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Abstract

Mediation analysis requires a number of strong assumptions be met in order to make valid causal 

inferences. Failing to account for violations of these assumptions, such as not modeling 

measurement error or omitting a common cause of the effects in the model, can bias the parameter 

estimates of the mediated effect. When the independent variable is perfectly reliable, for example 

when participants are randomly assigned to levels of treatment, measurement error in the mediator 

tends to underestimate the mediated effect, while the omission of a confounding variable of the 

mediator to outcome relation tends to overestimate the mediated effect. Violations of these two 

assumptions often co-occur, however, in which case the mediated effect could be overestimated, 

underestimated, or even, in very rare circumstances, unbiased. In order to explore the combined 

effect of measurement error and omitted confounders in the same model, the impact of each 

violation on the single-mediator model is first examined individually. Then the combined effect of 

having measurement error and omitted confounders in the same model is discussed. Throughout, 

an empirical example is provided to illustrate the effect of violating these assumptions on the 

mediated effect.
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Mediating variables are central to theoretical and applied research in psychology (Baron & 

Kenny, 1986; James & Brett, 1984; MacKinnon, 2008) and other disciplines because they 

provide information on the process by which one variable affects another variable. For 
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example, mediating variables are used to explain how social norms and knowledge mediate 

the effect of an intervention to decrease the self-reported use of steroids and diet pills in 

female student athletes (Ranby et al., 2009). Other examples include how assignment to an 

intensive case management condition increases the number of contacts with housing 

agencies which in turn increases the number of days stably housed per month for homeless 

individuals (Morse, Calsyn, Allen, & Kenny, 1994) and how posttraumatic stress symptoms 

mediate the relation between childhood sexual abuse and self-injury (Weierich & Nock, 

2008).

Recent developments in statistical mediation analysis have focused on the strong 

assumptions required to make causal inferences (e.g., Imai, Keele, & Tingley, 2010; 

MacKinnon, 2008; Pearl, 2011; Valeri & VanderWeele, 2013). Though not an exhaustive list 

of assumptions for the single-mediator model, four of the most discussed assumptions are: 

correct causal ordering of the variables in the model, variables are measured when exerting 

their influence on other variables (i.e., temporal precedence states that causes proceed effects 

in time such that changes in X must occur before changes in M which must occur before 

changes in Y), ensuring no variables that cause the relations between X, M, and Y are 

omitted from the model, and ensuring that X, M, and Y are measured without error. For 

more information on assumptions see MacKinnon (2008), Maxwell and Cole (2007), 

McDonald (1997), and VanderWeele (2015). Worries about whether these assumptions are 

reasonable in all situations has led many researchers (e.g., Bullock, Green, & Ha, 2010) to 

be critical of using statistical methods alone for mediation analysis, especially in situations 

where the mediator is not randomly assigned.

Testing of assumptions is an important, too often ignored, component of statistical mediation 

analysis. When any of the assumptions of the single-mediator model are violated, the 

parameter estimates from the mediation analysis may be biased and lead to incorrect 

conclusions regarding the presence and magnitude of a mediated effect. In general, the 

greater the degree of violation, the greater the bias. When two or more assumptions are 

violated, however, the pattern is more complicated. It might be the case that the violation of 

the second assumption increases the bias in the estimates, but it might also be the case that 

violation of the second assumption offsets the violation of the first assumption to a degree. 

The current paper explores this idea by considering the violation of two assumptions in the 

single-mediator case: omitting one or more confounding variables and measurement error. 

We first discuss each individually and then consider their combined effects on the estimates 

of the parameters in the single-mediator model. Throughout, we illustrate our results using 

an empirical example.

The Single-Mediator Model

The single-mediator model is illustrated in Figure 1 where the arrows directed at M and Y 
represent residual errors. The indirect or mediated effect is equal to the product ab where a is 

the effect of the independent variable X on the mediator M and b is the effect of M on the 

dependent variable Y after controlling for X. The direct effect of X on Y that is not mediated 

is c′. The total effect, c, is equal to the sum of the indirect and direct effects
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(1)

The relation in Equation 1 does not hold when M or Y is not continuous and may not apply 

to more complex models. The effects in Figure 1 can be estimated using a variety of 

strategies including finding the estimates separately using three ordinary-least-squares 

(OLS) regression equations

(2)

(3)

(4)

or simultaneously using structural equation modeling (SEM).

Empirical Example

In order to illustrate the single-mediator model we present a re-analysis of data originally 

presented by Morse et al. (1994) that is be used throughout our discussion of confounding 

and measurement error. As cited in the original study, up to 40% of the American homeless 

population has a mental illness. In addition to help with housing, income, and other social 

services, these individuals need mental health services, but often reject outpatient and other 

traditional treatments. They may, however, accept help in the form of day treatments, case 

management, and housing assistance (Morse et al., 1986). For this reason, Morse and 

colleagues compared the number of days a sample of mentally ill homeless individuals were 

stably housed after being randomly assigned to receive intensive case management or to a 

control group. Individuals in the intensive case management condition were assigned to a 

continuous treatment team clinical case manager, while individuals in the control condition 

were assigned to either a drop-in center or outpatient therapy, representing treatment-as-

usual. For more information see Morse et al. (1994).

For the current example, the X variable (M = 0.42, SD = 0.494) represents random 

assignment to a treatment program of intensive case management (X = 1) or to a treatment-

as-usual condition (X = 0).1 The mediator M (M = 10.39, SD = 11.473) is the number of 

contacts with agencies providing housing during the nine months after the intervention was 

initiated. The outcome Y (M = 15.55, SD = 13.047) is the number of days per month stably 

1The mean of 0.42 is a result of an unbalanced initial design (n = 52 for the intensive case management group and n = 126 for the 
control group) and unequal attrition in the two groups (13% for the intensive case management group and almost 50% in the control 
group), though the attrition was not found to be related to scores on the variables used here. See Morse et al. (1994) for more 
information.

