1duosnuey Joyiny 1duosnuen Joyiny 1duosnuey Joyiny

1duosnuey Joyiny

Author manuscript
Multivariate Behav Res. Author manuscript; available in PMC 2017 September 01.

-, HHS Public Access
«

Published in final edited form as:
Multivariate Behav Res. 2016 ; 51(5): 681-697. d0i:10.1080/00273171.2016.1224154.

The Combined Effects of Measurement Error and Omitting
Confounders in the Single-Mediator Model

Matthew S. Fritz,
Department of Educational Psychology, University of Nebraska - Lincoln

David A. Kenny, and
Department of Psychology, University of Connecticut

David P. MacKinnon
Department of Psychology, Arizona State University

Abstract

Mediation analysis requires a number of strong assumptions be met in order to make valid causal
inferences. Failing to account for violations of these assumptions, such as not modeling
measurement error or omitting a common cause of the effects in the model, can bias the parameter
estimates of the mediated effect. When the independent variable is perfectly reliable, for example
when participants are randomly assigned to levels of treatment, measurement error in the mediator
tends to underestimate the mediated effect, while the omission of a confounding variable of the
mediator to outcome relation tends to overestimate the mediated effect. Violations of these two
assumptions often co-occur, however, in which case the mediated effect could be overestimated,
underestimated, or even, in very rare circumstances, unbiased. In order to explore the combined
effect of measurement error and omitted confounders in the same model, the impact of each
violation on the single-mediator model is first examined individually. Then the combined effect of
having measurement error and omitted confounders in the same model is discussed. Throughout,
an empirical example is provided to illustrate the effect of violating these assumptions on the
mediated effect.
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Mediating variables are central to theoretical and applied research in psychology (Baron &
Kenny, 1986; James & Brett, 1984; MacKinnon, 2008) and other disciplines because they
provide information on the process by which one variable affects another variable. For
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example, mediating variables are used to explain how social norms and knowledge mediate
the effect of an intervention to decrease the self-reported use of steroids and diet pills in
female student athletes (Ranby et al., 2009). Other examples include how assignment to an
intensive case management condition increases the number of contacts with housing
agencies which in turn increases the number of days stably housed per month for homeless
individuals (Morse, Calsyn, Allen, & Kenny, 1994) and how posttraumatic stress symptoms
mediate the relation between childhood sexual abuse and self-injury (Weierich & Nock,
2008).

Recent developments in statistical mediation analysis have focused on the strong
assumptions required to make causal inferences (e.g., Imai, Keele, & Tingley, 2010;
MacKinnon, 2008; Pearl, 2011; Valeri & VanderWeele, 2013). Though not an exhaustive list
of assumptions for the single-mediator model, four of the most discussed assumptions are:
correct causal ordering of the variables in the model, variables are measured when exerting
their influence on other variables (i.e., temporal precedence states that causes proceed effects
in time such that changes in X'must occur before changes in M which must occur before
changes in Y), ensuring no variables that cause the relations between X; M, and Yare
omitted from the model, and ensuring that X; M, and Y are measured without error. For
more information on assumptions see MacKinnon (2008), Maxwell and Cole (2007),
McDonald (1997), and VanderWeele (2015). Worries about whether these assumptions are
reasonable in all situations has led many researchers (e.g., Bullock, Green, & Ha, 2010) to
be critical of using statistical methods alone for mediation analysis, especially in situations
where the mediator is not randomly assigned.

Testing of assumptions is an important, too often ignored, component of statistical mediation
analysis. When any of the assumptions of the single-mediator model are violated, the
parameter estimates from the mediation analysis may be biased and lead to incorrect
conclusions regarding the presence and magnitude of a mediated effect. In general, the
greater the degree of violation, the greater the bias. When two or more assumptions are
violated, however, the pattern is more complicated. It might be the case that the violation of
the second assumption increases the bias in the estimates, but it might also be the case that
violation of the second assumption offsets the violation of the first assumption to a degree.
The current paper explores this idea by considering the violation of two assumptions in the
single-mediator case: omitting one or more confounding variables and measurement error.
We first discuss each individually and then consider their combined effects on the estimates
of the parameters in the single-mediator model. Throughout, we illustrate our results using
an empirical example.

The Single-Mediator Model

The single-mediator model is illustrated in Figure 1 where the arrows directed at Mand Y
represent residual errors. The indirect or mediated effect is equal to the product ab where ais
the effect of the independent variable X on the mediator M/and & is the effect of Mon the
dependent variable Yafter controlling for X. The direct effect of X'on Y'that is not mediated
is ¢, The total effect, ¢, is equal to the sum of the indirect and direct effects
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The relation in Equation 1 does not hold when Mor Y'is not continuous and may not apply
to more complex models. The effects in Figure 1 can be estimated using a variety of
strategies including finding the estimates separately using three ordinary-least-squares
(OLYS) regression equations

Y=i1+cX+r 2

M=is+aX+ra2 (3)

Y=ig+bM+c X+rs,  (4)

or simultaneously using structural equation modeling (SEM).

Empirical Example

In order to illustrate the single-mediator model we present a re-analysis of data originally
presented by Morse et al. (1994) that is be used throughout our discussion of confounding
and measurement error. As cited in the original study, up to 40% of the American homeless
population has a mental illness. In addition to help with housing, income, and other social
services, these individuals need mental health services, but often reject outpatient and other
traditional treatments. They may, however, accept help in the form of day treatments, case
management, and housing assistance (Morse et al., 1986). For this reason, Morse and
colleagues compared the number of days a sample of mentally ill homeless individuals were
stably housed after being randomly assigned to receive intensive case management or to a
control group. Individuals in the intensive case management condition were assigned to a
continuous treatment team clinical case manager, while individuals in the control condition
were assigned to either a drop-in center or outpatient therapy, representing treatment-as-
usual. For more information see Morse et al. (1994).

For the current example, the Xvariable (M= 0.42, SD = 0.494) represents random
assignment to a treatment program of intensive case management (X'= 1) or to a treatment-
as-usual condition (X = 0).1 The mediator M (M= 10.39, SD = 11.473) is the number of
contacts with agencies providing housing during the nine months after the intervention was
initiated. The outcome Y (M= 15.55, SD=13.047) is the number of days per month stably

1The mean of 0.42 is a result of an unbalanced initial design (n7= 52 for the intensive case management group and 77 = 126 for the
control group) and unequal attrition in the two groups (13% for the intensive case management group and almost 50% in the control
group), though the attrition was not found to be related to scores on the variables used here. See Morse et al. (1994) for more

information.
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housed for a seven-month period that starts nine months after initiation of the intervention
(i.e., Y'is measured seven months after A/ was measured and 16 months after assignment to
X). There are 109 cases and the observed correlations are: rxy = .248, rxp,=.237, and ryy
= .446. To put these in context, these correlations are slightly smaller than the medium and
large effects, .3 and .5, described by Cohen (1988). All analyses were conducted using
Mplus (Muthén & Muthén, 2015).2 The dataset and the setup and output files for all
examples for Mplus and AMOS (IBM Corp, 2015) are available at (Link removed for
review).

Table 1 contains the results for the single-mediator model in Figure 1, labeled Model 1. All
of the estimates are positive and significant at the .05 level, except for ¢ . Based on these
results, there is evidence to support the hypothesis that intensive case management increases
the number of contacts with housing agencies which in turn increases the number of days
per month stably housed. It is possible, however, that the relation between number of
contacts and days stably housed is due, partially or completely, to an omitted variable that
causes both. The impact of omitting such a variable on the estimate of the mediated effect is
now considered.

