
The function of orthologues of the human Parkinson’s disease 
gene LRRK2 across species: implications for disease modeling 
in preclinical research

Rebekah G. Langston1, Iakov N. Rudenko1,2, and Mark R. Cookson1,CA

1Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, NIA, NIH, Bethesda, 
MD, 20892

Abstract

In the period since LRRK2 (Leucine-Rich Repeat Kinase 2) was identified as a causal gene for 

late-onset autosomal-dominant parkinsonism, a great deal of work has been aimed at 

understanding whether the LRRK2 protein might be a druggable target for Parkinson’s disease 

(PD). As part of this effort, animal models have been developed to explore both the normal and the 

pathophysiological roles of LRRK2. However, LRRK2 is part of a wider family of proteins whose 

functions in different organisms remain poorly understood. In this review, we compare the 

information available on biochemical properties of LRRK2 homologues and orthologues from 

different species from invertebrates (e.g., Caenorhabditis elegans and Drosophila melanogaster) to 

mammals. We particularly discuss the mammalian LRRK2 homologue, LRRK1, and those species 

where there is only a single lrrk homologue, discussing examples where each of the LRRK family 

of proteins has distinct properties as well as those cases where there appear to be functional 

redundancy. We conclude that uncovering the function of LRRK2 orthologues will help elucidate 

the key properties of human LRRK2 as well as to improve understanding of the suitability of 

different animal models for investigation of LRRK2-related PD.
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INTRODUCTION

Parkinson’s disease (PD) is characterized clinically by a range of motor symptoms, 

including postural instability, resting tremor, bradykinesia, and rigidity as well as non-motor 

features such as hyposmia [1,2], constipation [3], and mood disturbances [4]. Pathologically, 

the disease is associated with progressive loss of dopaminergic (DA) neurons in the 
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substantia nigra and the formation of fibrillar aggregates called Lewy bodies in surviving 

neurons throughout the brain [5].

The cause of most cases of PD is not known, leading to the description as a sporadic or 

idiopathic disease. However, in recent years it has been increasingly appreciated that 

monogenic forms of PD exist and that cloning the underlying gene mutations can lead to 

important insights into pathobiology [6,7]. A locus on chromosome 12 (historically termed 

PARK8) was first linked to familial parkinsonism in 2002 through analysis of a large 

Japanese family in which affected members exhibited clinical phenotypes resembling those 

of idiopathic PD [8]. In 2004, late-onset autosomal-dominant parkinsonism was linked to the 

same locus in multiple families, and a number of pathogenic mutations in the LRRK2 gene 

were identified [9–11]. Importantly, subsequent investigations of the genetic contribution to 

sporadic PD using genome-wide association studies have nominated variation around the 

wild-type LRRK2 gene as a risk factor for the common form of this disease [12,13]. Thus, 

the LRRK2 gene likely links sporadic and inherited PD.

The LRRK2 gene encodes a large multi-domain protein, LRRK2. The N-terminal region of 

LRRK2 comprises a series of repeats predicted to adopt armadillo-like and ankyrin repeat 

folds as well as a leucine-rich repeat (LRR) domain for which LRRK2 and its homologues 

are named. The C-terminal region also contains a set of repeats that form a predicted β-sheet 

rich WD40 domain. These protein interaction motifs flank a catalytic tridomain: a Roc (Ras 

of complex proteins) GTPase domain in tandem with its associated C-terminal of Roc 

(COR) domain, followed by a kinase domain [14]. Notably, the COR domain always follows 

the Roc domain within proteins belonging to the Roco protein family [15] and may play an 

important role in intramolecular interactions between the two catalytic domains of LRRK2 

[16].

As well as LRRK2, there are three other Roco proteins that have been identified in the 

human proteome, with the closest homologue being leucine-rich repeat kinase 1 (LRRK1), 

death-associated protein kinase 1 (DAPK1) and malignant fibrous histiocytoma amplified 

sequences with leucine-rich tandem repeats 1 (MASL1). All four have been found capable 

of binding guanosine nucleotides via the Roc domain and LRRK2 and DAPK1 are active 

kinases [17–22], suggesting that there are functional similarities between the human Roco 

proteins.

These human proteins are part of an evolutionarily older superfamily of Roco proteins 

[23,24] that include representatives from the slime mold Dictyostelium discoideum through 

most of the animal kingdom, with a few representatives in plants such as the gene 

TORNADO1 in Arabidopsis. The evolutionary history of the modern LRRK proteins can be 

traced to the cnidarian Nematostella vectensis, which has four LRRK genes. Two of these 

genes are orthologues of the LRRK1 and LRRK2 genes present in deuterostomes (including 

humans and rodents), while a third is an orthologue of the LRRK gene in protostomes such 

as C. elegans and Drosophila. The fourth appears to be cnidarian-specific [24,25]. Thus, the 

C. elegans (lrk-1) and Drosophila (Lrrk) genes have an ancient origin distinct from that of 

LRRK2.
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Here, we will focus on LRRK proteins across the animal kingdom, discussing the functional 

redundancy between these different proteins but also those examples where different 

proteins seem to have different functions within or between different species. This will also 

help to frame later discussions of the suitability of different animal models for the study of 

Parkinson’s disease and for preclinical trials of novel therapeutic treatments. For further 

discussion, including an overview of two studies of zebrafish LRRK2 models, the interested 

reader may refer to another recent review article about LRRK2 animal models [26]. We will 

start with two well-characterized invertebrate model organisms, C. elegans and Drosophila 
melanogaster.