Fritz et al. Page 3

Multivariate Behav Res. Author manuscript; available in PMC 2017 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



housed for a seven-month period that starts nine months after initiation of the intervention 

(i.e., Y is measured seven months after M was measured and 16 months after assignment to 

X). There are 109 cases and the observed correlations are: rXY = .248, rXM = .237, and rMY 

= .446. To put these in context, these correlations are slightly smaller than the medium and 

large effects, .3 and .5, described by Cohen (1988). All analyses were conducted using 

Mplus (Muthén & Muthén, 2015).2 The dataset and the setup and output files for all 

examples for Mplus and AMOS (IBM Corp, 2015) are available at (Link removed for 

review).

Table 1 contains the results for the single-mediator model in Figure 1, labeled Model 1. All 

of the estimates are positive and significant at the .05 level, except for c′. Based on these 

results, there is evidence to support the hypothesis that intensive case management increases 

the number of contacts with housing agencies which in turn increases the number of days 

per month stably housed. It is possible, however, that the relation between number of 

contacts and days stably housed is due, partially or completely, to an omitted variable that 

causes both. The impact of omitting such a variable on the estimate of the mediated effect is 

now considered.

Confounding of M and Y

A primary assumption of the single-mediator model estimated in Model 1 is that no 

variables that explain the relations between X, M, and Y, often called confounders, have 

been omitted from the model. Problems with omitted variables causing biased parameter 

estimates in the single-mediator model have been described by many others (see for 

example: Bullock et al., 2010; Clark, 2005; Cornfield et al., 1959/2009; Greenland & 

Morgenstern, 2001; Hafeman, 2011; Imai, Keele, & Yamamoto, 2010; Imai & Yamamoto, 

2013; James, 1980; Judd & Kenny, 1981, 2010; Li, Bienias, & Bennett, 2007; Liu, 

Kuramoto, & Stuart, 2013; MacKinnon, 2008; MacKinnon, Krull, & Lockwood, 2000; 

Mauro, 1990; McDonald, 1997; Pearl, 2009; VanderWeele, 2008, 2013, 2015; VanderWeele, 

Valeri, & Ogburn, 2012). Recent work has provided a more formal treatment of the influence 

of confounding variables in general (Imai, Keele, & Yamamoto, 2010; VanderWeele, 2010). 

Multiple methods to adjust for confounding when measures of confounders are available 

including principal stratification (Jo, 2008) and inverse probability weighting (Coffman & 

Zhong, 2012). In addition, multiple authors have explored methods to investigate the 

sensitivity of results to confounding (Cox, Kisbu-Sakarya, Miočević, & MacKinnon, 2014; 

Imai, Keele, & Yamamoto, 2010; Imai & Yamamoto, 2013; Liu et al., 2013; MacKinnon & 

Pirlott, 2015; VanderWeele, 2008, 2010, 2013).

Consider the case in the empirical example presented here where X represents random 

assignment to levels of treatment. Judd and Kenny (2010; Holland, 1988; MacKinnon, 2008 

and others) state that when X is a manipulated variable, such as random assignment, it can 

safely be assumed that no confounders of the X to M or X to Y relations exist provided all 

potential confounders are balanced across levels of X. A manipulated X variable does not 

2Note that Mplus does not apply the finite sample correction when calculating variances. The standard deviations for X, M, and Y 
presented here were calculated using n rather than n – 1 so these values may be used later. Therefore, other programs that use the finite 
sample correction will provide slightly different variance values.
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remove potential confounders of the M to Y relation, however. If there exists a set of q 
confounders (C1, C2, ... Cq) of the M to Y relation, then Equation 4 becomes

(5)

Adapting work by Clarke (2005; see also Greene, 2003; Hanushek & Jackson, 1977) from 

the general OLS regression case, the biased estimates that would result from omitting the q 
confounders of the M to Y relation (i.e., estimating Equation 4 instead of Equation 5), bOC 

and c′OC, are equal to

(6)

(7)

Here bT and c′T are the true values, ek is the coefficient for the kth confounder, Ck, from 

Equation 5, fCkM.X is the partial regression coefficient for Ck regressed on M partialling out 

X, and fCkX.M is the partial regression coefficient for Ck regressed on X partialling out M.

When there is a single confounder of the M to Y relation, C1, that is uncorrelated with X, as 

would occur when X is random assignment (Judd & Kenny, 2010) and illustrated in Figure 

2, then Equations 6 and 7 can be rewritten as

(8)

(9)

where sX, sM, and sC1 are standard deviations. Equations 8 and 9 show that when bT and 

e1rC1M have the same sign, bOC is biased in the direction of bT (i.e., overestimated) while c
′OC is biased in the opposite direction of c′T. The case where bT and e1rC1M have the same 

sign can be thought of as a case of consistent confounding because the relation of C1 to M 
and C1 to Y are consistent with the relation between M and Y. As described by Bullock et 

al. (2010), the consistent confounding case leads to an overestimate of b and in turn the 

mediated effect. This makes sense because when rC1X = 0, a and c are unaffected by 

omitting the confounder, but b is overestimated, so c′ must change in the opposite direction 

in order for Equation 1 to remain true. Note that Equations 8 and 9 are the same for 

standardized estimates and when X is continuous as long as X and C1 remain uncorrelated.
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Overestimating b is not the only possible result of omitting a confounder of the M to Y 
relation. First, it is possible for bT and e1rC1M to be opposite in sign, which can be thought 

of as inconsistent confounding. The bias in b and c′ due to omitting an inconsistent 

confounder is opposite to the bias due to an omitted consistent confounder. That is, c′OC is 

now biased in the direction of c′T, but bOC is biased in the opposite direction of bT leading 

to an underestimate or even a change in sign of the mediated effect. Second, it is possible for 

C1 to be correlated with X, even when X is a manipulated variable, if despite randomization 

sampling error creates groups unbalanced on pre-randomization levels of C1 (Judd & Kenny, 

1981). Third, the values of C1 may change across time. If the randomization to levels of X 
created groups that were balanced on the pre-randomization levels of C1, but the groups 

differed in their values of C1 at some point after randomization, then it can be concluded that 

X caused a change in C1. This would mean that while C1 is a confounder of the M to Y 
relation, it is also a mediator of the X to M and X to Y relations. Though a variable that 

explains the M to Y relation and is caused by X is sometimes referred to as a post-treatment 

confounder, these variables are considered mediators for our purposes, not confounders. 

