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Abstract

Persistent infection with oncogenic Human Papillomavirus (HPV) is necessary but not sufficient 

for the development of cervical cancer. The factors promoting persistence as well those triggering 

carcinogenetic pathways are incompletely understood. Rapidly evolving evidence indicates that 

the vaginal microbiome (VM) may play a functional role (both protective and harmful) in the 

acquisition and persistence of HPV, and subsequent development of cervical cancer. The first 

studies examining the vaginal microbiome and the presence of an HPV infection using next 

generation sequencing techniques (NGS) identified higher microbial diversity in HPV-positive as 

opposed to HPV-negative women. Furthermore, there appears to be a temporal relationship 

between the VM and HPV infection in that specific community state types (CSTs) may be 

correlated with a higher chance of progression or regression of the infection. Studies describing 

the VM in women with pre-invasive disease (squamous intra-epithelial neoplasia – SIL) 

consistently demonstrate a dysbiosis in women with the more severe disease. Although it is 

plausible that the composition of the VM may influence the host innate immune response, 

susceptibility to infection and the development of cervical disease, the studies to date do not prove 

causality. Future studies should explore the causal link between the VM and the clinical outcome 

in longitudinal samples from existing biobanks.
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Introduction

Although cervical cancer is largely preventable through detection and treatment of the pre-

invasive precursor, high-grade squamous intra-epithelial lesions (HSIL), it remains the 

commonest female malignancy in virtually all low-resource countries and the seventh more 

frequent malignancy in females worldwide 1. It is estimated that, globally, almost 530,000 

women develop cervical invasive disease annually and more than 265,000 die from the 

disease 2. The comparatively low incidence of cervical cancer in affluent societies is largely 

related to the presence of population–based screening programmes and education that led to 

a dramatic decrease in the incidence and mortality from the disease 3. Although the HPV 

vaccine has the potential to dramatically decrease these rates, the introduction into most 

developing countries has been slow so these changes are not expected to impact cervical 

cancer rates for at least one to two decades.

HPV and Cervical Carcinogenesis

There is strong evidence that infection with Human Papillomavirus (HPV) is a necessary, but 

not sufficient for the development of cervical pre-invasive and invasive disease. With more 

than 200 HPV subtypes recognised today, it is only a fraction of these that has been found to 

have a carcinogenic potential 4. Of these, subtypes HPV-16 and HPV-18 are most commonly 

associated with invasive cancers and are thought to cause approximately 65-75% of cases. It 

is now recognised that it is the persistence of infection by these, and a handful of other high-

risk oncogenic HPV subtypes that leads to precancerous lesions.

One of the early observations in most epidemiology studies was the high frequency of HPV 

DNA detection. The more HPV types tested, not surprisingly the higher frequency of 

detection. In most studies, but not all, age influenced prevalence with young age being 

associated with higher rates—some as high as 45% in western societies 5. This vulnerability 

is thought to be due to immature or naïve immune responses as well as biologic vulnerability 

of the immature cervical epithelium inherent in adolescents 6. There is some evidence to 

suggest that the microbiome of epithelium predominantly covered by columnar epithelium 

as seen in immature cervixes differs to that in epithelium predominantly covered by 

squamous epithelium 7. It may be reasonable to ask “Does the microbiome of immature 

squamous epithelia contribute to the vulnerability to HPV infections? “.

Interestingly, lifetime risk of acquiring any HPV infection likely exceeds 80%. With more 

sensitive testing available, studies show that HPV infection is more commonly the rule, not 

the exception. HPV types associated with the alpha species predominate in the anogenital 

area but other HPV types such as the beta and gamma HPV types, once thought to be 

predominantly cutaneous only, can also be commonly detected 8-10. Since the lifetime risk 

of developing invasive cervical cancer is much lower at 0.6% 11, cervical cancer should be 

regarded as a rare complication of a very common infection by the human papillomavirus. 

The commonness of many of these HPV types, begs the question, “Should non-oncogenic 

HPV be considered commensal organisms and do they play a protective role against the 

oncogenic HPV types?”.
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Epidemiology studies have shown that several risk factors have been correlated to 

heightened or reduced risk of cervical cancer. The most consistent factors are tobacco 

smoking, oral contraceptive use, and parity. All have biologic plausibility. Nicotine and its 

carcinogenic metabolites can be detected in cervical mucous 12 and smoking has been 

associated with a dampening of local immune markers 13. Both estrogen and progesterone 

increase cell proliferation and hence vulnerability to DNA damage 1415. Higher parity may 

be associated with high levels of hormone exposure and/or repeated trauma 16. This raises 

many questions, including “Does smoking, hormonal contraceptives and parity negatively 

influence microbiota such that HPV carcinogenesis is promoted? “.

Observational data show that the estimated time from the infection to the development of 

invasive disease is approximately 15 years, although there may be a swift progression in rare 

cases (Figure 1). Cervical carcinogenesis normally has a lengthy precancerous phase that has 

been well defined through different grades of SIL, although the continuum of the 

carcinogenic process has been questioned in some cases 17. Despite these major advances in 

our current understanding of the disease, the exact factors that determine infection and / or 

disease that will persist, progress or, conversely, spontaneously resolve are incompletely 

understood.

In general, HPV is a nonlytic infection, hence the inflammatory response to HPV is much 

more subtle than other mucosal infections, such as C. trachomatis. The initial immune 

response to acute HPV infections is likely mediated by the local innate immune system, 

probably involving mechanisms such as activation of toll-like receptors and natural killers 

cells to name a few 18. Persistent infections are likely cleared by the development of 

adaptive immune responses, which are dependent on antigen–presenting cells. HPV 16 is 

thought to down regulate both innate and adaptive immune responses. Recent data show that 

local microbial communities also play significant roles in regulating immune responses 19. 