Confounding of Mand Y

A primary assumption of the single-mediator model estimated in Model 1 is that no
variables that explain the relations between X; M, and Y; often called confounders, have
been omitted from the model. Problems with omitted variables causing biased parameter
estimates in the single-mediator model have been described by many others (see for
example: Bullock et al., 2010; Clark, 2005; Cornfield et al., 1959/2009; Greenland &
Morgenstern, 2001; Hafeman, 2011; Imai, Keele, & Yamamoto, 2010; Imai & Yamamoto,
2013; James, 1980; Judd & Kenny, 1981, 2010; Li, Bienias, & Bennett, 2007; Liu,
Kuramoto, & Stuart, 2013; MacKinnon, 2008; MacKinnon, Krull, & Lockwood, 2000;
Mauro, 1990; McDonald, 1997; Pearl, 2009; VanderWeele, 2008, 2013, 2015; Vander\Weele,
Valeri, & Ogburn, 2012). Recent work has provided a more formal treatment of the influence
of confounding variables in general (Imai, Keele, & Yamamoto, 2010; VanderWeele, 2010).
Multiple methods to adjust for confounding when measures of confounders are available
including principal stratification (Jo, 2008) and inverse probability weighting (Coffman &
Zhong, 2012). In addition, multiple authors have explored methods to investigate the
sensitivity of results to confounding (Cox, Kisbu-Sakarya, Miocevi¢, & MacKinnon, 2014;
Imai, Keele, & Yamamoto, 2010; Imai & Yamamoto, 2013; Liu et al., 2013; MacKinnon &
Pirlott, 2015; VanderWeele, 2008, 2010, 2013).

Consider the case in the empirical example presented here where Xrepresents random
assignment to levels of treatment. Judd and Kenny (2010; Holland, 1988; MacKinnon, 2008
and others) state that when X'is a manipulated variable, such as random assignment, it can
safely be assumed that no confounders of the X'to Mor Xto Y'relations exist provided all
potential confounders are balanced across levels of X. A manipulated X variable does not

2Note that Mplus does not apply the finite sample correction when calculating variances. The standard deviations for X; M, and Y
presented here were calculated using 7 rather than 77— 1 so these values may be used later. Therefore, other programs that use the finite
sample correction will provide slightly different variance values.
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remove potential confounders of the A/to Yrelation, however. If there exists a set of ¢
confounders (Cy, Cy, ... Cp) of the Mto Y'relation, then Equation 4 becomes

Y=i3+b, ]\4+C,TX+6101+6202+ oo tegCytrs. (5)

Adapting work by Clarke (2005; see also Greene, 2003; Hanushek & Jackson, 1977) from
the general OLS regression case, the biased estimates that would result from omitting the ¢
confounders of the Mto Yrelation (i.e., estimating Equation 4 instead of Equation 5), bpc
and ¢ pc, are equal to

boc :bT ‘I’elfclM.x +€2fc21u.x7L s ‘I’eqfch.x (6)

Coc=¢C T+61fC’1XJu +62fC2X.1L1+ s +6qfcqx41u (7)

Here b7and ¢ “rare the true values, e is the coefficient for the <’ confounder, Cy, from
Equation 5, fynr x Is the partial regression coefficient for Cy regressed on M partialling out
X, and fcy x v is the partial regression coefficient for Cy regressed on X partialling out M.

When there is a single confounder of the Mto Y'relation, Cy, that is uncorrelated with X; as
would occur when Xis random assignment (Judd & Kenny, 2010) and illustrated in Figure
2, then Equations 6 and 7 can be rewritten as

T, S
o=ttt (2]
oc T 1-— r?{M S (8)

! !
€ pc=C rte1

“TxuToym (i)
1— 7‘2 Sy ' (9)

XM

where Sy, Sy and Sqp are standard deviations. Equations 8 and 9 show that when 67 and
é17¢cy prhave the same sign, boc is biased in the direction of b7 (i.e., overestimated) while ¢
“ocs biased in the opposite direction of ¢’z The case where brand e;7¢, pshave the same
sign can be thought of as a case of consistent confounding because the relation of C;to M
and C;to Yare consistent with the relation between Mand Y. As described by Bullock et
al. (2010), the consistent confounding case leads to an overestimate of fand in turn the
mediated effect. This makes sense because when ¢, x =0, aand care unaffected by
omitting the confounder, but & is overestimated, so ¢ “must change in the opposite direction
in order for Equation 1 to remain true. Note that Equations 8 and 9 are the same for
standardized estimates and when Xis continuous as long as X'and C; remain uncorrelated.
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Overestimating & is not the only possible result of omitting a confounder of the Mto Y
relation. First, it is possible for b7and e;/¢; asto be opposite in sign, which can be thought
of as inconsistent confounding. The bias in band ¢ “due to omitting an inconsistent
confounder is opposite to the bias due to an omitted consistent confounder. That is, ¢ pcis
now biased in the direction of ¢ 7; but bpo¢ is biased in the opposite direction of 47 leading
to an underestimate or even a change in sign of the mediated effect. Second, it is possible for
C;to be correlated with X, even when X'is a manipulated variable, if despite randomization
sampling error creates groups unbalanced on pre-randomization levels of C; (Judd & Kenny,
1981). Third, the values of C; may change across time. If the randomization to levels of X
created groups that were balanced on the pre-randomization levels of Cj, but the groups
differed in their values of C;at some point after randomization, then it can be concluded that
X caused a change in C;. This would mean that while C; is a confounder of the Mto Y
relation, it is also a mediator of the X'to AMand Xto Yrelations. Though a variable that
explains the Mto Y'relation and is caused by X'is sometimes referred to as a post-treatment
confounder, these variables are considered mediators for our purposes, not confounders.
Regardless of the reason, when C;and X are correlated, then aand care biased when C; is
also omitted from Equations 2 and 3. In turn, the bias in bpcand ¢ o reflects the bias in a
and cin order to maintain the relation in Equation 1.

Finally, while discussing a single confounder of the Mto Y'relation provides a simple
example to explore, it is much more likely that multiple confounders of the Mto Y'relation
exist. As Clarke (2005) points out, when multiple variables are omitted from a model, the
bias can increase, decrease, or remain the same compared to the bias caused by the first
omitted variable, depending on the size and signs of relations between all variables. For the
single-mediator model this can be seen by rewriting Equations 8 and 9 for the case where
there is a second confounder, C,, that is also uncorrelated with X such that

T S T S
c1 M c Co M C,
boo=br+e1 T2 o~ (—1 > +eo T2 ) (—2 )]
Txm \NSm Txm NSu (10)
4 4 “TxmToom (Seq “TxmTogm [(Soy
€ oc=C rte1 172 o +eo 172 o :
~Txum Sx Y x (11)

When b7, é17cm and éxry 04 have the same sign, the effect of the second confounder is to
increase the bias in boc in the same direction as the first confounder. When é;7¢; p7and

& /¢, prare opposite in sign, each confounder mitigates the bias caused by the other
confounder. In rare situations, the bias caused by the two confounders could even cancel out
exactly and result in unbiased estimates when both confounders are omitted such that bpc =
brand C/OC: C/r.
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Omitted Confounder Example

To illustrate this existing work on how omitting confounders of the Mto Y'relation biases
the parameter estimates from the single-mediator model, we return to Table 1 and the Morse
et al. (1994) example. As a reminder, X'is random assignment to a treatment program of
intensive case management, M is the number of contacts with agencies providing housing
during the nine months after the intervention was initiated, and Y'is the number of days per
month stably housed for a seven-month period that starts nine months after initiation of the
intervention. Model 1 (i.e., Figure 1) includes only X, M, and Y, so the estimates of band ¢~
from Model 1 are only unbiased with regards to confounders if no confounders of the Mto
Yrelation exist. When this assumption is violated, then the estimates of #and ¢ “from
Model 1 are biased and instead equal to &pcand ¢’p¢. In order to determine the amount of
bias caused by omitting one or more confounders from Model 1, bpcand ¢’oc must be
compared to the unbiased estimates 67and ¢ “7from models that include these confounders.
Models 2A-2E (i.e., Figure 2) provide the unbiased estimates for five different combinations
of confounders to which 6pcand ¢ pcare compared. Note that this is somewhat
counterintuitive as the incorrect model (Model 1) remains the same while the correct model
(Models 2A-2E) changes.