Regardless of the reason, when C1 and X are correlated, then a and c are biased when C1 is 

also omitted from Equations 2 and 3. In turn, the bias in bOC and c′OC reflects the bias in a 
and c in order to maintain the relation in Equation 1.

Finally, while discussing a single confounder of the M to Y relation provides a simple 

example to explore, it is much more likely that multiple confounders of the M to Y relation 

exist. As Clarke (2005) points out, when multiple variables are omitted from a model, the 

bias can increase, decrease, or remain the same compared to the bias caused by the first 

omitted variable, depending on the size and signs of relations between all variables. For the 

single-mediator model this can be seen by rewriting Equations 8 and 9 for the case where 

there is a second confounder, C2, that is also uncorrelated with X such that

(10)

(11)

When bT, e1rC1M, and e2rC2M, have the same sign, the effect of the second confounder is to 

increase the bias in bOC in the same direction as the first confounder. When e1rC1M and 

e2rC2M are opposite in sign, each confounder mitigates the bias caused by the other 

confounder. In rare situations, the bias caused by the two confounders could even cancel out 

exactly and result in unbiased estimates when both confounders are omitted such that bOC = 

bT and c′OC = c′T.
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Omitted Confounder Example

To illustrate this existing work on how omitting confounders of the M to Y relation biases 

the parameter estimates from the single-mediator model, we return to Table 1 and the Morse 

et al. (1994) example. As a reminder, X is random assignment to a treatment program of 

intensive case management, M is the number of contacts with agencies providing housing 

during the nine months after the intervention was initiated, and Y is the number of days per 

month stably housed for a seven-month period that starts nine months after initiation of the 

intervention. Model 1 (i.e., Figure 1) includes only X, M, and Y, so the estimates of b and c′ 
from Model 1 are only unbiased with regards to confounders if no confounders of the M to 

Y relation exist. When this assumption is violated, then the estimates of b and c′ from 

Model 1 are biased and instead equal to bOC and c′OC. In order to determine the amount of 

bias caused by omitting one or more confounders from Model 1, bOC and c′OC must be 

compared to the unbiased estimates bT and c′T from models that include these confounders. 

Models 2A-2E (i.e., Figure 2) provide the unbiased estimates for five different combinations 

of confounders to which bOC and c′OC are compared. Note that this is somewhat 

counterintuitive as the incorrect model (Model 1) remains the same while the correct model 

(Models 2A-2E) changes.

The unbiased values of all coefficients for Models 2A-2E can be calculated directly using 

SEM by adding a latent variable for each omitted confounder and specifying the values of 

the relations between the confounders and the measured variables, as well as between the 

confounders. A confounder of the X to M or X to Y relation could be added to the model in 

a similar manner. For the model in Figure 2 with a single confounder the structural equation 

is

(12)

where d1, e1, and the variance of C1 need to be set to specific values. This approach differs 

from previous work in confounding that focuses on correlations between error terms rather 

than introducing the confounder as an explicit variable. For example, Imai, Keele, and 

Yamamoto (2010) emphasize the correlation of the residuals ρ of M and Y, which equals 

standardized d1e1.

For Model 2A the standardized values  and  (denoted by *) are both assumed to be equal 

to 0.32 to represent the case where the confounder has slightly less than medium partial 

effects on M and Y (MacKinnon, Lockwood, Hoffman, West, & Sheets, 2002).3 The 

unstandardized values of d1 and e1 are by multiplying,  and  by (SM / SC1) and (SY / 

3A standardized partial effect of 0.32 represents a partial effect that is 82% the size of a medium partial effect of 0.39 (MacKinnon et 
al., 2002) which is the same percentage the observed correlation between X and Y (.237) is to a medium correlation (.3, Cohen, 1988) 
resulting in a confounder with an approximately equal effect on M and Y relative to the variables in the model, but not larger than the 
overall effect between X and Y.
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SC1), respectively (Cohen, Cohen, West, & Aiken, 2003). Since sM = 11.473 and sY = 

13.047, if the variance of C1 is set to one, the unstandardized values of d1 and e1 are equal to 

3.671 and 4.175. From Model 2A in Table 1, bT = 0.343 and c′T = 4.671. Here rC1X = 0, so 

rC1M = .32. With rXM = .237, we have all of the values needed to compute bOC and c′OC 

directly using Equations 8 and 9, such that bOC = 0.466 (as shown in the note for Table 1) 

and c′OC = 3.992, which are the estimates found for Model 1. As expected for a single 

consistent confounder where all of the effects are positive and rC1X = 0, the values of a and c 
are unchanged. The value of bOC in Model 1 is positively biased (0.123 = 0.466 – 0.343) 

compared to the true value in Model 2A, whereas c′OC is negatively biased (−0.679 = 3.992 

– 4.671). This results in a positively biased estimate of the mediated effect in Model 1, 

though ab is statistically significant in both models. Note that the same relation is seen for 

the standardized estimates of bOC and c′OC which can be calculated in the same manner as 

the unstandardized estimates by using the standardized values of bT and c′T in Model 2A 

and setting sY = sM = sC1 =1.

Equations 8 and 9 show that as the magnitude of the effect of the confounder on M and/or Y 
is increased, the amount of bias increases as well. This increase in bias is illustrated by 

Model 2B, which is identical to Model 2A except that  is set to correspond to a large 

partial effect of 0.59 (MacKinnon et al., 2002) so that e1 = 7.697. As e1 increases from 

Model 2A to Model 2B, the positive bias in bOC increases from 0.123 to 0.227 (0.466 – 

0.239), while c′OC becomes more negatively biased. This leads to a more positively biased 

estimate of the mediated effect in Model 1 as well, though ab is statistically significant in 

both models.

As described previously, an omitted confounder does not always result in this pattern of bias. 

Model 2C represents the inconsistent confounding case where , but . 

Using the new negative value of e1 (−4.175) to get the true values from Model 2C, bT = 

0.590 and c′T = 3.313, Equations 8 and 9 again give the values of bOC and c′OC in Model 1. 

