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ABSTRACT Neuroinvasive herpesviruses have evolved to efficiently infect and estab-
lish latency in neurons. The nervous system has limited capability to regenerate, so
immune responses therein are carefully regulated to be nondestructive, with depen-
dence on atypical intrinsic and innate defenses. In this article we review studies of
some of these noncanonical defense pathways and how herpesvirus gene products
counter them, highlighting the contributions that primary neuronal in vitro models
have made to our understanding of this field.
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In the infected host, virus infection results in two general patterns of infection, acute
and persistent (1). Usually acute infection is resolved by the immune system, resulting

in viral clearance from the host. The failure to clear an acute infection is often
detrimental and may result in severe disease or even death of the host. Some viruses,
however, establish persistent infections that are benign or may even benefit the host
(2). This détente or balance between host and pathogen results from an effective
stalemate between host immunity and viral countermeasures. The nervous system is
key for the survival and procreation of the host, with limited capacity for repair and
regeneration. It is critical, therefore, that nervous system immune responses be care-
fully regulated, avoiding massive inflammatory or cell-destructive responses. The ner-
vous system is therefore highly dependent on innate responses to defend against virus
infection (3). In turn, the herpesviruses are highly evolved in terms of their capacity to
subvert host immunity and to establish lifelong quiescent infection (latency) that can
be reactivated. Until relatively recently, the nervous system was thought to be an
immune-privileged site. A great deal of recent work, however, has demonstrated that
while responses may be muted relative to those in other tissues, there are robust
responses in neurons that may not follow the canonical rules established in nonneu-
ronal cells. The terminally differentiated nature and specialized anatomy of neurons has
made for significant experimental difficulties in the study of their immunobiology. That
said, these unique features of neurons render them fascinating and unusual subjects for
study of immunity. In this review, we will focus on studies of neurotropic alphaherpes-
viruses in cultured primary neurons and how this body of work has elucidated the
intrinsic and innate responses of neurons (Fig. 1) that lead to a unique lifelong
host-pathogen relationship.

VIRUS INFECTION OF THE NERVOUS SYSTEM: INTEGRATION OF FORM AND
FUNCTION

Viral infections usually begin in peripheral tissues, and some may invade the
nervous system, spreading into the peripheral nervous system (PNS) and the central
nervous system (CNS). In general, most virus infections do not spread to the CNS
because of effective immune responses and multilayer anatomical barriers. Some,
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however, do enter the nervous system via the bloodstream or by direct infection of
nerves that innervate peripheral tissues, resulting in disease (4). Most viruses invading
the nervous system are opportunistic or accidental pathogens, but some, most notably
the alphaherpesviruses, such as herpes simplex virus 1 (HSV-1), varicella-zoster virus
(VZV), and pseudorabies virus (PRV), and other viruses, such as rabies virus (RABV), can
invade the nervous system efficiently from peripheral tissues. After entry into PNS
axons, virus particles move long distances to the neuronal cell bodies by directed
retrograde transport (5, 6). Remarkably, the alphaherpesviruses often establish latent
PNS infections in their natural hosts after primary infection of epithelial surfaces (7, 8).

PNS and CNS neurons have specialized signaling and gene expression patterns that
maintain the highly polarized morphology for optimal function. The single axons of PNS
neurons can be long, containing more than 99% of the neuron’s cytoplasm (9). The
polarized PNS neurons require long-distance communication between the axon termi-
nals that are in contact with peripheral tissues and the cell bodies in the distant ganglia
(9). This axon-to-cell body communication must be finely tuned, so that cell bodies can
respond to distant events in a timely fashion. That said, the threshold for lethal
consequences such as apoptosis must be high, and the neuronal response to signals
from distant axons must be rapid, to avoid loss of irreplaceable neurons.

AXONS SENSE VIRAL INFECTION BY LOCAL AND RAPID PRODUCTION OF NEW
AXONAL PROTEINS

A variety of “danger or damage” receptors are well known (10, 11) (12). A subset of
mRNAs and the complete protein synthesis machinery are localized to axons in
uninfected neurons, far away from the cell body (13). Many of these mRNAs are
repressed and can be translated when appropriate local signals are received, allowing
for a rapid response (14–20). When axons are damaged, some of the newly made
proteins are transported back to the cell bodies, where they stimulate gene expression