The Caenorhabditis elegans protein, Lrk-1

The transparent nematode Caenorhabditis elegans offers a unique model system for 

neurodegenerative disease as the 302 neurons that constitute the nervous system of an adult 

C. elegans hermaphrodite can be examined in vivo and, of particular importance to PD 

research, the eight dopaminergic neurons can be easily visualized [27–29]. C. elegans has a 

single orthologue of mammalian LRRK genes, lrk-1. The lrk-1 protein is slightly shorter 

than LRRK2 (2,393 amino acids) but similarly organized with clear LRR, Roc, COR, and 

kinase domains [28] (Figure 1). Sequence homology between LRRK2 and lrk-1 is modest, 

with 24/40% identity/similarity over a region of ~1,500 amino acids [30,31]. As discussed 

above, because lrk-1 has a distinct evolutionary history from LRRK1 and LRRK2, this 

relatively low level of similarity is not surprising and suggests that lrk-1 knockouts should 

be considered distinct from knockouts of LRRK2, which we will discuss later in this article.

Worms carrying deletion mutations in lrk-1 exhibit a range of phenotypes, including subtle 

motor defects [28], aberrant localization of synaptic vesicle proteins [28], and increased 

sensitivity to a variety of pharmacological stressors [30–33]. Along with regulation of 

polarized sorting of synaptic vesicle proteins in neurons [28], lrk-1 has also been 

functionally linked to regulation of neurite outgrowth [31]. Evidence that LRRK2 can 

substitute for lrk-1 in reducing neurotoxicity [32] and that knockdown of endogenous lrk-1 

and expression of human LRRK2 have reciprocal effects [29,30,33] suggests that lrk-1 and 

LRRK2 can interact with the same pathways in C. elegans. However, overexpression of 

either lrk-1 wild-type or lrk-1 G1876S (corresponding to the human LRRK2 G2019S 

mutation) caused embryonic lethality [31], which might imply that the native protein 

possesses an intrinsic toxicity to nematodes not conserved in the human LRRK2 protein.

Transgenic expression of wild-type human LRRK2 in nematodes was associated with 

increased lifespan and protection against whole organism toxicity caused by rotenone or 

paraquat [30,33]. Transgenic worms expressing mutant human LRRK2 were protected 

against rotenone and paraquat toxicity to a lesser extent than observed in LRRK2 wild-type 

animals [30,33] and displayed adult-onset dopaminergic neuron loss sometimes 

accompanied by motor deficits [29,30,32,34,35]. R1441C and G2019S mutants caused a 

more severe phenotype than wild-type LRRK2, but expression of the GTPase binding 

defective mutant K1347A did not induce the parkinsonian phenotype [29]. Similarly, there is 

evidence to support the contribution of kinase activity of LRRK2 mutants in PD pathology 

[29,35]. Some phenotypes in these animals could be rescued by administration of L-DOPA 
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[32,34]. However, when examining dopamine neurons directly, G2019S-LRRK2 transgenic 

nematodes displayed significant loss of dopaminergic markers on adult days 2 and 3 relative 

to wild-type, both basally and in response to mitochondrial toxins [30]. Interestingly, 

knockdown of lrk-1 was found to attenuate the pathogenic effects of LRRK2 expression 

[29,32], suggesting that overexpression of mutant LRRK2 may work, in part, by a dominant 

negative effect on the endogenous protein. However, why LRRK2 is protective in some 

assays but toxic in others is not yet resolved.

Collectively, these results suggest that there may be some shared functions between human 

LRRK2 and C. elegans lrk-1. An important caveat, particularly in relation to the transgenic 

approaches, is that levels of proteins are not usually assessed. Thus, whether the two proteins 

can be directly compared or whether there are non-specific events related to overexpression 

is difficult to determine. Furthermore, the observation that there are effects seen with lrk-1 

not shared with LRRK2 [31] suggests that the two proteins have at least some distinct 

properties. It would be important in the future to understand the similarities and differences 

between human LRRK2 and worm lrk-1 with more mechanistic approaches, particularly at 

the level of protein interactions or substrates.

The Drosophila melanogaster protein, Lrrk

Like C. elegans, Drosophila melanogaster has a single orthologue of LRRK1/2 named Lrrk, 

an approximately 2,400 amino acid long protein containing LRR, ROC-COR, and kinase 

motifs [36,37]. However, Lrrk does not appear to contain the LRRK2-like N-terminal 

ankyrin repeats or a C-terminal WD40 domain. Many of the residues involved in LRRK2 PD 

pathology are conserved between human LRRK2 and Drosophila Lrrk, which share 24% 

identity and 38% similarity overall [36–38] (Figure 1). Lrrk is ubiquitously expressed in 

Drosophila tissues, including in fly brain [36,39,40]. Within cells, Lrrk protein is largely 

cytoplasmic with some association with membranous structures including endosomes, 

lysosomes, and synaptic vesicles [36,41], thus being broadly similar to human LRRK2.

The Lrrk protein is an active kinase capable of autophosphorylation [36] and of 

phosphorylation of various proposed substrates, including 4E-BP, Futsch, Endophilin A, and 

ribosomal protein s15 [39,42,43]. Lrrk has been shown to physically interact with Rab5, 