Final pathways to cancer result in interference with telomerase activity and viral 

integration--although a percent of cancers are found to have episomal HPV DNA only 20. 

HPV E6 and E7 are known oncoproteins, which control fundamental carcinogenic events 

including proliferation, senescence, and apoptosis. Cellular targets include p53, E6AP, CBP, 

p300, Bak, hTERT, MAGUK, cIAP, survivin, p107, pRB, p130 21. One of the important 

questions is “Whether the microbiome can also manipulate these genes in addition to HPV’s 

influences or whether the observed changes are actually due to microbiome dysbiosis 

induced by HPV?”.

More recently, emerging data support the notion that the complex interactions of the host 

with the commensal bacteria in the vagina (vaginal microbiome, VM) may be involved in 

the natural history of the disease. This review aims to provide a comprehensive summary of 

the existing evidence describing the interplay between the host, HPV and the bacteria in the 

vaginal microbiome.

The vaginal microbiome

Much of the work to date on mucosal microbiota has been focused on the gut including its 

influence on immune function, behaviour as well as local and systemic inflammatory 
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diseases 22-24. The Human Microbiome Project has extensively examined the vaginal 

microbiota although in contrast to the gut, less is understood about the role of the vaginal 

microbiome (VM) in human disease. A detailed description of the vaginal microbiome is 

outside the scope of this article and can be found in several review articles 2526. In the 

following, we highlight certain aspects of the VM that are pertinent to our topic.

As any of the mucosal compartments, there are likely to be differences between specific 

anatomic sites within the vagina. There has been attempts at examining some of the vaginal 

compartments (cervix vs proximal vagina vs distal vagina), however, other sites remain not 

well characterized including ectocervical and endocervical or microbacteria associated with 

immature and mature cervical epithelium. Interpretation of these studies is also difficult 

because of the close proximity of these sites where contamination can occur during 

sampling. Defining “healthy” microbiota is challenging since community clustering seems 

to be a moving target with variability through the women’s menstrual cycle as well her 

reproductive age.

The healthy, premenopausal vaginal bacterial communities are usually populated by 

Lactobacillus spp. that are commonly regarded to ensure a low pH 27, which is thought to 

provide the first-line of defence against pathogenic agents. Additionally, these bacteria are 

able to produce numerous other protective peptides and metabolites capable of inhibiting 

bacterial growth, adhesion and through disruption of biofilms. All Lactobacillus, however, 

are not necessarily stable or “healthy”. L. iners is present in all women including those with 

“dysbiosis” whereas L. crispatus is mostly seen in ‘healthy” women. For example, in one 

study, a predominance of L. iners predicted the development of bacterial vaginosis (BV), one 

of the best-studied vaginal “dysbiosis” 28-32. In comparison, L. crispatus predominance 

appears protective against the development of BV 33.

Ravel et al. were the first to classify the VM according to structure, using more recent next 

generations sequencing platforms (NGS) 34. They studied 396 healthy women and identified 

282 taxa in total, proving the VM is far more complicated that previously appreciated. Based 

on the presence of a particular Lactobacillus species, or their absence they assigned 5 

different community state types (CSTs); CST I, II, III and V are dominated by Lactobacillus 

crispatus, L. gasseri, L. iners and L. jensenii respectively, and CST IV (bacterial vaginosis 

associated bacteria) conversely, is a heterogeneous group typified by depletion of 

Lactobacillus spp. with presence of strictly anaerobic species such as Gardnerella, 
Megasphera, Sneathia and Prevotella. Longitudinal studies show that within-subject 

variation is lower over time than those between-subjects in the vagina, which also exhibits 

greater longitudinal stability that most other body compartments 35. The majority of women 

have a relatively stable VM with a relatively low diversity in comparison to other mucosal 

sites, and it is those with the highest diversity VM in whom we observe the greatest 

instability (i.e moving from one state to another) 36.

Bacterial vaginosis (CST IV) is an enigmatic disorder characterized by increased species 

diversity. Prevalence of the condition is high ranging from 12% in Australian women 37, up 

to 50% in sub-Saharan African women 38, making it the most prevalent vaginal disorder of 

women of reproductive-age. This has important public health implications, because BV has 
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been associated with serious and significant reproductive morbidity including pelvic 

inflammatory disease 39, miscarriage 40 and may increase the risk of pre-term birth between 

2 and 4-fold 40. Furthermore, BV is associated with increased rates of bacterial sexually-

transmitted infections (STIs) 41 and human immunodeficiency virus (HIV) transmission 42, 

which demonstrates how important it is to understand the interplay between the microbes 

and potential pathogens.

Interestingly the gut does appear to be a reservoir for many of the VM species (both healthy 

and pathogenic) but clearly the vagina is protected from colonization of the majority of gut 

species. As mentioned, the overall diversity of the VM is several-fold less than the gut. In 

contrast the diversity of Lactobacillus spp. is much higher in the vagina. Certain bacterial 

species are also shared with the mouth such as G. vaginalis 43. Many of the BV associated 

bacteria can be found in the rectum. In one study, presence of Megasphaera and Sneathia 
spp. in the rectum was predictive of clinical BV in the women during follow-up 44.