Unlike in the consistent confounding case in Models 2A and 2B, bOC is now negatively 

biased (−0124 = 0.466 – 0.590) compared to bT, though still significant, and c′OC is 

positively biased (0.679 = 3.992 – 3.313), resulting in ab now being negatively biased in 

Model 1.

Models 2D and 2E illustrate the impact of adding a second confounder, C2, of the M to Y 
relation to the model in Figure 2 that is also uncorrelated with X. This requires adding a 

second latent variable to the model and specifying values for the variance of C2, the effects 

of C2 on M and Y, d2 and e2, and the correlation between C1 and C2. In Model 2D, C1 is a 

consistent confounder with  as in Model 2A, while C2 is a consistent 

confounder with small partial effects such that  (MacKinnon et al., 2002). The 

variance of C2 is set to one, so the unstandardized values for d2 and e2 are 1.606 and 1.827, 

respectively. In addition, the correlation between C1 and C2 is set equal to .3, as it would be 

expected that the confounders were related, so rC1M and rC2M are .362 and .236, 

respectively.4 Table 1 shows the true values for Model 2D are bT = 0.287 and c′T = 4.797. 

4Here the values for rC1M and rC1M were computed directly in Mplus using the TECH4 command.
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When these values are compared to the biased estimates in Model 1, it can be seen that the 

positive bias in b increased from 0.123 (Model 1 vs. Model 2A) to 0.179 (Model 1 vs. 

Model 2D) when C2 was added to the model, while the negative bias in c′ also increased. As 

all of the relations are positive in Model 2D, Equations 10 and 11 show that the effects of C1 

and C2 combine to create more bias in the estimates.

Model 2E is identical to Model 2D except that  to represent the situation where 

C2 is an inconsistent confounder while C1 is a consistent confounder.5 The true values for 

Model 2E in Table 1 are bT = 0.367 and c′T = 4.541. As in Model 2D, rC1M = .362 and rC2M 

= .236, so Equations 10 and 11 can be used to compute bOC and c′OC in Model 1. When the 

true values are compared to the biased estimates, it can be seen that the positive bias in b 
decreased from 0.123 (Model 1 vs. Model 2A) to 0.099 (Model 1 vs. Model 2E) when C2, 

an inconsistent confounder, is added to the model containing C1, a consistent confounder. 

Equation 10 shows that the effects of C1 and C2 are now creating bias in opposite directions, 

so the two effects combine to create less biased estimates than when C1 is the only omitted 

confounder.

Sensitivity to an Omitted Confounder

Liu et al. (2013) describe two types of sensitivity analyses. Sensitivity analyses from the 

epidemiological perspective focus on the extent to which a significant relation between two 

variables can be explained by an omitted variable. The results presented in Table 1 represent 

epidemiological sensitivity analyses because they illustrate how the confounder explains part 

of the relation between M and Y (i.e., the difference between bT and bOC). In contrast, 

sensitivity analyses from the statistical perspective focus on how large the effect of an 

omitted variable needs to be in order to make a statistically significant effect zero or 

nonsignificant. Because X is assumed to be measured without error and uncorrelated with 

C1 here, the estimate of a is unaffected by an omitted confounder. Therefore, a statistical 

sensitivity analysis to determine how large the effect of an omitted confounder must be for 

the mediated effect to be zero in the Morse et al. (1994) data must focus on b.

Using standardized values to ease interpretation, Equation 8 can be used to show that 

when  = 0.387; see the note for Table 1 for more details. If , then 

both effects are equal to .622. While these effects are both large (Cohen, 1988; MacKinnon 

et al., 2002), it may be plausible for a confounder with effects of this size to exist for this set 

of variables. Mauro (1990) discusses the difference between the limits of possibility (i.e., the 

largest possible value of rC1M is 1.0, which results in ) for omitted variables versus 

the limits of plausibility based upon theory or the effects found in prior research (e.g., if the 

largest plausible value of rC1M we would expect to see in these data is .800, the smallest 

value  could be is 0.484). This means that rather than just reporting the possible values 

from a sensitivity analysis, considerable attention needs to be given to the plausibility of a 

confounder with effects of this size existing for a specific set of variables. Examining the 

situation where  shows that not all possible combinations of effects are equally 

5This situation may seem contrived since all of the relations in Model 2E are positive except e2, but the correlation matrix for Model 
2E still contains all positive correlations when e2 is negative.
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plausible for these data. Consider the case where rC1M = .5, a large correlation, which results 

in , a very large, though potentially plausible, partial effect. If rC1M = 3, however, 

then , an extremely large partial effect which may not be plausible for these data. 

Note that here it is assumed that b and  are both positive because only a consistent 

confounder could cause b to become zero. An inconsistent confounder would cause the 

estimate of b to increase if it were added to the model as shown in Table 1. If multiple 

confounders were omitted, some consistent, others inconsistent, the combined effect of these 

multiple confounders would need to be known in order determine the effect on the 

significance of the mediated effect.

Equation 8 could also be used to determine how large the effect of a confounder would need 

to be in order for b to become nonsignificant.6 For a Type I error rate of .05, the two-tailed 

critical values for  in the example are t(106) = ±1.987. The standard error for  is 

0.077, so using this value,  must be 0.153 (= 1.987 * .077) or larger to be statistically 

significant. When , then  as illustrated in the note for Table 1. If 

, then both effects must be .493 or larger for the effect to no longer be significant. 

When rC1M is .3 or .1, then  must be 0.810 and 2.430 (or larger), respectively. While 0.810 

is a very large partial effect, it may still be plausible for these data. A partial effect of 2.430 

is so large, however, that an omitted confounder with such a large effect on Y seems 

implausible for these data.

Measurement Error in M and Y

In addition to the no omitted confounder assumption, another commonly violated 

assumption of the single-mediator model is that X, M, and Y must be perfectly reliable to 

ensure the observed estimates of relations among variables are not biased by measurement 

error (Baron & Kenny, 1986; Hoyle & Kenny, 1999; VanderWeele et al., 2012). 