Rab7, and Rab9 in Drosophila follicle cells [41,44] and to associate with Drosophila 
Argonaute-1 (dAgo1) of the RNA-induced silencing complex in fly head extracts [45]. As 

human LRRK2 is known to interact with multiple Rab proteins [46–49], and is claimed to 

phosphorylate some of the same substrates [39,42,43] and to associate with Ago1 [45], there 

may be at least partial conservation of function between Lrrk and LRRK2. Supporting this 

hypothesis, several experiments have indicated that Lrrk knockdown and human LRRK2 

expression have reciprocal effects [42,43,50] or that overexpression of Lrrk and 

overexpression of human LRRK2 have the same effect [51]. However, not all phenotypes 

related to loss of Lrrk have been reproducible. For example, locomotor dysfunction and 

abnormal morphology of dopaminergic neurons in Lrrk deficient flies from one study [37] 

were not reproduced in independently generated Lrrk deficient lines [36,38]. Therefore, 

some aspects of Lrrk function remain to be clarified.
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Transgenic expression of mutant Lrrk in Drosophila dopaminergic neurons has consistently 

resulted in age-dependent dopamine cell death. Imai et al. reported that 60-day-old but not 

10-day-old transgenic flies expressing Drosophila Lrrk Y1383C (corresponding to human 

LRRK2 Y1699C) or I1915T (corresponding to human I2020T mutant) driven by a TH-Gal4 
showed a significant reduction in both number of dopaminergic neurons and dopamine 

content compared to those expressing wild-type Lrrk [36]. Gehrke et al. also observed DA 

neuron loss as well as climbing defects in TH-Gal4-directed pathogenic Drosophila Lrrk 

I1915T and human LRRK2 G2019S transgenic animals at 65 days of age [45].

Similarly, mutant human LRRK2 is toxic in flies. Aged flies expressing ddc-GAL4-driven 

UAS-G2019S-LRRK2 exhibit selective degeneration of DA neurons, motor dysfunction, and 

reduced lifespan [35,40,43,51–53]. Linhart et al. expressed ddc-GAL4-driven mutant human 

LRRK2 I2020T in transgenic Drosophila lines, which also resulted in the loss of 

dopaminergic neurons, locomotor deficits, and decreased lifespan [54]. Ng et al. generated 

mutant flies with ddc-Gal4-directed expression of human LRRK2 Y1699C. These flies were 

phenotypically similar to flies expressing human LRRK2 G2019S. Interestingly, human 

LRRK2 G2385R mutant flies did not show significant degeneration of DA neurons or motor 

deficits, but did have a significantly reduced lifespan [52]. Flies overexpressing mutant Lrrk/

LRRK2 were also found to be more vulnerable to hydrogen peroxide (H2O2) compared to 

those overexpressing wild-type protein [36,55], along with decreased sensitivity to the H2O2 

treatment in Drosophila Lrrk deletion mutant flies [36]. However, Wang et al. found Lrrk 

deletion mutant flies to be more sensitive to H2O2 than wild-type flies [38]. Expression of 

wild-type human LRRK2 did not induce a phenotype significantly different from that of 

control in some studies [35,51–53,56], but a mild phenotype has been reported in others 

[40,57]. Hindle et al. did not see reduction in number of DA neurons in 28-day-old flies 

expressing human LRRK2 G2019S directed by TH- or HL9- dopaminergic GAL4 drivers, 

but did find retinal degeneration [56].

Despite some discrepancies between different transgenic lines, these models have led to 

several important insights into the pathogenesis of LRRK2-mediated disease. For example, 

both Drosophila Lrrk and human LRRK2 modulate neurite growth and synaptic 

morphogenesis via phosphorylation of Futsch, the Drosophila homolog of microtubule-

associated protein 1B (MAP1B), at the pre-synapse and of eukaryotic initiation factor 4E 

(eIF4E)-binding protein (4E-BP) at the post-synapse [39]. While it remains unclear how 4E-

BP, a negative regulator of protein translation, mediates the synaptic effects of LRRK2, this 

hypothesis would be consistent with prior claims that 4E-BP is a substrate of Drosophila 
Lrrk [36], although data from human cells suggests that the phosphorylation of 4E-BP might 

be regulated by other stress-induced kinases such as p38 [58]. LRRK2/Lrrk have also been 

claimed to phosphorylate FoxO, a transcription factor that regulates 4E-BP transcription, 

potentially suggesting a mechanism other than direct phosphorylation of 4E-BP by LRRK2/

Lrrk to control 4E-BP [59]. Additional experiments linked deregulated protein synthesis 

with increased LRRK2 kinase activity in human LRRK2 G2019S transgenic flies through 

increased phosphorylation of ribosomal protein s15, an activator of protein synthesis [43]. 

As yet another potential mechanism, Gehrke et al. showed that pathogenic Drosophila Lrrk 

I1915T and human LRRK2 G2019S negatively regulate translational repression via the 

microRNA pathway [45], although subsequent studies looking at miRNA abundance in 
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LRRK2 knockout or transgenic mice showed a very modest effect on transcription [60], 

leaving open the question as to whether the observed effects on translation are a direct 

consequence of LRRK2 or subsequent to the accumulation of age-related pathology in 

Drosophila Lrrk/LRRK2 models.

Another concept that has been derived largely from fly models is that bioenergetics might be 

important in Lrrk/LRRK2 pathogenesis. For example, retinal degeneration in flies 

expressing human LRRK2 G2019S can be prompted by increased activity/energy demand in 

the visual system [56]. Mitochondria, which are clearly important in energy generation, 

show pathology in the flight muscles of G2019S–LRRK2 transgenic Drosophila [53]. These 

effects are modulated by both parkin and LRRK2 via the AMPK signaling pathway, further 

implying that compromised neuronal energy homeostasis could contribute to 

neurodegeneration [53]. Multiple studies of transgenic LRRK2 Drosophila models reported 

a genetic linkage with parkin [52,53,57], PINK1 [57], or DJ-1 [57], genes that are known to 

be important in mitochondrial function [61].