Longitudinal studies of the VM indicate that bacterial community structure is dynamic and 

hormonally influenced with a propensity to become less stable during menstruation 36 and 

conversely more stable and less diverse during normal pregnancy 4546. The vaginal 

microbiota are also likely affected by numerous exogenous factors, although most of these 

have not been well studied specifically in longitudinal samples. Of particular interest are 

hormonal contraceptives and cigarette smoking since both have been associated with the 

development of cervical cancer 4748. Combined oral contraceptive use is associated with 

increased level of inflammatory cytokines in the cervix 49. The source of these cytokines is 

unknown however it is plausible that the microbiota influence this inflammatory 

environment as is found in the gut 50. Acute inflammation may be protective against 

acquisition of STIs including HPV, however, chronic exposure to inflammation is toxic to 

cells resulting in DNA damage and potentially carcinogenic changes 51.

Although many studies found conflicting data, in general, oral contraception (OC) use is 

associated with decreased risk of BV 52. The few studies available using NGS continue to 

show a protective effect in that hormonal contraceptives are associated with Lactobacillus 

species dominated microbiomes 53-55. Most of these studies were conducted over short 

periods of time, so the long-term effect of OCs on the VM and immune cells remains 

unknown. Studies on other methods such as the intrauterine device (IUD) and 

medroxyprogesterone acetate (MPA) are rare and show no major impact 52. One study by 

Mitchell et al. 56 showed that MPA users had a decline in vaginal H2O2 producing 

lactobacilli but did not have an increased risk of developing BV.

Tobacco use and VM has also not been well studied. Certainly, tobacco smoking has been 

associated with altered diversity in the gut, oral cavity and respiratory tract 5758. Bradshaw et 

al. 59 showed that BV (using Nugent Score) was increased in women who smoked more than 

30 cigarettes per week. Brotman et al. 60 have further used NGS to show that in a small 

cross-sectional cohort of 20 smokers and 20 non-smokers, smokers had a significantly 

higher prevalence of CST IV (50% smokers vs 15% non-smokers), and identified 

Peptostreptococcus and Veillonella as genera most significantly associated with smoking. 
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Further studies are required to ascertain whether smoking does indeed have a causal 

relationship with VM alteration and dysbiosis.

Vaginal microbiome, HPV and immune response

There are no good direct data that show how altered VM influences local immune function. 

However, it is plausible that the stability and composition of the vaginal microbiome may 

play an important role in determining host innate immune response and susceptibility to 

infection as well as playing a role further downstream regarding the development of cervical 

disease.

Several studies have shown that BV and BV-associated bacteria effect immune parameters 

within the vagina including cytokines/chemokines, antimicrobial proteins and immune cell 

populations 61. BV, as defined by Nugent’s has shown relatively consistently higher levels of 

IL-8 and IL-2 beta 62. In vitro studies of individual bacteria show that several are capable of 

inducing proinflammatory responses. For example, Atopobium vaginae, a BV associated 

bacteria activates the proinflammatory transcription factor nuclear factor (NF)-κB, tumor 

necrosis factor (TNF) alpha, interleukin (IL)-6 and IL-8, macrophage inflammatory protein 

(MIP) 3 alpha and Regulated on Activation, Normal T Expressed and Secreted 

(RANTES) 6364. Similarly, the BV associated bacteria G. vaginalis, P. bivia, M. mulieris, S. 
amnii and S. sanguinegens have also been shown to induce similar in vitro cytokine and 

chemokine profiles 65-67. Clinical studies also show that microbiomes with a predominance 

of BV-associated bacteria and increased diversity have similar proinflammatory profiles with 

elevated IL-8, IL-1α, IL-1β, INF gamma, TNF-α and granulocyte-macrophage colony-

stimulating factor (GM-CSF) compared to women normal flora 6667. Clinical studies have 

also demonstrated immunosuppressive effects with lower levels of INF gamma-induced 

protein 10 and soluble leukocyte protease inhibitor (SLPI) in women with BV 6869. In 

comparison, certain bacteria, primarily a predominance of specific Lactobacillus species, 

such as L. crispatus, L. jensenii, and L. gasseri, is associated with a relatively non-

inflammatory state in the cervicovaginal environment. These pro-inflammatory states result 

in tissue damage possibly enhancing HPV’s oncogenic potential. Despite DNA damage, 

expression of E6 and E7 result in inhibition of apoptosis and enhance cellular proliferation 

increasing aneuploidy and chromatin abnormalities leading to the development of cervical 

dysplasia and cancer. As mentioned, Lactobacillus spp. provides many protective substances 

of which many may be relevant to HPV. In vitro studies show that Lactobacillus spp. exerts 

cytotoxic effects on cervical tumor cells 70. Human normal fibroblast-like cervical (HNCF) 

and HeLa cervical cancer cell lines were treated with L.crispatus and L.gasseri, which 

inhibited cell proliferation and induced cell death to a significantly greater degree in the 

cancer cell line. This indicates probable interactions amongst cervical cells, the microbiota 

and metabolites 70.

BV has also been shown to effect immune cell populations within the vaginal mucosa. 

Findings are not consistent with evidence of suppression as well as enhancement of 

leukocytes (reviewed in 61. Conflicting data is likely due to the fact that most of these 

studies used the Nugent’s criteria rather than NGS for defining “dysbiosis”.
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Of course, there are likely genetic and hormonal factors that play a role in host response to 

vaginal pathogens. These include cytokine and chemokine polymorphisms and endogenous 

and exogenous synthetic hormones making these interactions complex and poorly 

understood 7172. In addition, cervical epithelial type (columnar, metaplastic and squamous) 

also influence immune response. In one study women with large areas of cervical columnar 

epithelium typical of pubertal cervixes, had much higher levels of proinflammmatory 

cytokines 73.