The unbiased values of all coefficients for Models 2A-2E can be calculated directly using
SEM by adding a latent variable for each omitted confounder and specifying the values of
the relations between the confounders and the measured variables, as well as between the
confounders. A confounder of the X'to Mor Xto Yrelation could be added to the model in
a similar manner. For the model in Figure 2 with a single confounder the structural equation

is
n :Fn+B£+C:>|:]¥:|:|:bO 8:||:]}\:{:|+|::/T Zi:||:é('1 + EJ\J:|
2
e =|°x 8}
12)

where d, €;, and the variance of C; need to be set to specific values. This approach differs
from previous work in confounding that focuses on correlations between error terms rather
than introducing the confounder as an explicit variable. For example, Imai, Keele, and
Yamamoto (2010) emphasize the correlation of the residuals p of Mand Y, which equals
standardized d;e;.

For Model 2A the standardized values (; and ¢} (denoted by *) are both assumed to be equal
to 0.32 to represent the case where the confounder has slightly less than medium partial
effects on Mand Y (MacKinnon, Lockwood, Hoffman, West, & Sheets, 2002).3 The

unstandardized values of d;and e; are by multiplying, 47 and ¢; by (Sps/ S¢y) and (Sy/

3A standardized partial effect of 0.32 represents a partial effect that is 82% the size of a medium partial effect of 0.39 (MacKinnon et
al., 2002) which is the same percentage the observed correlation between Xand Y'(.237) is to a medium correlation (.3, Cohen, 1988)
resulting in a confounder with an approximately equal effect on Mand Y'relative to the variables in the model, but not larger than the
overall effect between Xand Y.
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Scy). respectively (Cohen, Cohen, West, & Aiken, 2003). Since sy, = 11.473 and sy =
13.047, if the variance of Cj is set to one, the unstandardized values of d; and e; are equal to
3.671 and 4.175. From Model 2A in Table 1, b7=0.343 and ¢ "= 4.671. Here Iy x=0,s0
repm = .32, With rxp,=.237, we have all of the values needed to compute bpcand ¢’ oc
directly using Equations 8 and 9, such that 6o~ = 0.466 (as shown in the note for Table 1)
and ¢’pc = 3.992, which are the estimates found for Model 1. As expected for a single
consistent confounder where all of the effects are positive and 7¢; x = 0, the values of aand ¢
are unchanged. The value of bpcin Model 1 is positively biased (0.123 = 0.466 — 0.343)
compared to the true value in Model 2A, whereas ¢ ¢ is negatively biased (—0.679 = 3.992
—4.671). This results in a positively biased estimate of the mediated effect in Model 1,
though ab is statistically significant in both models. Note that the same relation is seen for
the standardized estimates of bpcand ¢ ’pcwhich can be calculated in the same manner as
the unstandardized estimates by using the standardized values of 67and ¢ ‘7in Model 2A
and setting sy = s = s¢; =1.

Equations 8 and 9 show that as the magnitude of the effect of the confounder on Mand/or Y
is increased, the amount of bias increases as well. This increase in bias is illustrated by
Model 2B, which is identical to Model 2A except that ¢} is set to correspond to a large
partial effect of 0.59 (MacKinnon et al., 2002) so that ¢, = 7.697. As ¢, increases from
Model 2A to Model 2B, the positive bias in bp¢ increases from 0.123 to 0.227 (0.466 —
0.239), while ¢ o becomes more negatively biased. This leads to a more positively biased
estimate of the mediated effect in Model 1 as well, though ab is statistically significant in
both models.

As described previously, an omitted confounder does not always result in this pattern of bias.
Model 2C represents the inconsistent confounding case where 7 =0.32, but ¢5= — 0.32.
Using the new negative value of e; (—4.175) to get the true values from Model 2C, by=
0.590 and ¢ ‘7= 3.313, Equations 8 and 9 again give the values of bpcand ¢ ’pcin Model 1.
Unlike in the consistent confounding case in Models 2A and 2B, ¢ is now negatively
biased (-0124 = 0.466 — 0.590) compared to b7, though still significant, and ¢ ‘p¢is
positively biased (0.679 = 3.992 — 3.313), resulting in ab now being negatively biased in
Model 1.

Models 2D and 2E illustrate the impact of adding a second confounder, C, of the Mto Y
relation to the model in Figure 2 that is also uncorrelated with X. This requires adding a
second latent variable to the model and specifying values for the variance of Cj, the effects
of Co,on Mand Y, doand e, and the correlation between C;and Co. In Model 2D, C;isa
consistent confounder with g5 =¢3=0.32 as in Model 2A, while C,is a consistent
confounder with small partial effects such that 75—c¢%—=0.14 (MacKinnon et al., 2002). The
variance of C,is set to one, so the unstandardized values for d>and e,are 1.606 and 1.827,
respectively. In addition, the correlation between C;and Cis set equal to .3, as it would be
expected that the confounders were related, so 7¢; p7and 7,z are .362 and .236,
respectively.4 Table 1 shows the true values for Model 2D are b7=0.287 and ¢ 7= 4.797.

4Here the values for regmand reg ppwere computed directly in Mplus using the TECH4 command.
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When these values are compared to the biased estimates in Model 1, it can be seen that the
positive bias in bincreased from 0.123 (Model 1 vs. Model 2A) to 0.179 (Model 1 vs.

Model 2D) when C,was added to the model, while the negative bias in ¢ “also increased. As
all of the relations are positive in Model 2D, Equations 10 and 11 show that the effects of C;
and C,combine to create more bias in the estimates.

Model 2E is identical to Model 2D except that ¢5—= — 0.14 to represent the situation where
Cyis an inconsistent confounder while C; is a consistent confounder.® The true values for
Model 2E in Table 1 are 7= 0.367 and ¢ 7= 4.541. As in Model 2D, reym =362 and repm
=.236, so Equations 10 and 11 can be used to compute bpcand ¢ ’pcin Model 1. When the
true values are compared to the biased estimates, it can be seen that the positive bias in &
decreased from 0.123 (Model 1 vs. Model 2A) to 0.099 (Model 1 vs. Model 2E) when C»,
an inconsistent confounder, is added to the model containing Cj;, a consistent confounder.
Equation 10 shows that the effects of C; and G, are now creating bias in opposite directions,
so the two effects combine to create less biased estimates than when C; is the only omitted
confounder.