An apparently distinct set of interactions between Drosophila Lrrk and the Rab protein 

family in Drosophila follicle cells suggest roles for Lrrk in Rab7-dependent lysosomal 

positioning and in endosomal recycling via Rab9 [41,44]. Matta et al. suggested an 

involvement of Drosophila Lrrk in synaptic vesicle endocytosis at the Drosophila 
neuromuscular junction through phosphorylation of Endophilin A, a result later supported 

by experiments in rodent cells [42,62]. Linhart et al. provided evidence of interaction 

between human LRRK2 and vacuolar protein sorting 35 (Vps35) using a genetic modifier 

screen with transgenic human LRRK2 I2020T mutant flies [54]. Mutation of the Vps35 

gene, which encodes a core component of the retromer complex critically involved in protein 

sorting and recycling and endosome-trans-Golgi trafficking, has been identified as causative 

of PD [63,64]. These results would then suggest that one or more aspects of vesicular 

transport, particularly related to turnover of endosomes, might be impacted by loss of 

Drosophila Lrrk.

Finally, Drosophila Lrrk may also have effects on regulation of the cytoskeleton. It has been 

claimed that human LRRK2 can phosphorylate the microtubule binding protein Futsch, 

leading to altered synaptic microtubule organization and, hence, synaptic growth [39]. 

Additionally, human LRRK2 is thought to bind to the Drosophila glycogen synthase kinase 

(GSK3b) homologue, Shaggy, that can then phosphorylate tau [51], which would then also 

be expected to affect microtubule dynamics.

How do we interpret claims that a single protein is involved in at least four distinct cellular 

processes, namely protein translation, mitochondrial bioenergetics, vesicular transport and 

cytoskeletal regulation? Two disparate answers to this question are either that LRRK2 

genuinely participates in all of these processes, perhaps playing a coordinating role, or that 

some effects are secondary to others. For example, autophagy is at least one homeostatic 

mechanism by which dicer and argonaute are degraded [65], raising the possibility that the 

effects of LRRK on miRNA generation [45] are secondary to its effects on lysosomal 

positioning [41]. Similar arguments may be made for the relationship between autophagy 

and energetics as these two processes are tightly co-regulated and selective autophagy is one 
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way in which mitochondria are degraded [66]. For these reasons, mechanistic details such as 

whether claimed Lrrk/LRRK2 substrates can be shown to be reliable are very important as 

they might help resolve which events are closest to LRRK. A related question is the extent to 

which we can extrapolate from those organisms that have a single homologue to those that 

have distinct LRRKs. We will therefore discuss next the relationship between LRRK1 and 

LRRK2, the two paralogous genes found in mammals.

The mammalian paralogues LRRK1 and LRRK2

LRRK1 has 1,981 amino acids [25], sharing a similar overall domain structure [20,25,67,68] 

and an overall sequence homology of 26/45% identity/similarity [69] to the larger (2,527 

amino acid) LRRK2. Both LRRK1 and LRRK2 bind GDP/GTP with a similar affinity via 

the GTPase-like Roc domain [20,67,69]. Although the regulatory interplay between the Roc 

domain and the kinase domain is not yet well understood, LRRK2 kinase function does 

require an intact Roc domain [16,70,71] whereas GTP-binding was shown to stimulate 

LRRK1 kinase activity [20]. However, differences between the two proteins exist in both the 

N- and C- terminal regions as LRRK2 has a larger N-terminal region containing several 

unique repeats that are absent in the equivalent section of LRRK1 [23,25,67,72,73] (Figure 

1).

A reasonable question, therefore, is whether LRRK1 and LRRK2 act in the same pathway or 

have functionally distinct roles. Both LRRK1 and LRRK2 are widely expressed in the 

mammalian brain including in the frontal cortex, striatum, and hippocampus [69,74–76] 

with the overall level of LRRK2 mRNA expression in brain higher than that of LRRK1 [77]. 

However, studies using in situ hybridization detected very low if any LRRK1 expression in 

striatum and also showed that, unlike LRRK2, LRRK1 is not expressed in all neuronal 

layers [78,79]. Regarding subcellular distribution, LRRK1 is predominantly cytoplasmic as 

is LRRK2 [18,20,69]. Because they are co-expressed and co-localized in some areas of the 

brain, a heterodimeric interaction between LRRK1 and LRRK2 could potentially occur in 
vivo as in vitro [73,74,80]. It is therefore possible that LRRK1 could play a modulatory role 

in the LRRK2 signaling network and hence change risk of PD [73,74,80]. A study by 

Dachsel et al. identified a LRRK1 variant, L416M, that was associated with a 6-year earlier 

age of onset of PD when carried alongside the LRRK2 G2019S mutation, supporting the 

idea of LRRK1 as a potential disease modifier [74]. However, attempts to directly link 

variants in LRRK1 to PD pathogenesis have so far been unsuccessful [68,76,81].

A further development of the concept that LRRK1 and LRRK2 might be in the same 

pathway is that the two proteins might be functionally redundant [77,82], i.e., that LRRK1 

could compensate for lack of LRRK2. Potentially arguing against this possibility are the 

observations that (i) disturbance of LRRK2 does not alter expression of LRRK1 [83,84], (ii) 

mutations in LRRK1 do not mimic the pathological effects of the equivalent mutations in 

LRRK2 [69], and (iii) LRRK2 possesses an inherent toxicity not matched by LRRK1, 

possibly due to the higher basal level of LRRK2 kinase activity [67,69]. Kinase assays of 

LRRK2 demonstrate robust autophosphorylation as well as phosphorylation of model 

substrates including LRRKtide, Nictide, myelin basic protein (MBP), and moesin in vitro 
[67,85]. LRRK1 also binds ATP, but autophosphorylation activity is much more modest [86] 

Langston et al. Page 7

Biochem J. Author manuscript; available in PMC 2017 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and is inactive against LRRK2 model peptides [67,85]. Therefore, although both LRRK1 

and LRRK2 are at least recognizable as kinases they do not have precisely the same 

enzymatic function.