HPV infection and the vaginal microbiome

Several pieces of evidence suggest that HPV is affected by the vaginal microbiome. In meta-

analyses of mostly cross-sectional studies, the presence of BV was associated with higher 

rates of HPV infection (12 studies; odds ratio (OR) 1.43, 95%CI 1.11 to 1.84) 74 suggesting 

that a diverse, Lactobacillus-depleted microbiome may contribute to HPV persistence. There 

is also evidence to suggest that persistence is more likely in those with altered microbiome. 

In one study, women with persistent high risk (hr) HPV had a prevalence of BV of 11% 

compared to only 5% in those women who cleared their hrHPV 75. Similarly, King et al. 76 

found that women diagnosed with BV had delayed clearance of HPV (adjusted Hazard ratio 

(aHR)=0.84, 95%CI: 0.72, 0.97). The major limitation of these studies was that all used the 

crude measure of BV using Nugent’s criteria, which is highly subjective 77.

One of the first studies to examine the vaginal microbiome and HPV using NGS was 

conducted in Korea and used cervico-vaginal samples collected as part of the Healthy Twin 

Study within Korean Genome Epidemiology Study of 912 women 78. A total of 68 women 

were analysed of which 23 were HPV-positive and 45 HPV-negative. The analysis of 45 

premenopausal women with or without HPV infection found that Fusobacteria, particularly 

Sneathia spp. could be used as microbiological markers of HPV infection. HPV-positive 

women exhibited higher microbial diversity with a lower proportion of Lactobacillus spp. 

than HPV-negative women, while there was reduced abundance of L. iners in HPV infection 

positive versus negative women amongst 9 pairs of HPV-discordant monozygotic twins (P = 

0.03) (Table 1, Figure 1).

Using culture independent PCR-denaturing gradient gel electrophoresis, Gao et al. 79 

examined 70 healthy women (32 HPV negative and 38 HPV positive) with normal cervical 

cytology. Their group found that HPV positive women had greater biological diversity using 

the Shannon-Weiner diversity index. When they examined specific species, L. gasseri and G. 
vaginalis were significantly higher in HPV infected women.

Both of these studies are cross-sectional and unable to determine whether HPV induces a 

change in the VM or that the VM influences persistence of HPV. Brotman et al. 80 examined 

the temporal relationship between the vaginal microbiome and HPV infection. Thirty-two 

women were to collect serial two-weekly self-samples of vaginal secretions over the course 

of 16 weeks. The authors identified a significant association of the CST to the chance of 

remission (P=.008), but this did not seem to affect detection of new HPV infections (P = .

10). They were also able to examine the impact of CST on transition between HPV-negative 

and – positive states using the adjusted transition rate ratio (aTRR), which is equivalent to 
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hazard rate ratio, and adjusted for normalized menstrual cycle time. Lactobacillus depleted 

CST IV-A when compared to L. crispatus-dominant CST I had higher transition rates to 

HPV positivity state, although the differences were not significant (aTRR: 1.86, 95% 

confidence interval (CI) 0.52–6.74). When compared to CST I, L. gasseri-dominant CST II 

was correlated with the fastest HPV regression, while CST IV-B was associated with the 

slowest (aTRR, 4.43, 95% CI, 1.11–17.70 and aTRR, 0.33, 95% CI, .12–1.19, respectively) 

(Table 1, Figure 1).

Pre-invasive and Invasive Cervical Cancer and the vagina microbiome

More recently, we published the first study describing the VM in 169 women with biopsy-

proven cervical pre-invasive and invasive disease and compared them to healthy HPV 

negative controls 81. We found that the rate of Lactobacillus-depleted high diversity 

microbiome (CST IV) was increased two-fold in women with low-grade squamous 

intraepithelial neoplasia (LSIL), three-fold in women with high-grade squamous 

intraepithelial neoplasia (HSIL) and four-fold in women with invasive disease (normal = 

2/20, 10%; LSIL = 11/52, 21%; HSIL = 25/92, 27%; cancer=2/5, 40%, p=0.06). There was a 

trend association between Lactobacillus crispatus-dominant VM (CST I) and increasing 

disease severity (normal=10/20, 50%; LSIL=22/52, 42%; HSIL=37/92, 40%; cancer=1/5, 

20%, p=0.30) suggesting that this may be a microbiome community protective against the 

development of precancerous and cancerous lesions. Furthermore, Peptostreptococcus 
anaerobius and Anaerococcus tetradius were found to be more common in women with 

HSIL opposed to LSIL disease. That was also noted for Fusobacteria-primarily Sneathia 
sanguinegens (P < 0.01). These could be used as microbiological markers of clinically 

significant disease (Table 1, Figure 1). Although this was the first study to describe the VM 

in women with cervical disease, one of the limitations was the lack of adjustment for risk 

factors and possible confounders amongst the compared groups. Given the previously 

inconsistent evidence surrounding an association between BV and SIL/cervical cancer, there 

is a paucity of studies examining the potential bacterial-induced mechanisms of neoplasia in 

the cervix. Dysbiosis has been implicated in the carcinogenic pathways in the colorectal 

mucosa, and members of the Peptostreptococcus and Fusobacteria genera have been 

implicated not only in the pathogenesis of such a cancer 8283, but the latter also associated 

with poorer prognosis 84. Aberrant WNT pathway signaling is implicated in oncogenesis, 

and Fusobacterium nucleatum expresses a cell surface virulence factor; FadA that is capable 

of activating the WNT pathway in one of the steps in colorectal carcinogenesis 85. 

Furthermore F.nucleatum appears capable of downregulating the T-cell-mediating anti-tumor 

response, with CD3-cell density inversely proportional to F.nucleatum DNA levels in human 

colon tissues 86.