Sensitivity to an Omitted Confounder

Liu et al. (2013) describe two types of sensitivity analyses. Sensitivity analyses from the
epidemiological perspective focus on the extent to which a significant relation between two
variables can be explained by an omitted variable. The results presented in Table 1 represent
epidemiological sensitivity analyses because they illustrate how the confounder explains part
of the relation between Mand Y (i.e., the difference between brand bpc). In contrast,
sensitivity analyses from the statistical perspective focus on how large the effect of an
omitted variable needs to be in order to make a statistically significant effect zero or
nonsignificant. Because .X'is assumed to be measured without error and uncorrelated with
C; here, the estimate of ais unaffected by an omitted confounder. Therefore, a statistical
sensitivity analysis to determine how large the effect of an omitted confounder must be for
the mediated effect to be zero in the Morse et al. (1994) data must focus on 5.

Using standardized values to ease interpretation, Equation 8 can be used to show that b7 =0

when eTrClM =0.387 = 0.387; see the note for Table 1 for more details. If e"{:rcl W then
both effects are equal to .622. While these effects are both large (Cohen, 1988; MacKinnon
et al., 2002), it may be plausible for a confounder with effects of this size to exist for this set
of variables. Mauro (1990) discusses the difference between the /imits of possibility (i.e., the
largest possible value of 7¢; p/is 1.0, which results in ¢ =0.387) for omitted variables versus
the /imits of plausibility based upon theory or the effects found in prior research (e.g., if the
largest plausible value of ¢, 1 we would expect to see in these data is .800, the smallest
value ¢; could be is 0.484). This means that rather than just reporting the possible values
from a sensitivity analysis, considerable attention needs to be given to the plausibility of a
confounder with effects of this size existing for a specific set of variables. Examining the

situation where e} # 7 ,, shows that not all possible combinations of effects are equally

SThis situation may seem contrived since all of the relations in Model 2E are positive except e, but the correlation matrix for Model
2E still contains all positive correlations when e2is negative.
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plausible for these data. Consider the case where ¢, /= .5, a large correlation, which results
in ¢1=0.774, a very large, though potentially plausible, partial effect. If 7¢; s = 3, however,
then ¢3=1.290, an extremely large partial effect which may not be plausible for these data.
Note that here it is assumed that 6 and e’{rclM are both positive because only a consistent
confounder could cause bto become zero. An inconsistent confounder would cause the
estimate of Hto increase if it were added to the model as shown in Table 1. If multiple
confounders were omitted, some consistent, others inconsistent, the combined effect of these
multiple confounders would need to be known in order determine the effect on the
significance of the mediated effect.

Equation 8 could also be used to determine how large the effect of a confounder would need
to be in order for 4 to become nonsignificant.6 For a Type | error rate of .05, the two-tailed
critical values for b in the example are {106) = £1.987. The standard error for b _ is
0.077, so using this value, b must be 0.153 (= 1.987 * .077) or larger to be statistically
significant. When b7, <0.153, then e’{rclM >0.243 as illustrated in the note for Table 1. If

e1=7¢, u» then both effects must be .493 or larger for the effect to no longer be significant.
When 7, pis .3 or .1, then ¢; must be 0.810 and 2.430 (or larger), respectively. While 0.810
is a very large partial effect, it may still be plausible for these data. A partial effect of 2.430
is so large, however, that an omitted confounder with such a large effect on Y seems
implausible for these data.

Measurement Error in M and Y

In addition to the no omitted confounder assumption, another commonly violated
assumption of the single-mediator model is that X; M, and Y must be perfectly reliable to
ensure the observed estimates of relations among variables are not biased by measurement
error (Baron & Kenny, 1986; Hoyle & Kenny, 1999; VanderWeele et al., 2012).
Measurement error refers to any irrelevant factors that cause a score on a variable besides the
theoretical construct of interest. When a variable M is measured with error, the observed

2
M’

. . . . 2
variance, s; , is overestimated such that the true variance, 5., is equal to

2 _ .2
SAIT _81\,[ rMAf (13)

where ryyis the reliability of M (Kenny, 1979). While measurement error affects the
variances of variables that are not perfectly reliable, measurement error does not affect the
covariances provided the errors themselves are independent. In OLS regression, the
unstandardized parameter estimates are a function of the covariances between all variables
in the model and the variances of the predictors, but not the variance of the outcome variable

6For simplicity's sake, the joint significance test is used. While one of the bootstrap tests would likely be preferred in practice, Fritz,
Taylor, and MacKinnon (2012) recommend the percentile bootstrap over the bias-corrected bootstrap when the sample size is less than
500, as is the case here, and Fritz and MacKinnon (2007) showed the joint significance test has approximately the same statistical
power as the percentile bootstrap when ¢ % 0, which also occurs here, so the results should be approximately equal for the percentile

bootstrap.
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(Cohen et al., 2003). Therefore, only measurement error in the predictors, not the outcome
variable, affects the unstandardized estimates.

When X represents random assignment to treatment, X can safely be assumed to be
measured without error (Judd & Kenny, 2010), but the same assumption cannot reasonably
be made for Mand Y'in most situations. A perfectly reliable X'leads to unbiased
unstandardized estimates of aand ¢, regardless of the amount of measurement error in Mor
Y. The unstandardized estimates of #and ¢ “are biased by measurement error in M, but not
Y. Kenny (1979) shows that when ryx = 1, the unstandardized estimates of sand ¢ “that are
biased due to measurement error in M, byeand ¢ 'z, are equal to

b

ME

whr,  (14)

’

€ up=C ptapby (1 —w) (15)

where w is the reliability of M after partialling out X
_Tum T)Q(M

B 17703@1 ' (16)

and rx;y is the observed correlation between Xand M. It should be noted that Equations 14,
15, and 16 are the same when Xis a perfectly reliable continuous variable.

Because w is less than one whenever ry,is less than one, byzwould be biased in the

opposite direction from b7, resulting in attenuation of by,zwhenr,,,, > 7";2”1- When aband
¢”have the same sign, the effect is referred to as consistent mediation because the effect of
Xon Yis consistent regardless of whether the effect is direct or indirect through M. In the
consistent mediation case, ¢ sz is biased in the same direction as ¢ ‘7, overestimating the
effect. This can also be seen from Equation 1 because if cand a remain constant, when b is
attenuated, ¢ “must be overestimated in order to maintain the relationship between ¢ and the
other parameters. /nconsistent mediation occurs when aband ¢ “are opposite in sign
(MacKinnon, Krull, & Lockwood, 2000). In inconsistent mediation, b,z is again attenuated

whenr,,,, > rfm, but ¢ sz is biased in the opposite direction as ¢ “7; either underestimating

¢ ‘ror even changing the sign.

Unlike the unstandardized estimates, the standardized parameter estimates in the single-
mediator model are based on correlations and therefore are biased by measurement error in
both the predictors and the outcome. The effect of measurement error on the correlation
between two variables Mand Y'is equal to

Ty =T T
MY My Y

mmTyy (17)
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where rysyis the observed correlation between Mand Y, ry,is the reliability of M, ryyis
the reliability of ¥, and 737y is the true correlation between Aand Y. Because the
reliability of a variable measured with error is less than one, Equation 17 shows that the
observed correlation becomes more attenuated compared to the true correlation, regardless
of sign, as one or both of the variables’ reliabilities decline. The standardized estimate for an
OLS regression model with a single predictor is equal to the correlation between the
predictor and the outcome (Cohen et al., 2003). Hence, the standardized estimates of aand ¢

* anda*

ME ME’

(denoted by *) that are biased due to measurement error, ¢
reliable are equal to

when Xis perfectly

s =Cr VTvy (18)

@ =0 Vg (19)

The true standardized values are equal to the true correlations, c, =T'x,v,and ay,, =T X M
As rypand ryyare less than one when MMand Yare not perfectly reliable, the effect of

measurement error in Aand Y'is to attenuate a,_and ¢} in comparison to their true
values.