FIG 1 Intrinsic and innate pathways that modulate alphaherpesvirus infection in peripheral neurons. (From the top) The damage response of
neurons may be co-opted by the virus to promote the efficiency of retrograde transport to the cell body. Interferon synthesized by, for example,
infected epithelial cells increases levels of phosphorylation of local axonal Stat1, serving to reduce retrograde transport, a response that may be
countered by HSV �34.5. Genomic repression of HSV mediated by intrinsic neuronal factors promotes the establishment and maintenance of
latency, which is countered through expression of ICP0. Autophagy induced through IFN-dependent signaling leads to xenophagic clearance of
HSV and formation of clusters of autophagosomes that may regulate the latency process.
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to repair the damage (19–21). Efficient retrograde herpesvirus capsid transport in axons
requires local newly made axonal proteins (20). The newly synthesized proteins in
axons after virion entry were identified using bioorthogonal noncanonical amino acid
tagging (BONCAT) or click chemistry followed by high-resolution tandem mass spec-
trometry. These nascent proteins include participants in cytoskeleton remodeling,
intracellular trafficking, signaling, and energy metabolism pathways. It was found that
axonal injury, when induced prior to viral infection, retards virus transport in these
axons by competing for the fast axonal transport complexes (20). This led to the
hypothesis that entering viral capsids induce the axonal damage response and quickly
repurpose it for more efficient capsid transport to the nucleus.

AXONS HAVE A NONCANONICAL INTERFERON RESPONSE

Unlike epithelial cells, PNS neurons produce little type I interferon (IFN) after HSV-1
infection (22, 23). Nevertheless, prior to, or concurrent with, invasion by herpes virus
virions, nerve terminals are bathed in a variety of inflammatory and antiviral cytokines,
including type I IFN (IFN-� and IFN-�) and type III IFN (IFN-�), produced by other
surrounding infected cells (8). Previous work on human dorsal root ganglion (DRG)
neurons in a chambered culture system showed that IFN-� and IFN-�, added to the
epidermal cell compartment after axonal transmission of HSV-1 infection, inhibited
infection and spread (24), although the response of axons to IFN was not addressed. In
contrast, other groups have found no antiviral effect against HSV-1 infection when
neurites of dorsal root ganglion neurons were pretreated with IFN-� and IFN-� (25).

Recently, our labs simultaneously discovered that type I IFN (IFN-�) acts locally in
axons to produce an antiviral effect (26) (27). Preexposure of axons to both type I and
type II IFN significantly diminished the number of PRV particles actively moving in the
retrograde direction and also reduced the number of cell bodies that were infected
(26). In HSV it was shown that the �34.5 gene likely plays a role in countering this
IFN-driven restriction of retrograde trafficking (27). However, PRV does not encode a
�34.5 homolog. Antibodies blocking the type I IFN receptor restored PRV particle
axonal transport in IFN-�-treated samples, indicating that IFN-� signaling is responsible
for the axonal transport defect. Importantly, exposure of axons to IFN-� induced rapid
and local phosphorylation of signal transducer and activator of transcription 1 (STAT1)
in axons only. In contrast, axons treated with IFN-� did not produce locally phosphor-
ylated STAT1. Rather, axonal IFN-� treatment appeared to transmit a retrograde signal
to trigger phosphorylation and translocation of STAT1 (pSTAT1) to the nucleus. Impor-
tantly, blocking transcription in cell bodies had no effect on the reduction of viral
transport by IFN-� treatment or on the appearance of pSTAT1 in axons. In contrast,
inhibiting transcription in the cell bodies reversed the IFN-�-induced reduction of
transport. The activity of IFN-� to reduce particle axonal transport differs therefore from
the canonical IFN response because de novo transcription is not required.

VIRAL OFFENSE AND AXON DEFENSE: AN APPARENT PARADOX RESOLVED

A hallmark of alphaherpesvirus infection of their natural hosts is the establishment
of a quiescent yet reactivatable infection in PNS neurons. How is this metastable state
established? We have found that the outcome after axonal infection could be biased
toward a quiescent infection if the number of particles infecting axons was low (28).
The idea is that when small numbers of viral genomes are delivered to the cell body
nucleus, they tend to be repressed. Since the local intrinsic and innate responses in
peripheral tissues function to reduce the number of virus particles available for axonal
infection, these processes increase the probability of quiescent infection in PNS neu-
rons (26).