Another report published subsequently by Oh et al. 87 included women with LSIL or HSIL 

on cytology vs normal controls (defined as normal or Atypical Squamous Cells of 

Undetermined significance (ASCUS) cytology). The results suggested that microbiome 

patterns determined by paucity of L. crispatus and occupied predominantly by A. vaginae 
and secondarily by G. vaginalis and L. iners were associated by an almost 6-fold increase in 

the risk of cervical LSIL/HSIL disease (higher vs lower tertile, Odds Ratio (OR) 5.80, 

95%CI 1.73–19.4), and thus the authors defined this as a ‘risky microbial pattern’, and 
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women were subsequently defined as being in the high, medium or low tertile according to 

relative abundance of the aforementioned species. The risk of SIL of women that were HPV 

positive and had a high-risk microbial pattern was significantly higher than HPV negative 

women with a low risk microbial score (OR 34.1, 95% CI 4.95–284.5). The findings were 

limited as there was no adjustment for risk factors, while the defined comparison groups 

merged different grades of disease severity. The authors compared women with both low- 

and high-grade disease to controls that also included the presence of ASCUS cytology, 

women that may harbor underlying high-grade disease 88 (Table 1, Figure 1). In spite of this, 

the study highlights the likely protective qualities of certain Lactobacillus species and the 

probable disease-driving potential of some CST IV-associated species. There are several 

proposed mechanisms through which Lactobacillus may afford protection beyond simple 

inhibition of CST IV-associated anaerobic growth. CST IV is associated with higher levels 

of amine production compared to the Lactobacillus dominant CST’s 89, and these biological 

amines are not only responsible for the characteristic malodourous discharge 90, but also 

result in nitrosamine production 91. These nitrosamines, also produced by tobacco smoking, 

are known carcinogens 92, and most interestingly, certain species of Lactobacillus are known 

to neutralize these carcinogens in vivo 93. It is plausible that Lactobacillus spp. not only 

prevent colonization of high amine-producing bacterial species, but they may also mop up 

these potentially carcinogenic amine derivatives, providing an additional layer of anti-

carcinogenic protection. Most notably, this study by Oh et al. 87 demonstrates that L. 
crispatus appears most protective, whereas L.iners in contrast seems most commonly 

associated with disease, rather than health. This finding underscores other studies that show 

not all Lactobacillus species are equally protective. The differences in genetic and metabolic 

properties of the different Lactobacilli requires further investigation.

A more recent report by Piyathilake et al. 94 compared well-defined cytological groups of 

women with HSIL (n=340) versus LSIL (n=90); all women were high-risk HPV positive. 

The authors did not used the previously described CST’s to classify patients according to 

VM structure, but used the Dirichlet multinomial mixture model to partition samples into 4 

different metacommunities (Partition 1-4). Bacterial communities of predominantly L. iners 
and unclassified Lactobacillus spp. (Partition 3) had higher HSIL+ levels as compared to 

those with diverse taxa unclassified Lactobacillus, L. iners, Bifidobacteriaceae, Clostridiales, 

Allobaculum (Partition 1) (OR=3.48, 95% CI: 1.27-9.55) when adjusted for other risk 

factors for HSIL. The samples of women with HSIL were particularly enriched with 

Lactobacillaceae, Lactobacillus, L. reuteri and several sub-genus level Lactobacillus 
operational taxanomic units (OTUs) (effect size>2.0; p< 0.05) (Table 1, Figure 1). These 

observations in women with HSIL in particular, are somewhat contradictory to what has 

been shown by the two aforementioned studies, as Partition 4 (CST IV/BV-like VM) was not 

associated with HSIL or worse. We suggest this may arise as a result of the ethnic 

differences between the cohorts, as ethnicity is a significant differentiating factor in 

microbiome composition 34. However, the observation that L.iners is associated with HSIL 

is interesting. As previously discussed, L.iners dominant VM’s are most likely to transition 

to CST IV, which Mitra et al. 81 associated with HSIL. Additionally L.iners has been 

implicated in depletion of reduced glutathione, unlike L.crispatus and L.jensenii, which are 

both seen to be associated with increased levels of reduced glutathione 95, indicating L.iners 
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colonisation results in higher levels of oxidative stress, which again fits with the former 

hypothesis of Piyathilake et al. The authors also explored whether oxidative DNA damage 

associated with different microbiota influences the natural history of HPV persistence and 

cervical carcinogenesis. 8-hydroxy-2' - deoxyguanosine (8-OHdG) is a well characterized 

biomarker of oxidative stress-induced DNA damage, which has previously been shown to be 

elevated in SIL compared to healthy controls 96. Whilst oxidative stress has been implicated 

in the carcinogenic mechanisms of microbial-induced gastric cancers 97, the authors of this 

study did not find a significant correlation between 8-OHdG levels, SIL status, and the VM. 

BV-associated oxidative stress 98 may result in the generation of reactive oxygen species 

(ROS) that then create double-stranded DNA breaks in the host genome, as well as the HPV 

episome, facilitating HPV integration and ultimately neoplastic transformation, a mechanism 

also employed by the HPV E6 oncoprotein 99. It is noted the viral integration results in loss 

of E1 and E2 genes, which control E6 and E7 transcription. Consequently, transcription of 

these oncoproteins goes unchecked after viral integration leading to increased cellular 

proliferation, and decrease apoptosis 100.