Measurement error refers to any irrelevant factors that cause a score on a variable besides the 

theoretical construct of interest. When a variable M is measured with error, the observed 

variance, , is overestimated such that the true variance, , is equal to

(13)

where rMM is the reliability of M (Kenny, 1979). While measurement error affects the 

variances of variables that are not perfectly reliable, measurement error does not affect the 

covariances provided the errors themselves are independent. In OLS regression, the 

unstandardized parameter estimates are a function of the covariances between all variables 

in the model and the variances of the predictors, but not the variance of the outcome variable 

6For simplicity's sake, the joint significance test is used. While one of the bootstrap tests would likely be preferred in practice, Fritz, 
Taylor, and MacKinnon (2012) recommend the percentile bootstrap over the bias-corrected bootstrap when the sample size is less than 
500, as is the case here, and Fritz and MacKinnon (2007) showed the joint significance test has approximately the same statistical 
power as the percentile bootstrap when c′≠ 0, which also occurs here, so the results should be approximately equal for the percentile 
bootstrap.
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(Cohen et al., 2003). Therefore, only measurement error in the predictors, not the outcome 

variable, affects the unstandardized estimates.

When X represents random assignment to treatment, X can safely be assumed to be 

measured without error (Judd & Kenny, 2010), but the same assumption cannot reasonably 

be made for M and Y in most situations. A perfectly reliable X leads to unbiased 

unstandardized estimates of a and c, regardless of the amount of measurement error in M or 

Y. The unstandardized estimates of b and c′ are biased by measurement error in M, but not 

Y. Kenny (1979) shows that when rXX = 1, the unstandardized estimates of b and c′ that are 

biased due to measurement error in M, bME and c′ME, are equal to

(14)

(15)

where ω is the reliability of M after partialling out X

(16)

and rXM is the observed correlation between X and M. It should be noted that Equations 14, 

15, and 16 are the same when X is a perfectly reliable continuous variable.

Because ω is less than one whenever rMM is less than one, bME would be biased in the 

opposite direction from bT, resulting in attenuation of bME when . When ab and 

c′ have the same sign, the effect is referred to as consistent mediation because the effect of 

X on Y is consistent regardless of whether the effect is direct or indirect through M. In the 

consistent mediation case, c′ME is biased in the same direction as c′T, overestimating the 

effect. This can also be seen from Equation 1 because if c and a remain constant, when b is 

attenuated, c′ must be overestimated in order to maintain the relationship between c and the 

other parameters. Inconsistent mediation occurs when ab and c′ are opposite in sign 

(MacKinnon, Krull, & Lockwood, 2000). In inconsistent mediation, bME is again attenuated 

when , but c′ME is biased in the opposite direction as c′T, either underestimating 

c′T or even changing the sign.

Unlike the unstandardized estimates, the standardized parameter estimates in the single-

mediator model are based on correlations and therefore are biased by measurement error in 

both the predictors and the outcome. The effect of measurement error on the correlation 

between two variables M and Y is equal to

(17)
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where rMY is the observed correlation between M and Y, rMM is the reliability of M, rYY is 

the reliability of Y, and rMTYT is the true correlation between M and Y. Because the 

reliability of a variable measured with error is less than one, Equation 17 shows that the 

observed correlation becomes more attenuated compared to the true correlation, regardless 

of sign, as one or both of the variables’ reliabilities decline. The standardized estimate for an 

OLS regression model with a single predictor is equal to the correlation between the 

predictor and the outcome (Cohen et al., 2003). Hence, the standardized estimates of a and c 

(denoted by *) that are biased due to measurement error,  and , when X is perfectly 

reliable are equal to

(18)

(19)

The true standardized values are equal to the true correlations,  and . 

As rMM and rYY are less than one when M and Y are not perfectly reliable, the effect of 

measurement error in M and Y is to attenuate  and  in comparison to their true 

values.

When X is perfectly reliable, the standardized estimates of b and c′ that are biased due to 

measurement error,7  and , are equal to

(20)

(21)

In the standardized case, the bias in b and c′ is now dependent on the reliabilities of M and 

Y. When rMM > rYY,  is more attenuated compared to , but when rMM < rYY,  is 

less attenuated than . The value of  could therefore be positively biased, negatively 

biased, or even unbiased.

7In order to move from the unstandardized estimates to the standardized estimates, bT and bME are multiplied by (SMT/SYT) and 

(SM / SY), respectively, to obtain  and  (Cohen et al., 2003). From Equation 12,  and , so 

the scales  and  are off by a factor of . As Equation 19 solves for , multiplying  by 

 puts the right side of the equation in the same scale as . This is also the purpose of the  term in 
Equation 20.
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Measurement Error Example

To illustrate the existing work on the effect of measurement error on the parameter estimates 

from the single-mediator model, we again return to the Morse et al. (1994) example. In 

Table 2, Model 1 (i.e., Figure 1) assumes that X, M, and Y are all measured without error. 

When M and/or Y are measured with error, then the estimates b and c′ from Model 1 are 

biased and instead equal to bME and c′ME. Determining the amount of bias requires 

comparing these values to the unbiased estimates from models that account for the 

measurement error. Models 3A-3C (i.e., Figure 3) provide the unbiased estimates bT and c′T 

for three different combinations of measurement error to which bME and c′ME are compared. 

Again, note that the incorrect model (Model 1) remains the same while the correct model 

(Models 3A-3C) changes.

The unbiased values of all coefficients for Models 3A-3C can be calculated directly using 

SEM if the reliabilities are known. The structural model for Figure 3 is

(22)

and assumes X is perfectly reliable because it represents random assignment to levels of 

treatment. The model accounts for measurement error in M and Y by adding the latent 

variables MT, YT, EM, and EY based on classical test theory. Here MT and YT are the true 

values of M and Y, and EM and EY are error terms such that M = MT + EM and Y = YT + EY 

(McDonald, 1999). It follows that since M and Y are the only measures of MT and YT, the 

paths from M to MT and Y to YT are set to one as illustrated in the measurement model for 

M and Y

(23)

The only remaining quantities needed are the variances of MT and YT. From Equation 13, 

the variance of MT equals  which is achieved by setting the variance of EM to 

. This procedure is repeated for Y by setting the variance of EY to 

. The mediation parameters now involve MT and YT, so the estimates equal the 

true values. The same strategy is used to account for measurement error in X when 

necessary.

