/R (Bruning et al., 2012). Another study in which animals were 

treated one hour after ischemia noted improved neurological testing, decreased collapse of 

mitochondrial membrane potential, improved mitochondrial complex I (NADH 

dehydrogenase) activity, decreased mitochondrial swelling, improved GSH/GSSG levels, 

improved MnSOD activity, improved glutathione peroxidase activity, and decreased Hsp70 

gene expression (Dobrachinski et al., 2014). While selenium compounds effect on hypoxia 

in aged animals is not known, studies have shown that selenium compound supplementation 

in conjunction with swimming improves pro and anti-inflammatory cytokine profiles, 

memory and spatial learning in aged rats by increasing phosphorylated cAMP-response 

element-binding protein (CREB) levels (Cechella et al., 2014; Leite et al., 2015).

5 Conclusions

Mitochondria play critical functions in the response to hypoxia, ischemia and reperfusion. 

Aging results in increased apoptosis, dysregulated autophagy, increased disruption of the 

mitochondrial permeability transition pore, and exacerbated injury following hypoxic-

ischemic insults. Aging aggravates mitochondrial functional decline following hypoxic-

ischemic injury and worsens clinical outcomes. The decreased ATP production, increased 

ROS and mitochondrial-glycolytic shift in cellular energetics are controlled by master 

regulators such as HIF-1α, PGC-1α, and c-MYC. Age associated decline in NAD+ 

contributes to substrate starvation leading to decreased SIRT1 activity and a pseudohypoxic 

state. Preventative and therapeutic pharmacologic agents such as STACs and resveratrol, 

tempol, mitoquinone, cationic plastoquinone derivatives, estrogens, as well as apoptosis 

inhibitors, have been shown to be effective in experimental models of neuronal ischemia. 

Mitochondrial transfer to cells with damaged mitochondria from donor cells via nanotubular 

tunnels is an emerging area that require further studies to establish functional relevance in 

vivo. Translational research is needed for most of these potential therapies to test the 

feasibility to transition from bench to bedside. Nevertheless, investigations in aging and 

injury converge on biological mechanisms vital to bioenergetics underlining the significance 

of mitochondrial functional modulation not only on the effects of ischemia on the nervous 

system, but also in other organ systems and pathways that determine health and disease.
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TBI traumatic brain injury

TFAM transcription factor A mitochondrial

ROS reactive oxygen species

ERR estrogen receptor related receptor

NRF nuclear respiratory factor

SRT1 sirtuin 1

Drp1 Dynamin-related protein 1

Fis1 Fission 1

NMN nicotinamide mononucleotide
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Highlights

• Nuclear-mitochondrial cross talk is important in maintaining mitochondrial 

structure and function.

• Metabolic master regulators, c-MYC and HIF-1, modulate mitochondrial 

function and cell fate following hypoxic/ischemic injury.

• Aging exacerbates hypoxic/ischemic injury and mitochondrial functional 

impairment.

• AMPK-SIRT1 mediated energy sensing is important in energy homeostasis 

following hypoxic/ischemic injury.

• Post translational regulation of molecular mediators play a critical role in the 

control of glycolytic-mitochondrial energy axis in response to hypoxic/

ischemic conditions.
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Figure 1. Critical molecular mediators in hypoxia/ischemia
HIF-α is a critical modulator of hypoxic response. SIRT1 deacetylates Lys674 of HIF-1α, 

which inhibits P300 binding and decreases HIF-1α signaling. During hypoxia, SIRT1 is 

suppressed consequent to decreased NAD+, and facilitates HIF-1 signaling (Lim et al., 
2010). HIF-1α induces gene transcription leading to activation of many mediators including 

glycolytic enzymes, and also activates pyruvate dehydrogenase kinase 1 (PDK1) which 

inhibits pyruvate dehydrogenase (PDH) leading to inhibition of mitochondrial oxidation. 

PGC-1α activation leads to NRF, ERR, and PPAR activation, which increase mitochondrial 

function and biogenesis.
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Figure 2. SIRT1-AMPK axis in resveratrol mediated metabolic regulation
Resveratrol has been demonstrated to be an allosteric activator of SIRT1. (Price et al, 2013). 

Resveratrol may also act through phosphodiesterase (PDE) leading to AMPK activation, 

increased NAD+ and phosphorylation of Pgc-1α (Park et al, 2012). SIRT1 deacetylates 

Pgc-1α. Phosphorylated and deacetylated Pgc-1α augments mitochondrial biogenesis and 

function. The pathway of action of resveratrol has been suggested to be dose-dependent 

(Price et al, 2013). Among other functions of SIRT1 include deacetylation and inactivation 

of Nfkb and p53. P= phosphate group, Ac= acetyl group.
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