Barriers and Limitations of the existing literature

Rapidly evolving evidence suggests the importance of the interactions between the human 

host, the innate immunity, the microbiome and virome in the genital tract with health and 

disease. Despite variations amongst the studies, the results consistently demonstrate 

differences in the microbiota noted in women with cervical disease that appear to correlate 

with the severity of the disease. Lactobacilli produce hydrogen peroxide and preserve an 

acid protective environment in the vagina with low pH. L. crispatus produces more lactic 

acid as compared to L.iners and L.iners is associated with increased risk of transiting from 

normal to abnormal CSTs 33. Studies consistently demonstrated lower rates of CSTI 

(L.crispatus) in women cervical disease and higher rates of L.iners 87 or dysbiosis 81. The 

reported differences across studies may be attributed to different sample collection and 

analysis techniques, different ethnicity, diet and genetic factors together with temporal shifts 

throughout the menstrual cycle and use of contraception (Table 1).

The published studies are also limited in interpretation since samples examined are in the 

vast majority obtained from the vagina and not the cervix. The cervical microbiota have 

been shown to be similar to vaginal but with lower bacterial loads 101. Interestingly, 

cervicitis was associated with changes in the microbiota at the cervical level only whereas in 

BV, bacterial changes are seen in both cervix and vagina. This finding may explain why BV 

is associated with premature delivery, which is likely an effect on the cervical integrity 102. 

Also, gut studies have shown that examining the microbiota from washes are quite different 

than those from biopsy samples. Washes or swabs often used in VM studies may not get at 

biofilms, which are very adherent to cells. One hypothesis regarding the development of 

dysbiosis is that certain bacteria create biofilms (ie. cohesive bacteria). In doing so, they 

create a scaffolding for other bacteria. When bacteria are dispersed (ie. not cohesive), there 

appears to be overall a lower bacterial load 103104. It may be also that viruses may also co-

exist favorably in these biofilms, which inhibit penetration of natural antimicrobial 

compounds, and possibly anti-viral compounds 105. In addition, most studies do not observe 

the 3 dimensional relationships of the microbiome, which are likely representative of 
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functional communities which one bacteria or virus may live off of others, making these 

relationships even more complex 106.

Approximately one third of the high-grade premalignant lesions go on to develop invasive 

cervical disease, if not treated. It is plausible that women with Lactobacillus-depleted CST 

IV or Lactobacillus iners-dominant microbiomes are those whose lesions are likely to persist 

and to progress to clinically significant pre-invasive or invasive lesions. However, it is 

important to note that the findings of the studies to date only demonstrate a possible 

association between cervical precancer, persistent HPV infection and the synthesis of the 

vaginal microbiota; they do not prove causality. It may be that the presence of an ‘unhealthy’ 

Lactobacillus spp.-depleted microbiome renders some women more susceptible to HPV 

persistence and the development of CIN and cancer. This idea is also supported by studies 

suggesting that women with BV have much higher rates of sexually transmitted disease, 

including HPV 4174. Conversely, it may be that HPV infection has an impact on the host’s 

immune defences and the mucosal metabolism with an adverse effect on the community 

structure of the vaginal microbiome. The infection of the basal membrane of the mucosal 

surfaces by HPV initiates a cascade of mediated mechanism related to inflammation, 

activation of the mucosal immunity with pro-inflammatory cytokines, interferons, activation 

of macrophages and NK cells and the integration of the viral DNA. All these inflammatory 

processes and changes in the immune and mucosal environment may in turn impact on the 

vaginal microbiome 107-111. Interestingly, this similar increase in diversity and low 

lactobacilli has also been associated with HIV acquisition 112. Two studies found that 

incident HPV was associated with HIV seroconversion 113114. It is plausible that the 

mechanism may be that HPV results in a microbiota change vulnerable to HIV acquisition.

Future directions

There appears to be a complex relationship between the host and the VM and composition of 

the VM may play a role in host susceptibility to HPV infection, its persistence and 

subsequent development of dysplastic and ultimately neoplastic lesions. The evaluation of 

all these interactions can be challenging, as the VM shows significant intra-individual 

variability, while different HPV subtypes that may be present at a given time may follow a 

different independent course, and these shifts in variability can be rapid. The clinical 

correlation of these periods of variability remain unknown, therefore it remains essential to 

include functional assays of pathogenesis such as proteomics, metabolomics and 

peptidomes. Cancer conversely, is a slow-growing disease and thus future longitudinal 

studies must be very precisely designed in order to determine a causal link, and this is 

reviewed by Thomas et al. 115. Further mechanistic studies are now required to gain a deeper 

understanding of this relationship with a view to development of future therapeutic 

strategies. HPV infection is cleared from the body by a predominantly innate immune 

response, which remains incompletely understood 18. It is entirely plausible that the VM is 

able to signal through the cells of the innate immune system, which reside in the cervix, 

altering this immune response rendering an individual more susceptible to HPV infection, 

and negatively affecting a subsequent response to clear the viral infection--this interaction 

requires closer investigation. Furthermore, the cervical epithelial surfaces are known to 

secrete small antimicrobial peptides, which are often referred to as the ‘natural antibiotics’, 
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and several of these have potent antiviral activity 116. Presence or absence of particular 

bacterial species are certainly capable of modulating host cell activity, and thus expression, 

production and activity of these proteins could also be affected by VM composition. The 

impact of the VM on host cell function likely arise due to changes in the metabolic 

environment, due to the production and utilization of numerous compounds by the VM, 

which can result in suppression or activation of cell signaling and metabolic pathways. 

Metabonomic studies using analytical chemistry techniques such as nuclear magnetic 

resonance (NMR) and mass spectroscopy (MS) are ideal methods for identification and 

quantification of the changes in the metabolic milieu to study the association of VM 

composition and health and disease states 117.