Though like many other kinases both proteins are basally phosphorylated [69], Reyniers et 
al. ascertained that different residues are phosphorylated in each protein by mapping LRRK1 

and LRRK2 phosphosites in parallel [73]. One example is the LRRK2-specific binding of 

14-3-3 mediated by phosphoresidues S910/S935 that are not found in LRRK1 [73,87,88]. 

Each protein also has distinct interaction partners. As well as 14-3-3 proteins, LRRK2 has 

interactions with a number of pre-synaptic proteins mediated by its WD40 domain [89] that 

do not appear to be shared with LRRK1. In contrast, LRRK1 specifically binds the adaptor 

protein Grb2 that has been shown to mediate complex formation between LRRK1 and BCR-

ABL1, a fusion tyrosine kinase that causes leukemia [90]. Additionally, LRRK1 plays a role 

in cell division downstream of Polo-like kinase 1 (PLK1) as mitotic spindle orientation 

depends on centrosome maturation, which requires LRRK1-mediated phosphorylation of 

CDK5RAP2 [91]. LRRK1 also has a specific interaction with epidermal growth factor 

receptor (EGFR) [92] that is not shared with LRRK2 [73]. Finally, a study of Lrrk1 

knockout mice presented evidence that severe osteopetrosis is observed in these mice 

because Lrrk1 regulates bone mass through interaction with the cellular Rous sarcoma 

oncogene (c-Src) signaling pathway, whereas Lrrk2 knockout mice do not display a bone 

phenotype [93]. These results are substantiated by a high-throughput screening of mouse 

gene knockouts that identified Lrrk1 as a gene affecting bone mass [94]. Again, these data 

support some distinctions between LRRK1 and LRRK2.

At the cellular level, both proteins are cytosolic or associated with membranous and 

vesicular structures [20,69,92,95–97]. LRRK1 has been proposed to regulate EGFR 

trafficking in endosomes [73,92] via phosphorylation of its substrate CLIP-170, a 

microtubule plus-end protein [98]. LRRK2 has also been linked to vesicular trafficking, but 

to date it appears to modulate distinct vesicular transport events related to vesicular sorting 

and/or the autophagy/lysosome system [46,54,73], likely mediated by protein interactions at 

the late endosome or the trans-Golgi network (TGN). So while LRRK1 and LRRK2 are both 

involved in vesicular events that fundamentally alter protein trafficking, it would initially 

appear that LRRK1 is directed more to the plasma membrane and early recycling endosomes 

while LRRK2 is involved in later endosomal events and potentially in retromer function. 

With this in mind, we will next discuss the attempts to model loss of function and PD-related 

alleles of LRRK2 in rodents.

Rodent models of LRRK2

The LRRK2 protein is highly conserved between humans, mice and rats, with over 88% 

identity in the amino acid sequences of each species [99] (Figure 1). Lrrk2 mRNA and 

protein are expressed throughout both mouse and rat brain with highest expression levels in 

cortex and striatum, and an overall distribution pattern similar to that of LRRK2 in the 

human brain [75,95,99–104]. Much like human LRRK2, mouse and rat Lrrk2 have been 

shown to localize in the cytoplasm and also to associate with membranous and vesicular 

structures within cells [95,97,101,105]. It has recently been confirmed that mouse Lrrk2 and 
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human LRRK2 can form a cross-species heterodimer by co-transfection and 

immunoprecipitation, further supporting that they are functionally similar proteins [106].

There has been some debate as to whether or not Lrrk2 is present in the rodent substantia 

nigra as some studies did find nigral expression [75,95,101,103,104] and some did not 

[100,102], an issue which may be due to variation in antibody specificity and sensitivity. 

West et al. saw Lrrk2 expression in the substantia nigra in mice but not in rats and also 

pointed out that although the amino acid sequence of human and mouse LRRK2 is highly 

conserved, there are marked differences in the regulatory regions across species. These 

species-specific elements may lead to important distinctions in how the LRRK2 gene is 

expressed in different animals [99]. Because of these potentially important distinctions 

between how LRRK2 behaves in even relatively closely related species, we will discuss 

mouse and rat models separately, starting first with knockout models.

Loss of function models

Lrrk2 knockout mice—Because LRRK2 mutations are associated with PD, an important 

question is whether deletion of the LRRK2 gene influences neurodegeneration and any 

attendant behavioral outcomes. Several Lrrk2 knockout mouse models yielded animals that 

did not show loss of dopaminergic neurons (evaluated from 18–24 months of age) or 

abnormal locomotive behavior [82,107–110]. Another knockout model also showed no 

neuronal loss, but had a subtly enhanced motor performance in the rotarod test at 7 months 

and increased thigmotaxic behavior in the open field test at 7 and 16 months [83]. 

Collectively, these results suggest that expression of LRRK2 is not required for dopamine 

neuron survival in the adult brain.

In contrast to the modest effects in the brain, several studies have shown a reproducible 

kidney pathology in Lrrk2 knockout mice. Dramatic morphological changes in color, size, 

weight, and texture are reported in conjunction with a range of other observations including 

altered levels of autophagy markers [82,83,107,110], increased inflammatory response 

[82,83], indications of oxidative damage [82,110], and evidence of interplay between 

LRRK2 and α-synuclein [82,110] in kidney. The reason that kidneys are affected is 

proposed to be that LRRK2 expression is high, and LRRK1 expression is low, in this tissue. 