When Xis perfectly reliable, the standardized estimates of sand ¢ “that are biased due to

7 1% /%
measurement error,” b andc, , are equal to
I
b*, :wb* YY
ME T /—TAHLT (20)

=y (c;+a;b; (1- w)) o

In the standardized case, the bias in #and ¢ “is now dependent on the reliabilities of A7 and
Y. When ryps> ryy, b}, is more attenuated compared to wb’, but when 7a < ryy, b, is
/%

ME

less attenuated than wb. The value of ¢”  could therefore be positively biased, negatively

biased, or even unbiased.

7In order to move from the unstandardized estimates to the standardized estimates, brand bpgeare multiplied by (Sps4/Sy7) and
(Sm! Sy), respectively, to obtain b; and b;m (Cohen et al., 2003). From Equation 12, $a,, —Sn VT nnr and Sy, =Sy V'vy, so
the scales b; and b:,m are off by a factor of( RVARYSY: / VTyy ) As Equation 19 solves for b:,, = multiplying b; by

( \/Tyy/ \/TMM) puts the right side of the equation in the same scale as b;m. This is also the purpose of the \/7"y-y term in
Equation 20.
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Measurement Error Example

To illustrate the existing work on the effect of measurement error on the parameter estimates
from the single-mediator model, we again return to the Morse et al. (1994) example. In
Table 2, Model 1 (i.e., Figure 1) assumes that X; M, and Y are all measured without error.
When Mand/or Y are measured with error, then the estimates £and ¢ from Model 1 are
biased and instead equal to &yszand ¢ sz Determining the amount of bias requires
comparing these values to the unbiased estimates from models that account for the
measurement error. Models 3A-3C (i.e., Figure 3) provide the unbiased estimates #7and ¢ 7
for three different combinations of measurement error to which byzand ¢ sz are compared.
Again, note that the incorrect model (Model 1) remains the same while the correct model
(Models 3A-3C) changes.

The unbiased values of all coefficients for Models 3A-3C can be calculated directly using
SEM if the reliabilities are known. The structural model for Figure 3 is
. M. | | 0 0 M, a, Cus
iR { Y. ]_{b 0} { Y, }JF{C/ }[XH SNP?)

T T T T

and assumes Xis perfectly reliable because it represents random assignment to levels of
treatment. The model accounts for measurement error in Mand Y by adding the latent
variables M7, Y7, Eps and Ey based on classical test theory. Here Mrand Y7are the true
values of Mand Y, and £y and Eyare error terms such that M= M7+ Epgand Y= Y7+ Ey
(McDonald, 1999). It follows that since Mand Yare the only measures of Mrand Y7 the
paths from Mto Mrand Y'to Yy are set to one as illustrated in the measurement model for
Mand Y

e
M

€y } (23)

The only remaining quantities needed are the variances of Myand Y7 From Equation 13,

the variance of Mrequals s, (r,,,,) which is achieved by setting the variance of £y,to

2
s M

si (1 = r,, ). The mediation parameters now involve M and Y7, so the estimates equal the
true values. The same strategy is used to account for measurement error in X'when
necessary.

(1 —r,,,, ) This procedure is repeated for Y by setting the variance of £y to

Model 3A represents the case where ryy= 1.0 and rys= .8. As rxx= 1.0, the
unstandardized estimates of aand care the same in Model 1 and Model 3A. Using Equation
16 with ryy= .8 and ryy = .237, w = 0.788. Inputting w and the true values from Model 3A
into Equations 14 and 15 gives bz = 0.466 (as shown in the note for Table 2) and ¢ /e =
3.992, which are the measurement error biased estimates in Model 1. Since all of the effects
are positive here, when Xis perfectly reliable, the effect of measurement error in Mis to
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negatively bias bz (-0.126 = 0.466 — 0.592) and positively bias ¢ 34z (0.690 = 3.992 —
3.302) compared to the true values. Hence, the mediated effect in Model 1 is
underestimated. The same pattern is seen when comparing the standardized estimates of &
and ¢, from Model 3A to those in Model 1, which can be calculated using Equations 20 and
21. In addition, the standardized estimate of ais attenuated.

Model 3B keeps s = .8, but adds measurement error to Y'such that ryy = .8. Because in
our model Y'is only an outcome and never a predictor, measurement error in Y has no effect
on the unstandardized estimates. Thus, the unstandardized values are the same for Models
3A and 3B, so the bias in fyzand ¢’z is also the same for Model 3A and 3B. The
standardized estimates are affected by the measurement error in Y; however. Equations 18

and 19 can be used to compute ¢* _=0.237 and ¢* _=0.151 in Model 1, which are

ME ME

attenuated compared to the true values in Model 3B. Unlike the unstandardized estimates,
the negative bias in b* _increases from Model 3A (-0.055 = 0.410 — 0.465) to Model 3B

ME
(-0.110 = 0.410 - 0.520), while the positive bias in c';;E decreases from 0.026 (0.151 —
0.125) to 0.011 (0.151 — 0.140).

Model 3C illustrates how the amount of bias in £and ¢ ”is directly related to the amount of
measurement error in M. Decreasing s from .8 to .6 in Model 3C decreases w from 0.788
to 0.576. Equations 14 and 15 show that decreasing w increases the bias in byszand ¢ e
from Model 1 compared to their true values. Here the negative bias in 6, increases from
-0.126 (0.466 — 0.592) in Model 3B to —0.343 (0.466 — 0.809) in Model 3C, as the positive
bias in ¢ e increases from 0.690 (3.992 — 3.302) to 1.887 (3.992 — 2.105). This also
increases the bias in all of the standardized estimates, except for ¢*

The values for a, b, and ¢ “are all positive for the Morse et al. (2004) data, which is an
example of consistent mediation. In order to illustrate the effect of measurement error in the
inconsistent mediation case, the observed covariance matrix for the Morse et al. data was
altered so that the sign of the covariance between Xand M is negative, while all of the other
covariance values remained positive. Note that we are not simply reversing the scale of a
variable here, but are instead artificially altering the covariance matrix to produce
inconsistent mediation for illustration purposes only. Hence, the results based on the altered
covariance matrix should not be interpreted substantively. Two models, Model 1-IM and
3A-IM, are fit to the altered covariance matrix. Model 3A-IM is identical to Model 3A with
=8 and ryy = 1.0, and contains the true values for the estimates in the inconsistent
mediation case. Model 1-IM is identical to Model 1 so it does not correct for measurement
error in Mor Yand now provides the measurement biased estimates for the inconsistent
mediation case. As shown in Table 2, the values for cyszand aysein Model 1-1M are the
same magnitude as in the consistent mediation case in Model 1, except that a is now
negative. The values for b,zand and ¢ /= in Model 1-1M both remain positive, but have
changed from Model 1. As in the consistent mediation case, by,eis negatively biased
(-0.165 = 0.608 — 0.773) compared to the true value in Model 3A-IM, but unlike the
consistent mediation case, ¢ sz is now also negatively biased (—0.909 = 9.902 — 10.811).
The same pattern is seen for the standardized estimates.
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Sensitivity to Measurement Error

Table 2 illustrates how different amounts of measurement error in M affect the measurement
error biased b coefficient (by4£), which are sensitivity analyses from the epidemiological
perspective (Liu et al, 2013). Because bris always larger than b,z for the Morse et al.
(1994) data, measurement error can never cause a significant ,,zto become nonsignificant
or a nonzero by,eto become zero for the example presented here. Hence, there is no need
here to conduct a statistical sensitivity analysis for the mediated effect for the effect of
measurement error.