Many studies of the VM focus on the gross structure of the VM, however it is possible that 

particular species are more heavily involved in disease initiation and progression than others 

as suggested by both Mitra et al. 81 and Oh et al. 87. It is widely accepted that not all strains 

of a particular species are pathogenic, and Escherichia coli is a well-established example of 

this, with strains such as O157:H7 causing enterohaemorrhagic colitis due to the toxin-

coding genes in their genome 118, whereas other strains do not contain these genes, and do 

not cause significant disease. Therefore in the case of the VM, it may be the case that only 

certain strains of L.iners predispose to HPV acquisition and persistence, or conversely only 

certain L.crispatus strains that are protective. Metagenomics is an exciting new field that can 

be used to study the impact of strains, and identify particular bacterial genes that are 

associated with cervical pathogenesis.

To add another dimension to the picture, we must also consider the impact that the virome 

may play in this interaction. Although we are well aware that HPV causes these dysplastic 

and cancerous lesions of the cervix, whole genome shotgun sequencing has been used to 

show that there are many other types of virus in the human vagina 119. It is conceivable that 

these viruses also play a role in the dynamics of the cervicovaginal environment and should 

also be incorporated into longitudinal studies..

Taking this information forward to the bedside, there are several avenues that could be 

pursued for translational application. Firstly, if a particular bacterial species or strain is 

found to be implicated in disease it may be possible to develop rapid bedside tests, using 

either microchip array or metabonomic technologies for identification of patients at highest 

risk, which could be used to triage those patients in need of more intense observation or 

treatment. Secondly, it is possible to manipulate the vaginal microbiome using probiotics. 

This has been successfully demonstrated as a way of both treating BV, and reducing 

recurrence 120. There are currently numerous commercially available probiotics, however 

further studies are required in order to determine exactly which preparation is the most 

effective and protective with regards to clearing HPV and preventing cervical dysplasia and 

neoplastic transformation. At present there are a lack of medical therapies for treatment of 

HPV infection and SIL and the current gold standard treatment is surgical ablation or 

excision of the dysplastic area of the cervix, which although very effective for reducing the 

risk of future invasive cancer, is associated with significant obstetric morbidity 121122 as well 

as neonatal morbidity and mortality 123. Such a development would be a major breakthrough 

in the field of gynaecological oncology, particularly in developing countries where the HPV 
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vaccine is infrequently available and gynaecologic procedures unavailable, and even in the 

numerous developed countries where vaccine uptake is poor.

Conclusion

There is a wealth of emerging evidence to suggest that the cervico-vaginal bacterial 

population plays a substantial role in the persistence of the virus and the presence of 

subsequent cervical pre-invasive disease. The role of the microbiome in other HPV-related 

cancers such as vulvar, anal and oropharyngeal cancers has not yet been explored but likely 

play important roles. Future studies assessing the impact of the vaginal microbiome in 

cervical carcinogenesis should explore the causal link in longitudinal samples from existing 

biobanks that will allow correlation of the microbiome to the clinical outcome and in 

particular progression or regression of HPV infection and cervical disease. These studies 

should seek also incorporate measures of microbiome byproducts (i.e. metabolomics), which 

may be associated with immune dysfunction and cell dysregulation.
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Figure 1. Interactions between the HPV, the vaginal microbiome and the host
CST I and a high relative abundance of L.crispatus may be protective against HPV 

acquisition. Longitudinal studies have shown that transition states such as CST III and a BV-

like state, CST IV-B, likely lead to pro-inflammatory states which cause tissue damage and 

promote E6/E7 expression, genomic instability and viral integration which ultimately 

promotes development of HSIL. Increasing lack of L.crispatus has also been associated with 

increasing SIL severity, and various other species have been associated with both presence 

of HPV infection and SIL disease states.
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Table 1

Characteristics of studies exploring the association of HPV infection and cervical pre-invasive and invasive 

cervical disease to the vaginal microbiome using next generation sequence techniques.

Study Population Cervical Sample NGS technique Key Findings

HPV infection

Gao 2013 70 healthy women 
with
normal cervical 
cytology
-32 HPV-negative
- 38 HPV-positive,
infected with a 
single
high-risk HPV 
subtype

Sterile swab from near the
vaginal fornix and
Cervix; HPV DNA test:
primers MY09/MY11 and
GP5+/GP6+ and Hybrid
Capture

Nested PCR of 16S 
rRNA
and PCR-denaturing
gradient gel
electrophoresis; plasmid
cloning and sequence
identification via NCBI
BLAST database

-Increased diversity in HPV-positive 
(mean=1.64;
range=0-3.09) compared to HPV-
negative women
(mean=0.93; range=0-2.62) (p <0.001)
- Lactobacillus: the most predominant 
genus,
detected in all women
-L. gasseri & G. vaginalis: isolated 
more in HPV-
positive than HPV-negative women 
(p=0.005 and
p=0.031, respectively)

Lee 2013 68 HPV-infected or
uninfected female 
twins
and their families
- 9 HPV infection-
discordant MZ twin 
pairs
without CIN (N = 
18)
- pre-menopausal
women with or 
without
HPV infection 
(N=45)

Cervical liquid-based
cytology samples: 
ThinPre
and Surepath™); HPV 
DNA
test: primers MY09/
MY11
and GP5+/GP6+, PCR
amplicons of 450 and 150
bp and HPV typing (high 
vs.
low risk); QIIME

Genomic DNA 
extraction:
DNA/RNA kit 
(Chemagen,
Baesweiler, Germany); 
V2
and V3 regions of the 
16S
rRNA genes; 454 Life
Sciences FLX Titanium
machine (Roche,
Indianapolis, IN, USA)

-HPV-positive women higher microbial 
diversity
with a lower proportion of 
Lactobacillus spp. than
HPV-negative women
-Fusobacteria, including Sneathia spp., 
possible
microbiological marker associated with 
HPV
infection
-HPV-discordant MZ twins: reduced 
abundance
of L. iners in HPV infection positive vs 
negative (P
= 0.03)