The relative expression of the two genes might therefore indicate some partial redundancy in 

other tissues.

The mechanism by which LRRK2 deficiency results in kidney pathology may relate to the 

autophagy pathway [111,112]. Observations using light and electron microscopy suggest the 

accumulation of vesicle-derived structures that might be related to autophagosomes or 

lysosomes. At the protein level, Tong et al. noted increased levels of p62, a ubiquitin-binding 

protein involved in autophagy, and significantly decreased levels of LC3-II in Lrrk2 

knockout mouse kidneys at 20 months of age [82]. In a later study, it was noted that there are 

age-dependent alterations of these markers, with increased levels of LC3-II and decreased 

levels of p62 in kidneys of 7-month-old Lrrk2 knockout mice but decreased LC3-II and 

increased p62 in kidneys of 20-month old Lrrk2 knockout mice [110]. In an independent 

knockout line, increased levels of p62 and of mTOR (mammalian target of rapamycin), a 

key regulator of autophagy, were seen but the autophagy marker LC3-II was similar to wild-
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type in kidneys of Lrrk2 knockout mice aged 14 months [107]. Finally, Hinkle et al. found 

no evidence of biphasic changes, but instead observed consistently increased levels of LC3-

II and p62 in the kidneys of 3-, 12-, and 18–20-month-old Lrrk2 knockout mice, suggesting 

a progressive increase in autophagic activity in the kidneys [83] (Table 1). Therefore, the 

majority of available evidence suggests some change in autophagy and/or lysosomal markers 

but the data is still inconsistent as to which changes are seen and the role of aging.

Lrrk2 knockout mice have also been used to highlight a potential role for LRRK2 in the 

immune system. For example, Lrrk2 knockout mice are more sensitive than their wild type 

counterparts to inflammatory colitis induced by dextran sulfate sodium [113]. In contrast, 

the same animals are less sensitive to another inflammatory condition, experimental 

autoimmune uveitis [114]. It has been suggested [114] that the difference between these two 

studies relates to the relative contribution of the adaptive immune system compared to innate 

immunity, the latter being more important in experimental colitis. Supporting this idea, there 

is evidence from human systems that LRRK2 is responsive to signaling pathways relevant to 

innate immunity [88,115]. It is likely that the involvement of LRRK2 in both autophagy and 

responses to pathogens are related to each other as a form of autophagy, xenophagy, is 

important in the removal of pathogens. By extension, this may mean that inflammation plays 

a role in the pathology of human LRRK2-mediated PD (reviewed in [116]). Overall, these 

studies show that important insights into the normal biological function of Lrrk2 have been 

obtained from studies of knockout mice. We will next examine which aspects of function of 

this protein are conserved in rats.

Lrrk2 knockout rats—Similarly to Lrrk2 knockout mouse models, robust 

pathophysiological changes were detected in the kidneys of Lrrk2 knockout rats [117–119]. 

Gross morphological and histological alterations that appear to be progressive with age 

[118] were observed, implicating a range of pathogenic mechanisms including impairment 

of the autophagy-lysosomal pathway [118], disrupted immune function [117,119], and 

deregulated metabolism [117,118]. Biochemical profiling of Lrrk2 knockout rat kidneys 

indicated that their abnormally dark pigmentation is due to accumulation of hemoglobin and 

lipofuscin [119]. Pathophysiological alterations were also seen in rat lungs [118], liver [118], 

and spleen [117]. Therefore, although the underlying function of LRRK2 is not known, the 

function is likely to be highly conserved between rats and mice.

Interestingly, overexpression of human α-synuclein via adeno-associated virus-mediated 

transduction elicited dopaminergic neurodegeneration in wild-type rats but not in Lrrk2 

knockout rats, suggesting that LRRK2 inhibition could have neuroprotective effects [120] 

(Table 1). This is consistent with results using inducible expression of of human α-synuclein 

A53T generated in the Lrrk2 knockout background that showed that LRRK2 expression is 

required for the toxic effects of α-ynuclein [108]. Diminished recruitment of 

proinflammatory myeloid cells was also observed in the Lrrk2 knockout rats, which would 

be consistent with a role of Lrrk2 in innate immunity leading to neurodegeneration as 

discussed above..
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Models of dominant mutations

LRRK2 R1441C/G mouse models—The most dramatic behavioral phenotype in mice 

using pathogenic mutations in LRRK2 was generated using a BAC transgenic approach to 

express human R1441G LRRK2. These mice were hypokinetic beginning at 6 months of 

age, with motor activity deficits progressing to a visually apparent immobility by 10–13 

months [121]. Additionally, the motor deficits could be rescued by treatment with the 

dopamine precursor L-DOPA (L-3,4-dihydroxyphenylalanine) or apomorphine, a non-

selective D1 and D2 dopamine agonist. There was no loss of dopaminergic neurons, though 

the DA neurons had abnormally small cell bodies on average and reduced dendritic density 

in mice aged 9–10 months [121]. This line can be obtained from The Jackson Laboratory, 

but subsequent reports were not able to reproduce the originally observed motor 

dysfunction. Bichler et al. saw only subtle motor deficits after the age of 16 months in 

R1441G mice subjected to open field, rotarod, cylinder, and grip strength tests [122]. Dranka 

et al. measured defects in coordinated motor function by rotarod and pole tests in the mice 

by 15 months of age, but observed unaltered gross motor function in open field and gait 

tests. Re-examination of dopaminergic neurons revealed normal tyrosine hydroxylase 

staining in both substantia nigra and striatum of R1441G mice at 16 months of age 

[123,124] (Table 1). The reasons for this loss of phenotype are not clear, but could 

potentially relate either to genetic modifiers in the background of the original animals or a 

loss of copies of the integrated BAC that would then lead to lower expression levels of 

human LRRK2. It is likely that lower expression of mutant protein would not result in 

dramatic phenotypes, as a murine Lrrk2 R1441C knockin model also did not display 

dopaminergic neurodegeneration or abnormal spontaneous motor activity in mice up to 2 

years of age [125].