Measurement Error and Confounding in the Same Model

The effects of omitting a confounder of the Ato Y'relation or measuring these variables
with error have been examined separately up to this point. Violations of these two
assumptions are likely to co-occur, however. The effect of simultaneously violating both
assumptions has not been investigated previously in the mediation literature, so the effect of
violating both assumptions simultaneously is how discussed. Consider again the model in
Equation 5 where there are g confounders of the Mto Yrelation. When M, Y, or any of the
confounders are measured with error, the unstandardized estimates of #and ¢ “when a set of
g confounders of the M/to Y'relation are omitted from the model andany of the variables are
measured with error, bocyeand ¢ ’ocps are

b b

oomp=%p.ctCinp fc1 mxmeTCnp fCQM.XME to e fch,XME (24)

/7 ’

€ ocnp=¢ J\JE,C+elﬂ1Ef(71XAJ\/H\IE teonp fCQX.J\JJ\JE+ Tt +qu\IEquXAJ\/I]\IE (25)

Here byse cand ¢ e care the estimates of and ¢ “that partial out the effect of the
confounders but are biased due to measured error. And exss fopx mmis and fopns xie have
the same interpretations as in Equations 6 and 7 except that these values are biased due to
measurement error.

When examined separately, the effects of measurement error and omitted confounders on the
magnitude and direction of the bias in the parameter estimates for the single-mediator model
have been shown to depend on the pattern of correlations, the reliabilities, and the number of
confounders. As illustrated in Equations 24 and 25, describing the combined bias in bpcp/e
and ¢ pcumein the general case is difficult without knowing at least some of these quantities.
To simplify the discussion, consider the example previously described where Xis perfectly
reliable, but Mand Yare measured with error, and there is a single confounder of the M to
Y'relation that is uncorrelated with X; C;. In this case, Equations 8 and 9 can be combined
with Equations 14 and 15 to give the joint effect for unstandardized fand ¢ “as

.2
Txm \Su

Toon S¢
bOCME =wby+e€, 5 p % <i> (26)
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XM"C1M

! ! “TxuT So,
€ oemp=C ptaiby (1 —w)+e, 1—r2 (s_> . 27)
XM °X

Note that 7, psand 7xy, are the observed correlations that are biased due to measurement
error in M, not the true, unbiased correlations. And as before, aand care unaffected by
measurement error in Mor Y; or omitted confounders of the Mto Y'relation.

As shown in Table 1, when b is positive and the mediation is consistent, measurement error
negatively biases 4. Table 2 shows that a consistent omitted confounder positively biases b.
Therefore, in the consistent mediation, consistent confounding case, measurement error and
an omitted confounder have opposing effects on bpocne Therefore, the overall bias in
bocne depends on whether measurement error or the omitted confounder has a stronger
effect. That is, when the effect of measurement error is larger than the effect of the
confounder, bpocue is negatively biased. However, when the effect of the omitted
confounder is larger than the effect of measurement error, bocpse would be positively
biased. These opposing effects are easier to see for ¢ pcpeas the effect of measurement

error [a7b7(1 — w)] and the effect of the omitted confounder {%m 71#3(;1” (%)} have
opposite signs, such that measurement error opposes the bias caused by the omitted

confounder and vice versa. This also means that when

TXAIT

) e TxmTo (3o
apb, (1 —w)=e,,n 1—r2 (3X> (28)

the effects are exactly equal in magnitude but opposite in sign, resulting in perfectly
unbiased estimates of #and ¢ . While it may be nearly impossible in practice to find an
empirical situation that satisfies the relation in Equation 28, if the magnitude of one of the
individual effects is known, the magnitude of the other effect necessary to perfectly oppose
the first effect can be calculated.

Even in the rare circumstances where the combined effect produces unbiased unstandardized
estimates, the standardized coefficients are still usually biased because they are also affected
by measurement error in Y. In the combined condition, the omitted confounder does not
affect a*or c¢* but these values are attenuated due to measurement error in Mand Y as

*

shown in Equations 18 and 19. The equations for b and ¢.* are equal to

OCME OCME
T T~ 2
* _ * YY * C1M
bOC‘J\JE_wa < \/7,—> +61ME 1 — 2
MM XM (29)
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Iy / P “TxuTogm
COCME: vVTyy (C:+aTbT (1 - w)) +6TME‘ 1— 7“)2(;1 (30)
and show that when the unstandardized estimates are unbiased, b, . . is only unbiased

!

ocu i 18 Unbiased only when ryy = 1.0.

when = ryyand c

Measurement Error and Omitted Confounder Example

To illustrate the combined effect of measurement error and omitting a confounder in the
same single-mediator model, we return a final time to the Morse et al. (1994) example. The
unbiased values for all parameter estimates in the model that includes measurement error
and confounding can be estimated simultaneously by combining the confounder model in
Figure 2 with the measurement error model in Figure 3, the result of which is shown in
Figure 4. The model in Figure 4 is specified in the same manner as the previous models with
the exception that d; and e; now are directed to Myand Y7yrather than Mand Y. As a result,

d*;and e*; must be multiplied by (sp/ Scy), and (Sy+/ Scy), where sy, =1/s%, (1= 75,,)
and sy_=1/sy (1 =7y ), to find the unstandardized values.

As the effects of measurement error and an omitted confounder are opposing in the
consistent case, the joint effect of measurement error and an omitted confounder on the
parameter estimates in the empirical example is determined by which effect is larger. That is,
when the effect of measurement error is larger, then 6oz is negatively biased and ¢ ‘pene
is positively biased, though less so than if there were no confounders. Alternatively, when
the effect of the omitted confounder is larger, then bpocpeis positively biased and ¢ pcpeis
negatively biased, though again less so than if all of the variables are perfectly reliable. It is
also possible in very specific and likely rare situations for the individual effects to perfectly
cancel one another out, resulting in bpcpeand ¢ pcpse being unbiased.

To illustrate these three possible joint effects, Table 3 contains the results for four models,
labeled Models 4A-4D. Each of these models accounts for measurement error in Mand Y,
as well as a single omitted confounder of the Mto Y'relation. These combined models can
now be thought of as the unbiased models with the models in Table 1 only accounting for the
omitted confounders and the models in Table 2 only accounting for measurement error. As a
result, the effects of the confounders for Models 2A — 2E now represent the effects of the
confounders biased due to measurement error (i.e., dzpseand ézp45). The estimates from the
single-mediator model that omits all confounders and does not account for measurement
error (i.e., Figure 1) is labeled Model 1 and provides the biased estimates apcvis bocme
and ¢ pcpseto which all other models are compared.

Model 4A combines Models 2A and 3C such that rxx = 1.0, 7y = .6, and ryy = .8 with
¥=e;=0.32. In order to calculate the true values of the unstandardized mediation

parameters, (; and ¢ must be multiplied by sp,and sy, not sys-and sy, even though they
are still directed towards Mrand Y7, such that dzpe=3.671 and ezpe= 4.175. With w =
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0.576 and rgy a= .32, the true values in Model 4A can be entered into Equations 26 and 27
to compute the combined bias estimates in Model 1 as bpcpe = 0.466 (as shown in the note
for Table 3) and ¢ ‘pope= 3.992. Here bocye is negatively biased (-0.129 = 0.466 — 0.595)
and ¢ pcueis positively biased (0.709 = 3.992 — 3.283) compared to Model 4A. Hence, the
effect of measurement error is larger here than that of the confounder and the mediated
effect is underestimated in Model 1. The same effect is seen for the standardized estimates.
Note, however, that the negative bias of —0.129 in bpcpse between Model 1 and Model 4A is
less than the negative bias of —0.343 (0.466 — 0.809) between Hpcnse in Model 1 and the
estimate of &£in Model 3C in Table 2 that is corrected for measurement error but not for the
opposing effect of the omitted confounder.