Model 3A represents the case where rYY = 1.0 and rMM = .8. As rXX = 1.0, the 

unstandardized estimates of a and c are the same in Model 1 and Model 3A. Using Equation 

16 with rMM = .8 and rXY = .237, ω = 0.788. Inputting ω and the true values from Model 3A 

into Equations 14 and 15 gives bME = 0.466 (as shown in the note for Table 2) and c′ME = 

3.992, which are the measurement error biased estimates in Model 1. Since all of the effects 

are positive here, when X is perfectly reliable, the effect of measurement error in M is to 
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negatively bias bME (−0.126 = 0.466 – 0.592) and positively bias c′ME (0.690 = 3.992 – 

3.302) compared to the true values. Hence, the mediated effect in Model 1 is 

underestimated. The same pattern is seen when comparing the standardized estimates of b 
and c′, from Model 3A to those in Model 1, which can be calculated using Equations 20 and 

21. In addition, the standardized estimate of a is attenuated.

Model 3B keeps rMM = .8, but adds measurement error to Y such that rYY = .8. Because in 

our model Y is only an outcome and never a predictor, measurement error in Y has no effect 

on the unstandardized estimates. Thus, the unstandardized values are the same for Models 

3A and 3B, so the bias in bME and c′ME is also the same for Model 3A and 3B. The 

standardized estimates are affected by the measurement error in Y, however. Equations 18 

and 19 can be used to compute  and  in Model 1, which are 

attenuated compared to the true values in Model 3B. Unlike the unstandardized estimates, 

the negative bias in  increases from Model 3A (−0.055 = 0.410 – 0.465) to Model 3B 

(−0.110 = 0.410 – 0.520), while the positive bias in  decreases from 0.026 (0.151 – 

0.125) to 0.011 (0.151 – 0.140).

Model 3C illustrates how the amount of bias in b and c′ is directly related to the amount of 

measurement error in M. Decreasing rMM from .8 to .6 in Model 3C decreases ω from 0.788 

to 0.576. Equations 14 and 15 show that decreasing ω increases the bias in bME and c′ME 

from Model 1 compared to their true values. Here the negative bias in bME increases from 

−0.126 (0.466 – 0.592) in Model 3B to −0.343 (0.466 – 0.809) in Model 3C, as the positive 

bias in c′ME increases from 0.690 (3.992 – 3.302) to 1.887 (3.992 – 2.105). This also 

increases the bias in all of the standardized estimates, except for c*.

The values for a, b, and c′ are all positive for the Morse et al. (2004) data, which is an 

example of consistent mediation. In order to illustrate the effect of measurement error in the 

inconsistent mediation case, the observed covariance matrix for the Morse et al. data was 

altered so that the sign of the covariance between X and M is negative, while all of the other 

covariance values remained positive. Note that we are not simply reversing the scale of a 

variable here, but are instead artificially altering the covariance matrix to produce 

inconsistent mediation for illustration purposes only. Hence, the results based on the altered 

covariance matrix should not be interpreted substantively. Two models, Model 1–IM and 

3A–IM, are fit to the altered covariance matrix. Model 3A-IM is identical to Model 3A with 

rMM = .8 and rYY = 1.0, and contains the true values for the estimates in the inconsistent 

mediation case. Model 1–IM is identical to Model 1 so it does not correct for measurement 

error in M or Y and now provides the measurement biased estimates for the inconsistent 

mediation case. As shown in Table 2, the values for cME and aME in Model 1–IM are the 

same magnitude as in the consistent mediation case in Model 1, except that a is now 

negative. The values for bME and and c′ME in Model 1–IM both remain positive, but have 

changed from Model 1. As in the consistent mediation case, bME is negatively biased 

(−0.165 = 0.608 – 0.773) compared to the true value in Model 3A–IM, but unlike the 

consistent mediation case, c′ME is now also negatively biased (−0.909 = 9.902 – 10.811). 

The same pattern is seen for the standardized estimates.
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Sensitivity to Measurement Error

Table 2 illustrates how different amounts of measurement error in M affect the measurement 

error biased b coefficient (bME), which are sensitivity analyses from the epidemiological 

perspective (Liu et al, 2013). Because bT is always larger than bME for the Morse et al. 

(1994) data, measurement error can never cause a significant bME to become nonsignificant 

or a nonzero bME to become zero for the example presented here. Hence, there is no need 

here to conduct a statistical sensitivity analysis for the mediated effect for the effect of 

measurement error.

Measurement Error and Confounding in the Same Model

The effects of omitting a confounder of the M to Y relation or measuring these variables 

with error have been examined separately up to this point. Violations of these two 

assumptions are likely to co-occur, however. The effect of simultaneously violating both 

assumptions has not been investigated previously in the mediation literature, so the effect of 

violating both assumptions simultaneously is now discussed. Consider again the model in 

Equation 5 where there are q confounders of the M to Y relation. When M, Y, or any of the 

confounders are measured with error, the unstandardized estimates of b and c′ when a set of 

q confounders of the M to Y relation are omitted from the model and any of the variables are 

measured with error, bOCME and c′OCME, are

(24)

(25)

Here bME.C and c′ME.C are the estimates of b and c′ that partial out the effect of the 

confounders but are biased due to measured error. And ekME, fCkX.MME, and fCkM.XME have 

the same interpretations as in Equations 6 and 7 except that these values are biased due to 

measurement error.

When examined separately, the effects of measurement error and omitted confounders on the 

magnitude and direction of the bias in the parameter estimates for the single-mediator model 

have been shown to depend on the pattern of correlations, the reliabilities, and the number of 

confounders. As illustrated in Equations 24 and 25, describing the combined bias in bOCME 

and c′OCME in the general case is difficult without knowing at least some of these quantities. 