LRRK2 G2019S mouse models—Only one mouse model has shown both dopaminergic 

neurodegeneration and motor dysfunction. Using neuronal-specific expression of human 

G2019S LRRK2, progressive deterioration of SNpc dopaminergic neurons was observed in 

mice. Reduced locomotor activity was evident via measurement of spontaneous ambulatory 

activity in an activity cage and performance of the pole test at 12 months, with a slightly 

more severe phenotype at 16 months. Furthermore, administration of L-DOPA reversed the 

hypoactive phenotype in 12-month-old G2019S mice [105]. A second group also generated a 

transgenic mouse line with expression of human LRRK2 G2019S driven by the same 

promoter. In this line, loss of DA neurons and reduced neurite density of remaining DA 

neurons were found in mice aged to 19–21 months, but the mice displayed normal 

locomotor activity at 6 and 15 months [126]. Another mouse model using viral-based 

expression of human LRRK2 G2019S showed a similar loss of dopaminergic neurons and 

reduced neurite density but no atypical motor phenotype [86].

However, a series of other G2019S mouse models reported normal dopaminergic neurons 

but with a range of behavioral abnormalities. One knock-in Lrrk2 G2019S mouse model 

exhibited a hyperkinetic phenotype and enhanced motor performance that could be reversed 

with administration of LRRK2 kinase inhibitors [127]. Expression of human G2019S 

LRRK2 in the forebrain results in normal performance in the rotarod test but significantly 

increased ambulatory activity in the open field test in mice [108]. Neither wild-type nor 
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G2019S LRRK2 BAC transgenic mice aged to 7–8 months performed significantly 

differently from control non-transgenic animals in beam-crossing, gait, or negative geotaxis 

tests, but G2019S LRRK2 BAC transgenic mice did show reduced exploratory behavior 

(increased thigmotaxis) in the open field test [84]. BAC transgenic mice overexpressing 

murine Lrrk2 G2019S demonstrated normal locomotor activity in the open field, beam and 

gait tests at 6 and 12 months, but mice overexpressing murine Lrrk2 wild-type displayed 

hyperactivity and enhanced performance in these tests [128] (Table 1).

Although these studies have generally focused on the dopamine system, there are some 

reported abnormalities that could represent symptoms of disease preceding overt 

neuropathology. Several groups identified signs of altered dopamine neurotransmission 

[84,105,121,125,128,129], irregular immune response [86,123,124], and/or tau alterations 

[84,105,121,128]. Gastrointestinal dysfunctions beginning at 6 months of age [122] and 

olfactory impairment at 15 months of age [123,124] were observed in LRRK2 mice, 

although not all groups that assessed olfaction ability in LRRK2 mice saw a deficit 

[122,129]. How these findings may be relevant to human Parkinson’s disease patients is not 

yet clear; regardless, they could indicate promising new strategies for understanding and 

targeting disease mechanisms.

LRRK2 I2020T mouse model—In the only I2020T mouse model reported in the 

literature, human LRRK2 I2020T is expressed specifically in neurons [129]. No loss of 

dopaminergic neurons was observed in either young (10 weeks of age) or aged (18 months 

of age) mice, but the mice had an abnormal locomotor phenotype. A higher frequency of 

rearing was seen in 22-week-old transgenic human LRRK2 I2020T mice compared to non-

transgenic controls. Additionally, transgenic mice subjected to the beam test (at 23 and 43 

weeks of age) and the rotarod test (at 34 weeks of age) exhibited impaired locomotor ability. 

However, the phenotype did not persist in older animals as no significant difference was 

observed between transgenic and non-transgenic mice in the performance of the beam test at 

73 weeks of age, or the rotarod test at 42 and 59 weeks of age [129] (Table 1).

LRRK2 G2019S rat models—Several models involving overexpression of human 

LRRK2 G2019S in rats have been described in the literature. Dusonchet et al. (2011) 

instigated neuron-specific expression of human wild-type or G2019S LRRK2 via adenoviral 

vector injection in the striatum of adult rats. Expression of wild-type LRRK2 did not induce 

significant neuronal loss in the rats, but animals overexpressing the G2019S LRRK2 mutant 

displayed progressive degeneration of nigral dopaminergic neurons up to 42 days after 

injection [130]. Temporal overexpression of human G2019S LRRK2 in 5-month-old 

inducible transgenic rats did not cause loss of DA neurons, though it did promote enhanced 

locomotor activity in the open field test in rats at 18 months of age. In contrast, animals 

constitutively overexpressing human LRRK2 G2019S mutant did not have an atypical 

behavioral phenotype, which may be indicative of an as yet undefined developmental 

compensatory mechanism [131]. In a human BAC LRRK2 G2019S transgenic rat model, 

there was no loss of DA neurons but the neuron cell bodies were significantly flatter than 

those in wild-type rats at 12 months of age. In a test of postural instability, these human 

LRRK2 G2019S transgenic rats showed increased instability compared to non-transgenic 
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littermate controls at 8 months of age, but not at 4 or 12 months, and an increased number of 

rearings in a cylinder test at 12 months of age, but not at 4 or 8 months [132]. When coupled 

with adeno-associated viral-mediated overexpression of human α-synuclein, transgenic 

overexpression of human LRRK2 G2019S in rats induced exacerbated DA 

neurodegeneration as well as increased microglial activation and myeloid cell recruitment 

compared with wild-type rats [133]. LRRK2 kinase inhibition mitigated both 

neurodegeneration and neuroinflammation, supporting the proposal of LRRK2 as a 

modulator of neuroinflammatory response. Overall, these results show that in rats as in mice, 

the chronic expression of LRRK2 has relatively modest effects. However, the acute 

expression from viral vectors in rats, which might be accompanied by modest disruption of 

the brain parenchyma and transient inflammation, does result in a stronger phenotype.