Model 4B is identical to Model 4A except that 734, = .9, decreasing the effect of
measurement error. Compared to the true values in Model 4B, bpcyeand ¢ ocpse from
Model 1 are now positively biased (0.082 = 0.466 — 0.384) and negatively biased (-0.455 =
3.992 — 4.447), respectively. As a result, the effect of the omitted confounder is larger than
that of measurement error and the mediated effect is overestimated in Model 1; the same
effect is seen for the standardized estimates. But again, the positive bias of 0.082 in bpcpe
between Model 1 and Model 4B is less than the positive bias of 0.123 (0.466 — 0.343) in
bocne between Model 1 and b6 ¢ in Model 2A that is corrected for the omitted
confounder but not the opposing effect of measurement error.

In Models 4A and 4B, the effects of measurement error and confounding were unbalanced.
The value of 74, that would exactly balance the effect of confounding and produce
unbiased unstandardized estimates can be computed using Equations 16 and 26. First, we
solve for w in Equation 26 using the following values: ey yz= 4.175 rxp= 237, regpr= .32
Spy=11.473, ar="5.502, and b7=0.466. Next, the computed value for w, 0.735, is used in
Equation 16 to solve for ry,, which is equal to .75. We can verify this value by fitting
Model 4C which is identical to Models 4A and 4B except that 7y, = .75. As shown in Table
3, the uncorrected unstandardized estimates in Model 1 are equal to the true values in Model
4C, within rounding. Hence, in Model 4C the individual effects of measurement error and
omitting the confounder are exactly equal, but opposite, such that the estimate of the
mediated effect in Model 1 is unbiased. Alternatively, if 7, is known, the magnitude of a
confounder that would cancel out the effect of the measurement error can be computed. Note
that since rysand ryy are less than one and not equal, none of the standardized estimates
are unbiased.

While measurement error and a single consistent confounder have opposite effects, Table 1
also shows that for the empirical example, a single inconsistent confounder positively biases
b, while negatively biasing ¢, which is the same as the bias caused by measurement error.
Model 4D is identical to Model 4A except for ¢;—= — (.32 in order to illustrate the combined
effect of an inconsistent confounder and measurement error. The results show that the
negative bias in bpcpein Model 1 is much higher when the confounder is inconsistent in
Model 4D (—0.557 = 0.466 — 1.023) than when the confounder is consistent in Model 4A
(=0.129). The negative bias in bpcpe 0f —0.557 between Model 1 and Model 4D is also
much higher than the negative bias of —0.124 (0.466 — 0.590) between Model 1 and Model
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2C in Table 1 when there was only an inconsistent confounder and no additive effect of
measurement error.

Finally, Model 4A-IM illustrates the effect of inconsistent mediation with a consistent
confounder and measurement error. Model 4A—IM is identical to Model 3A-IM except an
omitted confounder C; was added with 7 =¢;=0.32. As before, Model 1-IM in Table 2
serves as the completely uncorrected model. The effect of measurement error on the
inconsistent mediation model (Model 1-IM vs. Model 3A-1M) was to negatively bias &6
(-0.165 = 0.608 — 0.773) and ¢ (—0.909 = 9.902 — 10.811). Adding the consistent
confounder increases the negative bias in 6 (-0.237 = 0.608 — 0.845) and ¢ ”(-1.302 = 9.902
—11.204) between Model 1-1M and Model 4A-IM.

Sensitivity to a Confounder and Measurement Error

Determining the size of the effect of a confounder needed to exactly cancel out the bias
caused by measurement error, as illustrated by Model 4C in Table 3, is a form of
epidemiological sensitivity analysis. A statistical sensitivity analysis to determine how large
the effect of a confounder is needed for b to be zero that includes the effect of measurement
error can be conducted using Equation 29. As illustrated in the note for Table 3, when

=.6and ryy =8 as in Model 4A, b. =0 when e]‘rClM =0.387. This is the same value as

found for the statistical sensitivity analysis with no measurement error because when b’ =0,
Equation 29 simplifies to Equation 8.

Measurement error in M does play a role in how large the effect of a confounder is needed to
make b7 nonsignificant, however. Using the same critical values (106) = +1.987) and
standard error (0.077) as before, the effect is again nonsignificant when b7 <0.153. When

v = 6 and ryy =8, then b7 <0.153 only when e’{rcl v >0.291, This value is larger than for

* -

the case where all variables were perfectly reliable (i.e., €T7'c1M >0.243) because b7, . is
attenuated compared to b7 . Correcting for this attenuation requires a larger effect of the
omitted confounder in order make the effect nonsignificant. Therefore, statistical sensitivity
analyses that ignore the role of measurement error are likely to underestimate the size of the
effect of an omitted confounder needed to change a significant effect to a nonsignificant

effect.

Discussion

Most users of tests of statistical mediation have assumed the best-case scenario where all
assumptions of the model are met, including all variables measured without error and no
confounders omitted from the model. When any assumption of the single-mediator model is
violated, the usual result is a biased estimate of the mediated effect. In general, the greater
the violation, the greater the bias. When the bias comes from two different sources, the
combined effect can result in an estimate of the mediated effect that is more biased, less
biased, or, in very rare situations, unbiased. As described here and shown in the empirical
example, the bias in the mediated effect due to measurement error is often in the opposite
direction as the bias due to confounding. This can lead to the situation where correcting for
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only one source of bias can produce more biased estimates when both sources of bias are
present. In most situations, however, failing to correct for measurement error, a confounding
variable, or both still likely result in more biased parameter estimates.

Our primary goal here is to raise awareness of the importance of measurement error and
confounding in mediation analysis by describing how violating these assumptions affect
mediation analysis, illustrated by an applied mediation example. As the magnitude and
direction of the bias is not always predictable beforehand, researchers should strive to
develop and use the most reliable measures of A/ that are possible to reduce bias. Latent
variable models can then be used to remove any remaining bias due to measurement error
(Ledgerwood & Shrout, 2011; MacKinnon, 2008). Researchers should also routinely
identify and measure potential confounders when possible so these variables can be included
in the model. Sensitivity analyses can be used to determine how large of an omitted
confounder is needed for a significant effect to become nonsignificant or zero when the
mediator is measured with error. The plausibility of such confounders existing for a specific
study can then be discussed. Note that while sample size is an important factor when
considering statistical significance in a sensitivity analysis, the bias in the estimates of the
mediated effect described here is unaffected by sample size.