To simplify the discussion, consider the example previously described where X is perfectly 

reliable, but M and Y are measured with error, and there is a single confounder of the M to 

Y relation that is uncorrelated with X, C1. In this case, Equations 8 and 9 can be combined 

with Equations 14 and 15 to give the joint effect for unstandardized b and c′ as

(26)
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(27)

Note that rC1M and rXM are the observed correlations that are biased due to measurement 

error in M, not the true, unbiased correlations. And as before, a and c are unaffected by 

measurement error in M or Y, or omitted confounders of the M to Y relation.

As shown in Table 1, when b is positive and the mediation is consistent, measurement error 

negatively biases b. Table 2 shows that a consistent omitted confounder positively biases b. 

Therefore, in the consistent mediation, consistent confounding case, measurement error and 

an omitted confounder have opposing effects on bOCME. Therefore, the overall bias in 

bOCME depends on whether measurement error or the omitted confounder has a stronger 

effect. That is, when the effect of measurement error is larger than the effect of the 

confounder, bOCME is negatively biased. However, when the effect of the omitted 

confounder is larger than the effect of measurement error, bOCME would be positively 

biased. These opposing effects are easier to see for c′OCME as the effect of measurement 

error [aTbT(1 – ω)] and the effect of the omitted confounder  have 

opposite signs, such that measurement error opposes the bias caused by the omitted 

confounder and vice versa. This also means that when

(28)

the effects are exactly equal in magnitude but opposite in sign, resulting in perfectly 

unbiased estimates of b and c′. While it may be nearly impossible in practice to find an 

empirical situation that satisfies the relation in Equation 28, if the magnitude of one of the 

individual effects is known, the magnitude of the other effect necessary to perfectly oppose 

the first effect can be calculated.

Even in the rare circumstances where the combined effect produces unbiased unstandardized 

estimates, the standardized coefficients are still usually biased because they are also affected 

by measurement error in Y. In the combined condition, the omitted confounder does not 

affect a* or c*, but these values are attenuated due to measurement error in M and Y as 

shown in Equations 18 and 19. The equations for  and  are equal to

(29)
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(30)

and show that when the unstandardized estimates are unbiased,  is only unbiased 

when rMM = rYY and  is unbiased only when rYY = 1.0.

Measurement Error and Omitted Confounder Example

To illustrate the combined effect of measurement error and omitting a confounder in the 

same single-mediator model, we return a final time to the Morse et al. (1994) example. The 

unbiased values for all parameter estimates in the model that includes measurement error 

and confounding can be estimated simultaneously by combining the confounder model in 

Figure 2 with the measurement error model in Figure 3, the result of which is shown in 

Figure 4. The model in Figure 4 is specified in the same manner as the previous models with 

the exception that d1 and e1 now are directed to MT and YT rather than M and Y. As a result, 

d*1 and e*1 must be multiplied by (sMT / sC1), and (sYT / sC1), where 

and , to find the unstandardized values.

As the effects of measurement error and an omitted confounder are opposing in the 

consistent case, the joint effect of measurement error and an omitted confounder on the 

parameter estimates in the empirical example is determined by which effect is larger. That is, 

when the effect of measurement error is larger, then bOCME is negatively biased and c′OCME 

is positively biased, though less so than if there were no confounders. Alternatively, when 

the effect of the omitted confounder is larger, then bOCME is positively biased and c′OCME is 

negatively biased, though again less so than if all of the variables are perfectly reliable. It is 

also possible in very specific and likely rare situations for the individual effects to perfectly 

cancel one another out, resulting in bOCME and c′OCME being unbiased.

To illustrate these three possible joint effects, Table 3 contains the results for four models, 

labeled Models 4A-4D. Each of these models accounts for measurement error in M and Y, 

as well as a single omitted confounder of the M to Y relation. These combined models can 

now be thought of as the unbiased models with the models in Table 1 only accounting for the 

omitted confounders and the models in Table 2 only accounting for measurement error. As a 

result, the effects of the confounders for Models 2A – 2E now represent the effects of the 

confounders biased due to measurement error (i.e., d1ME and e1ME). The estimates from the 

single-mediator model that omits all confounders and does not account for measurement 

error (i.e., Figure 1) is labeled Model 1 and provides the biased estimates aOCME, bOCME, 

and c′OCME to which all other models are compared.

Model 4A combines Models 2A and 3C such that rXX = 1.0, rMM = .6, and rYY = .8 with 

. In order to calculate the true values of the unstandardized mediation 

parameters,  and  must be multiplied by sM and sY, not sMT and sYT, even though they 

are still directed towards MT and YT, such that d1ME = 3.671 and e1ME = 4.175. With ω = 
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0.576 and rC1M = .32, the true values in Model 4A can be entered into Equations 26 and 27 

to compute the combined bias estimates in Model 1 as bOCME = 0.466 (as shown in the note 

for Table 3) and c′OCME = 3.992. Here bOCME is negatively biased (−0.129 = 0.466 – 0.595) 

and c′OCME is positively biased (0.709 = 3.992 – 3.283) compared to Model 4A. Hence, the 

effect of measurement error is larger here than that of the confounder and the mediated 

effect is underestimated in Model 1. The same effect is seen for the standardized estimates. 

Note, however, that the negative bias of −0.129 in bOCME between Model 1 and Model 4A is 

less than the negative bias of −0.343 (0.466 – 0.809) between bOCME in Model 1 and the 

estimate of b in Model 3C in Table 2 that is corrected for measurement error but not for the 

opposing effect of the omitted confounder.

Model 4B is identical to Model 4A except that rMM = .9, decreasing the effect of 

measurement error. Compared to the true values in Model 4B, bOCME and c′OCME from 

Model 1 are now positively biased (0.082 = 0.466 – 0.384) and negatively biased (−0.455 = 

3.992 – 4.447), respectively. As a result, the effect of the omitted confounder is larger than 

that of measurement error and the mediated effect is overestimated in Model 1; the same 

effect is seen for the standardized estimates. But again, the positive bias of 0.082 in bOCME 

between Model 1 and Model 4B is less than the positive bias of 0.123 (0.466 – 0.343) in 

bOCME between Model 1 and bME.C in Model 2A that is corrected for the omitted 

confounder but not the opposing effect of measurement error.