LRRK2 animal models as a bridge from bench to bedside

The ultimate goal of the extensive research into LRRK2 biology is to develop targeted 

therapy for people living with PD. To date, most efforts in drug development for LRRK2-

associated PD have related to the design of specific, potent, and brain permeable LRRK2 

kinase inhibitors. Like any kinase inhibitor, no LRRK2 inhibitor has perfect selectivity and 

many are only poorly permeable across the blood-brain barrier [134]. Furthermore, recent 

results have suggested that LRRK2 kinase inhibitors can have effects on other organ systems 

that may produce detrimental effects [135]. Assuming that these technical concerns can be 

overcome, kinase inhibitors might be an appropriate treatment option for patients with the 

G2019S mutation as it is well established that G2019S LRRK2 has an increased kinase 

activity in vitro. However, other LRRK2 mutations apparently have kinase activity similar to 

wild type protein or even diminished phosphorylation activity [136,137] and therefore may 

require alternative pharmacological approaches [134]. For example, mutations in the ROC 

domain (R1441C/G/H) may be targeted with compounds that interfere with GTP binding 

[138,139]. Importantly for the current discussion, the optimal choice of animal models for 

each treatment modality stratified by pathogenic mutation would allow estimating in vivo 

efficacy of the drugs as well as revealing potential side effects more effectively during 

preclinical research prior to human trials.

It is important to be clear what one might expect from an optimal animal for LRRK2. In 

humans, it is clear that the consistent phenotype associated with mutations is progressive 

dopaminergic neuronal cell loss in the substantia nigra pars compacta with more variable α-

synuclein pathology [140]. Therefore, an ideal animal model would replicate the 

biochemical effect of each mutation and have dopamine cell loss so that the mutations can 

be tied to a pathology that has face validity for the human condition. Unfortunately, this 

crucial phenotype has generally been lacking in many animal models of genetic forms of PD 

(see [141] for review). One way to provide a stronger effect on dopamine cell loss would be 

by addition of stressors such as a-synuclein as reported recently in rats [133]. Alternatively, 

it might be possible to examine intermediate phenotypes, likely autophagy or inflammation, 

that while not sufficient to induce toxicity in the lifetime of rodents might faithfully report 

the activity of LRRK2 in vivo.
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CONCLUSIONS

This survey of the currently available literature has covered concepts related to distinctness 

and commonality for LRRK2 and its homologues within and between species. Our overall 

impression at this stage is that while LRRK1 and LRRK2 have importantly different 

properties they are likely involved in related processes in the cell. An analogy would be the 

larger family of Rab proteins – all have a similar biochemical function but due to targeting to 

different subcellular (and in some cases sub-organellar) compartments they can each have 

different effects in cells. In the case of LRRK1 and LRRK2, it is likely that each might 

impact similar pathways but in different mechanistic ways. We would therefore predict that 

knocking out both homologues in tissues would have additive effects rather than 

demonstrating epistasis and might result in phenotypes that overlap more with those seen in 

the invertebrate lrk-1/Lrrk knockouts than with single LRRK1 or LRRK2 knockouts. The 

orthologues from invertebrate species may subsume functions of both LRRK1 and LRRK2 

in mammals.

Collectively these models have therefore produced substantial and consistent insights into 

the normal physiological functions of LRRK2 and its homologues across species. A major 

current focus is on the effects of LRRK2 on the autophagy-lysosome system, but these 

proteins are also likely involved in cytoskeletal regulation, mitochondrial function and 

protein translation. It is our view that each of these processes are likely related to each other 

either directly or indirectly.

All mutations in LRRK2 that cause PD in humans have the ability to produce toxic effects, 

which has been consistently shown in Drosophila models in particular. It is very likely that 

the toxic effects of mutant LRRK2 relate to its normal biochemical and cellular function(s), 

particularly to kinase activity. However, mutations do not appear to be simple loss of 

function as the knockout and mutation phenotypes differ dramatically, especially in 

vertebrate models. This leads to the most likely current interpretation that mutations are gain 

of function in some way that remains to be fully defined. Overall, the utility of animal 

models to dissect mechanisms related to human mutations is easily demonstrated by studies 

on LRRK2 and it is hoped that this will be useful in the development of therapeutic 

approaches in the near future.

Abbreviations

BAC bacterial artificial chromosome

BBB blood-brain barrier

COR C-terminus of ROC

DA dopaminergic

EGFR epidermal growth factor receptor

L-DOPA L-3,4-dihydroxyphenylalanine

LRR leucine rich repeat
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LRRK leucine rich repeat kinase

lrk-1 leucine-rich repeats-1, Ras-like domain, kinase

PD Parkinson’s disease

ROC Ras of complex proteins

SNpc substantia nigra pars compacta
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Figure 1. 
Schematic diagrams of LRRK proteins in different species, including human LRRK2 and its 

human homologue LRRK1, as well as orthologues from different species Predicted domains 

are indicated by labelled boxes. Percentage identities based on a Clustal 2.1 multiple 

sequence alignment are given relative to human LRRK2 (left, bolded) and relative to human 

LRRK1 (right) for LRR, Roc-COR and kinase domains.
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