Other intrinsic and longer-established defense mechanisms in neurons play a role in
the repression and silencing of alphaherpesvirus gene expression (29). These mecha-
nisms largely center upon a series of repressor functions and complexes that collec-
tively impose silencing of the HSV genome in neurons and other cells. During the
establishment of latency, viral DNA is packaged into chromatin and specific histone
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acetylation patterns which control viral gene expression are formed (30). These are
critical for control of HSV latency and reactivation both in vivo and in cultured neuron
systems (31). Interestingly, the structure of latent viral chromatin and viral gene
expression are modified through expression of infected-cell protein 0 (ICP0) during
latency, implicating that ICP0 can function during both lytic and latent infection to
overcome intrinsic host defenses (32). Congruent with this idea, neuron-specific mi-
croRNA miR-138 can repress ICP0 expression and neuronal survival, suggesting that
intrinsic defenses are finely tuned to facilitate the maintenance of latency (33). Several
chromatin repressor complexes and epigenetic modification mechanisms have been
described, mostly for HSV, but some have been studied in more detail and have
attracted significant attention. In particular, the REST/CoREST/LSD1/HDAC complex is
believed to be a critical component in regulating latency and reactivation (34), and its
repressive activity is efficiently disabled by ICP0 (35). Another intrinsic antiviral defense
targeted by ICP0 is mediated by the IFN-inducible ND10 nuclear bodies (36). The E3
ubiquitin ligase activity of ICP0 mediates the degradation of ND10 components, leading
to the dispersal of ND10 bodies (37, 38). In the absence of this activity, viral replication
is greatly diminished. Importantly, in neurons, the latent HSV genome has been shown
to be tightly associated with ND10 bodies (39), representing another key interaction in
the repression and derepression of the HSV life cycle.

DEFENSE MEDIATED BY AUTOPHAGY AND OTHER CELL-INTRINSIC RESPONSES

Autophagy and related processes have become a major focus for many investigators
in recent years. Autophagy is a highly evolutionarily conserved pathway that, among
other functions, serves to eliminate potentially harmful protein aggregates and dam-
aged organelles (40, 41). An emerging theme, however, is that neurons are atypical in
their autophagy responses and exhibit unexpected phenotypes when autophagy is
modulated (42). The postmitotic nature of neurons renders them highly dependent on
autophagy to maintain their integrity. Indeed, ablation of autophagy in neurons results
in their death, and defects in the autophagy pathway are implicated in a variety of
neurodegenerative disorders (43). Moreover, neuronal autophagy is highly compart-
mentalized and is insensitive to modulation by standard methods (e.g., starvation and
rapamycin), and the autophagosomes form unusual clusters under conditions of virus
infection and IFN treatment (42, 44).

In a variety of cells, autophagy and xenophagy (in which the cell engulfs and
degrades viable virions to prevent replication) exert both antiviral and proviral effects,
depending on the virus (45–48). In addition, autophagy functions broadly in antiviral
immunity (49). Also, given the postmitotic status of neurons, xenophagy would be an
effective way to clear intracellular pathogens without the collateral damage of an
inflammatory or cytotoxic immune response (50). Despite the appeal and much testing
of this hypothesis, the role of autophagy in the regulation of neurotropic virus
infections is still emerging and controversial. HSV mutants incapable of antagonizing
autophagy show attenuation in the nervous system (51). HSV grows to higher titers and
is more virulent in mice lacking autophagy machinery in their nervous systems (52).
These findings are consistent with the idea that autophagy protects neurons from virus
infection. While the replication of these HSV mutants was reduced relative to that of
wild-type virus, altered virus replication alone seems insufficient to explain the pro-
found attenuation. This idea is supported by the observation that a virus lacking the
�34.5 gene, which counteracts both IFN responses and autophagy, replicates normally
in cultured sensory neurons (53). Consistent with this idea, a knockdown or ablation of
autophagy did not affect Sindbis virus replication, but caused increased accumulation
of viral proteins, neuronal death, and neurovirulence (54). It is unlikely that protection
by the autophagy pathway is solely through direct xenophagy. Rather, autophagy may
also be protective through promotion of innate and adaptive immune responses in the
host or prolongation of the survival of infected neurons through prevention of accu-
mulation of toxic viral proteins. It is unclear if autophagy and/or xenophagy is directly
involved in the establishment, maintenance, and reactivation of herpesvirus latency.

Gem Journal of Virology

January 2017 Volume 91 Issue 1 e01200-16 jvi.asm.org 4

http://jvi.asm.org


SUMMARY

Neuroinvasive herpesviruses have evolved in the face of atypical intrinsic and innate
defenses of neurons, particularly PNS neurons, to promote the reversible silencing of
their potent gene expression programs. While these viruses have a remarkable arma-
mentarium of countermeasures against these repressive cellular pathways, they use
them judiciously in neurons, perhaps facilitating the establishment, maintenance, and
reactivation of latency. For therapeutic purposes, the herpesvirus field has focused
largely on development of vaccines that stimulate adaptive immunity and on chemo-
therapeutic inhibition of virus replication. Given the large burden of latency worldwide
that represents a major reservoir of morbidity and mortality, it should be fruitful to
focus on the development of specific and potent modulators of these intrinsic and
innate defenses to help improve treatment options for herpetic diseases.
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