The equations presented in this article provide a way for researchers to investigate the extent
to which measurement error and omitted confounders may alter estimates in the single-
mediator model. Given that there may be multiple omitted confounders that exert their
influences at different times and the true effects of each confounder are likely unknown,
values to be used in these equations can be chosen based upon many different criteria. For
example, values can be found by using the theoretical relation between a specific omitted
variable and the included variables, by using prior research where the confounder was
measured and included in a similar model, or by selecting values to examine the amount of
bias in band ¢ “that would result from omitting a confounder with specific effects (e.g.,
positive medium effects) on Mand Y (see also Cox et al., 2014). Values of reliability used in
the equations to assess how measurement error affects mediation analysis can be obtained
from published studies and other prior information or by assessing how different
hypothetical reliability values affect results. Perhaps a first goal for applied researchers who
use mediation models is to obtain information about possible confounder effects and
reliability of measures for their variables of interest. Routinely reporting information about
reliability, suspected omitted confounders, and sensitivity analyses as part of all statistical
mediation analysis results would go a long way towards providing information about the
magnitude and direction of bias found in different research areas.

We wish to emphasize that researchers should not use the results presented here to justify
ignoring measurement error and confounders. In order to cancel out completely, the effects
of measurement error and the omitted variable need to be approximately equal. As shown in
Table 3, as the reliability of M decreases, the size of the effect of the omitted variable needed
to exactly cancel the effect of measurement error can become quite large. For very low
reliabilities, the effects of the presumed omitted variable needed to cancel out the effect of
measurement error are so large that it may not even be possible to find an effect that large in
the social sciences. In turn, for omitted confounders with very large effects, in order to
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exactly cancel out the effect the reliability of the mediator would need to be so low that the
measure of M would be essentially useless.

Additionally, the discussion of confounders was necessarily simplified here to one very
specific scenario in order to clearly illustrate the potential impact of the single-mediator
model simultaneously containing measurement error and omitted confounders. When cases
are randomly assigned to levels of X, as assumed in the examples presented, then in most
cases it can be assumed there are no confounders of the X'to Mor Xto Yrelation (Holland,
1988; Judd & Kenny, 2010; MacKinnon, 2008). There are exceptions to this, however,
including a failure of the random assignment to create groups balanced on the pre-
randomization level of the confounder, a post-treatment confounder that is actually a
mediator, and attrition. Besides causing X'and the confounder to be related, attrition
represents another possible source of bias not considered here. If the data are missing due to
M or Y, the data are missing not at random. If the data are missing due to the treatment or
the confounder, then the data are missing at random (MAR). Because models for MAR data,
such as full information maximum likelihood and multiple imputation, require the source of
the missingness to be included in the model to obtain unbiased estimates (Enders, 2010),
data missing due to treatment should be ignorable in the example presented here. Data
missing due to the confounder, however, are nonignorable because the omitted confounder is
by definition not included in the model, resulting in further bias to the mediated effect.

Regardless of the reason for the relation, when a confounder that is related to X'is omitted
from the single-mediator model, then the estimates of gand care biased and the bias in the
estimates of pand ¢ changes. If the confounder exerts its influence after the cases are
randomly assigned to levels of X or if X'is not a manipulated variable, such as in a purely
observational study, then it is more likely that X and the confounder are related. When X and
the confounder are related, consideration must be given to whether the confounder is only a
confounder of the Mto Y'relation or is directly caused by X, which means the confounder is
actually a mediator of the X'to Mand Xto Yrelations. As noted by numerous authors (e.g.,
Baron & Kenny, 1986), it is unlikely in the social and behavioral sciences for a single
variable to completely mediate the relation between two other variables. Instead, single-
mediator models represent a small portion of a much larger process consisting of numerous
variables that are all interrelated, some causally, others noncausally. What complicates this
further is that a single construct may have multiple roles depending on when it exerts its
influence on the other variables in the model (e.g., is it time-varying or time-invariant) and
when these effects are measured.

For example, consider the role of employment status, as suggested by one reviewer, on the
Morse et al. (1994) data used in the empirical example. Employment status prior to random
assignment of individuals to the intensive case management and treatment-as-usual groups,
C1 =0 is likely to be unrelated to X. In addition, pre-treatment employment status cannot be
a mediator of the relation between treatment and number of housing agency contacts or days
stably housed, since this variable is measured prior to treatment (i.e., temporal precedence
states that an effect cannot exist prior to a cause). But pre-randomization employment status
could be a confounder of the Mto Y'relation, reducing or completely removing the relation
between Mand Y'when added to the model. It is highly unlikely that employment status
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would remain constant for all individuals across the sixteen months of the study, however.
Therefore, employment status one month after assignment to treatment, C; ;=7 could also be
a confounder of the Mto Y'relation and is more likely to be related to treatment than C; -
But if the treatment was believed to take at least three months to have a measureable effect
on any mediators, then C; = could not be a mediator of .X. If employment status nine
months after treatment began, C; ;=g (i.€., at the same time as M is measured) is a
confounder of the Mto Yrelation and was directly affected by treatment, then C; ;-9 would
not be a confounder in the conventional sense. Instead it would be an additional mediator
between intensive case management and days housed that could also reduce or completely
remove the relation between agency contacts and days housed when added to the model.
Finally, employment status sixteen months after assignment to treatment, C; 4=z, (i.€., at the
same time Y'is measured) is likely to be related to X; M, and Y; but cannot be a mediator or
a confounder of the Mto Y'relation. That is four potential roles for employment status
depending on when the effect of employment status is considered! This illustrates two
important points. First, the timing of effects is as important as the variables themselves when
identifying the role (e.g., mediator, outcome, confounder, and so on) of a specific variable
and estimating mediated effects. And second, adding any variables to the single-mediator
model, regardless of their role, can have a large impact the mediated effect and any
conclusions based upon it.

Although many researchers understand that estimating mediation effects using cross-
sectional data often results in biased estimates of longitudinal mediation effects (Maxwell &
Cole, 2007), longitudinal data alone do not guarantee unbiased results. For example, the
variables in the Morse et al. (1990) data presented here were each measured once at a
different point in time (i.e., 0, 9, and 16 months), but that does not guarantee that the
mediation results presented here are unbiased. Mitchell and Maxwell (2013) call this a
sequential design and found that the estimates of the mediated effect from a sequential
design are not necessarily less biased than those from cross-sectional designs. If the Morse
et al. data had repeated measurements of the variables, as recommended by Mitchell and
Maxwell, there would be a greater opportunity to explore the timing of effects, including
whether a previous measure of Mor Y'served as a confounder of the AM/to Y'relation. Even
repeated measurements are not a guarantee of unbiased effects because the repeated
measures must have the correct elapsed time between the first and last measurement, as well
as the number and spacing of the repeated measurements, collectively known as the
temporal design of the study (Collins & Graham, 2002).

What this means for researchers applying mediation models is that in most social and
behavioral science studies, the assumptions that all variables are measured without error and
that all relevant variables have been included in the model at the correct points in time are
always violated. Rather than let the almost certain violation of these assumptions prevent us
from using these models completely, we can recognize that even the best mediation models
contain only the variables that were measured at specific times in that study and represent
only a small part of what is probably a much larger causal process that may change over
time. Thinking of every mediation model as a smaller piece of a larger longitudinal process
forces us to consider how the effects in our estimated model would change if we were able
to include these additional variables from the larger process or change based on when we
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measured the variables. And it is within this context that the results presented here should be
considered. The information provided here should not be used as a reference that can be
cited to justify ignoring measurement error and omitted confounders since in very specific
situations the effects can cancel out, but as a tool to examine how the effects in an
incomplete model may change if additional variables could be added to make a less
incomplete model.
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Figure 1.
The single-mediator model.
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Figure 2.
The single-mediator model with a confounder C; of the mediator to outcome relation.
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Figure 3.
Modeling measurement error in the mediator and outcome variable in the single-mediator

model.
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Figure 4.
The single-mediator model with measurement error in Mand Y, and a confounder C; of the

Mto Yrelation.
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