Brotman 2014 32 women of
reproductive age 
over 16
weeks twice weekly
samples (937
microbiome 
samples -
930 HPV result)
- 5 HPV negative
throughout
- 2 positive for 1 
HPV
subtype
- 25 were positive 
for 2
or more HPV 
subtypes

Cervical samples: mid-
vagina self-samples; HPV
DNA test: Roche Linear
Array HPV Genotyping 
Test
(6, 18, 31, 33, 35, 39, 45,
51, 52, 56, 58, 59, or 68)

V1-V2 hypervariable
regions of 16S rRNA 
genes
using primers barcoded
27F and 338R

-CST was associated with remission of 
HPV
(P=.008), but not with new detection of 
HPV
(P=.10)
-Low Lactobacillus CST IV-A higher 
transition to
HPV positivity compared to CST I 
(aTRR: 1.86,
95%CI .52–6.74)
-L. gasseri (CST II) had the fastest HPV 
remission
and low Lactobacillus community with 
high
proportions of the genera Atopobium 
(CST IV-B)
had the slowest rate compared to L. 
crispatus
(CSTI) (aTRR: 4.43, 95%CI 1.11–17.7; 
aTRR: 0.33,
95%CI .12–1.19, respectively)

SIL and ICC

Mitra 2015 169 women:
- normal (n=20)

Sample posterior fornix:
BBLTM CultureSwabTM
containing liquid Amies
(Becton Dickinson, 
Oxford,
UK); HPV DNA test: 
Abbott
RealTime HR HPV assay
(Abbott M2000 platform)

Whole-Genomic 
bacterial
DNA extraction: QiAmp
Mini DNA kit (Qiagen,
Venlo, Netherlands); V1-
V2
hypervariable regions of
16S rRNA genes; 
llumina
MiSeq SOP Pipeline

- Higher rates of CST IV (L.depleted, 
high
diversity) with increasing disease 
severity
(Normal=10%; LSIL=21%; 
HSIL=27%; ICC=40%).
- Lower rates of CST I (L. crispatus-
dominant)
with increasing disease severity 
(Normal=50%;
LSIL=42%; HSIL=40%; ICC=20%)
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Study Population Cervical Sample NGS technique Key Findings

HPV infection

- HSIL vs LSIL: higher levels Sneathia
sanguinegens (P < 0.01), Anaerococcus 
tetradius
(P < 0.05), Peptostreptococcus 
anaerobius
(P<0.05) - lower levels L. jensenii 
(P<0.01).

Oh 2015 Cases with CIN: -
CIN
1 (n=55)
-CIN 2 or 3 (n=15)
Controls:
-Normal cytology 
(n=25)
-ASCUS (n=25)

Cervical Sampler Brush
(Digene Co. Gaithersburg,
MD, USA); HPV DNA
detection: Digene Hybrid
capture II DNA Test
(Qiagen, Gaithersburg, 
MD,
USA)

DNA extraction: Fast 
DNA
SPIN extraction kits (MP
Biomedicals, Santa Ana,
CA, USA); V1–V3 
regions of
the 16S rRNA gene; a
Roche/454 GS Junior
system (Roche, 
Branford,
CT, USA); excluded 
low-
quality reads: average
quality score <25 or a 
read
length <300 bp; 
available in
the EMBL SRA 
database

The CIN risk was higher for the higher 
vs the
lower tertile of:
- predominance of A. vaginae, 
Gardnerella
vaginalis, L. iners with a minority of L. 
crispatus:
OR 5.80, 95%CI 1.73‒19.4)
-A. vaginae: OR 6.63, 95%CI 1.61–
27.2).
-Risky microbial pattern and oncogenic 
HPV:OR
34.1, 95% CI 4.95–284.5 (synergistic 
effect).

Piyathilake 2016 Cases:
- CIN2 (n=208)
- CIN3 (n=132)
Non-cases:
- CIN1 (n=90)
All were HR-HPV 
positive

Cervical mucus samples:
Merocel ophthalmic
sponges (Medtronic
Xomed, Inc., 
Jacksonville,
FL); HPV DNA test 13
subtypes: Roche
Diagnostics Linear Array;
QIIME suite and RDP
database

DNA extraction: Fecal 
DNA
isolation kit from Zymo
Research; V4 segment of
the 16S rDNA gene;
Illumina MiSeq;

-CIN2+ higher in community types 
dominated by
L. iners and unclassified Lactobacillus 
spp. vs
those diverse taxa unclassified L., L. 
iners,
Bifidobacteriaceae, Clostridiales, 
Allobaculum
(OR=3.48, 95% CI: 1.27-9.55).
-Women with CIN2+ enriched 
Lactobacillaceae,
Lactobacillus, L. reuteri and several 
sub-genus
level Lactobacillus OTUs (effect 
size>2.0; p< 0.05)
- DNA oxidative damage does not 
mediate the
effect of VM on natural history of HPV.

aTRR: adjusted transition rate ratio; A. vaginae: Atopobium vaginae; CI: confidence interval; CIN: cervical intra-epithelial neoplasia; HPV: human 
papillomavirus; HR-HPV: high-risk HPV; HSIL: high-grade squamous intraepithelial lesion; ICC: invasive cervical cancer; L: Lactobacillus; LSIL: 
low-grade squamous intraepithelial lesion; MZ: monozygotic twins; NSG: next generation sequencing; OR: odds ratio; OTUs: operational 
taxonomic units; SIL: squamous intraepithelial lesion; VM: vaginal microbiome
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