In Models 4A and 4B, the effects of measurement error and confounding were unbalanced. 

The value of rMM that would exactly balance the effect of confounding and produce 

unbiased unstandardized estimates can be computed using Equations 16 and 26. First, we 

solve for ω in Equation 26 using the following values: e1ME = 4.175 rXM = .237, rC1M = .32 

sM = 11.473, aT = 5.502, and bT = 0.466. Next, the computed value for ω, 0.735, is used in 

Equation 16 to solve for rMM, which is equal to .75. We can verify this value by fitting 

Model 4C which is identical to Models 4A and 4B except that rMM = .75. As shown in Table 

3, the uncorrected unstandardized estimates in Model 1 are equal to the true values in Model 

4C, within rounding. Hence, in Model 4C the individual effects of measurement error and 

omitting the confounder are exactly equal, but opposite, such that the estimate of the 

mediated effect in Model 1 is unbiased. Alternatively, if rMM is known, the magnitude of a 

confounder that would cancel out the effect of the measurement error can be computed. Note 

that since rMM and rYY are less than one and not equal, none of the standardized estimates 

are unbiased.

While measurement error and a single consistent confounder have opposite effects, Table 1 

also shows that for the empirical example, a single inconsistent confounder positively biases 

b, while negatively biasing c′, which is the same as the bias caused by measurement error. 

Model 4D is identical to Model 4A except for  in order to illustrate the combined 

effect of an inconsistent confounder and measurement error. The results show that the 

negative bias in bOCME in Model 1 is much higher when the confounder is inconsistent in 

Model 4D (−0.557 = 0.466 – 1.023) than when the confounder is consistent in Model 4A 

(−0.129). The negative bias in bOCME of −0.557 between Model 1 and Model 4D is also 

much higher than the negative bias of −0.124 (0.466 – 0.590) between Model 1 and Model 
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2C in Table 1 when there was only an inconsistent confounder and no additive effect of 

measurement error.

Finally, Model 4A–IM illustrates the effect of inconsistent mediation with a consistent 

confounder and measurement error. Model 4A–IM is identical to Model 3A–IM except an 

omitted confounder C1 was added with . As before, Model 1–IM in Table 2 

serves as the completely uncorrected model. The effect of measurement error on the 

inconsistent mediation model (Model 1–IM vs. Model 3A–IM) was to negatively bias b 
(−0.165 = 0.608 – 0.773) and c′ (−0.909 = 9.902 – 10.811). Adding the consistent 

confounder increases the negative bias in b (−0.237 = 0.608 – 0.845) and c′ (−1.302 = 9.902 

– 11.204) between Model 1–IM and Model 4A–IM.

Sensitivity to a Confounder and Measurement Error

Determining the size of the effect of a confounder needed to exactly cancel out the bias 

caused by measurement error, as illustrated by Model 4C in Table 3, is a form of 

epidemiological sensitivity analysis. A statistical sensitivity analysis to determine how large 

the effect of a confounder is needed for  to be zero that includes the effect of measurement 

error can be conducted using Equation 29. As illustrated in the note for Table 3, when rMM 

= .6 and rYY = .8 as in Model 4A,  when . This is the same value as 

found for the statistical sensitivity analysis with no measurement error because when , 

Equation 29 simplifies to Equation 8.

Measurement error in M does play a role in how large the effect of a confounder is needed to 

make  nonsignificant, however. Using the same critical values (t(106) = ±1.987) and 

standard error (0.077) as before, the effect is again nonsignificant when . When 

rMM = .6 and rYY = .8, then  only when . This value is larger than for 

the case where all variables were perfectly reliable (i.e., ) because  is 

attenuated compared to . Correcting for this attenuation requires a larger effect of the 

omitted confounder in order make the effect nonsignificant. Therefore, statistical sensitivity 

analyses that ignore the role of measurement error are likely to underestimate the size of the 

effect of an omitted confounder needed to change a significant effect to a nonsignificant 

effect.

Discussion

Most users of tests of statistical mediation have assumed the best-case scenario where all 

assumptions of the model are met, including all variables measured without error and no 

confounders omitted from the model. When any assumption of the single-mediator model is 

violated, the usual result is a biased estimate of the mediated effect. In general, the greater 

the violation, the greater the bias. When the bias comes from two different sources, the 

combined effect can result in an estimate of the mediated effect that is more biased, less 

biased, or, in very rare situations, unbiased. As described here and shown in the empirical 

example, the bias in the mediated effect due to measurement error is often in the opposite 

direction as the bias due to confounding. This can lead to the situation where correcting for 
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only one source of bias can produce more biased estimates when both sources of bias are 

present. In most situations, however, failing to correct for measurement error, a confounding 

variable, or both still likely result in more biased parameter estimates.

Our primary goal here is to raise awareness of the importance of measurement error and 

confounding in mediation analysis by describing how violating these assumptions affect 

mediation analysis, illustrated by an applied mediation example. As the magnitude and 

direction of the bias is not always predictable beforehand, researchers should strive to 

develop and use the most reliable measures of M that are possible to reduce bias. Latent 

variable models can then be used to remove any remaining bias due to measurement error 

(Ledgerwood & Shrout, 2011; MacKinnon, 2008). Researchers should also routinely 

identify and measure potential confounders when possible so these variables can be included 

in the model. Sensitivity analyses can be used to determine how large of an omitted 

confounder is needed for a significant effect to become nonsignificant or zero when the 

mediator is measured with error. The plausibility of such confounders existing for a specific 

study can then be discussed. Note that while sample size is an important factor when 

considering statistical significance in a sensitivity analysis, the bias in the estimates of the 

mediated effect described here is unaffected by sample size.

The equations presented in this article provide a way for researchers to investigate the extent 

to which measurement error and omitted confounders may alter estimates in the single-

mediator model. Given that there may be multiple omitted confounders that exert their 

influences at different times and the true effects of each confounder are likely unknown, 

values to be used in these equations can be chosen based upon many different criteria. For 

example, values can be found by using the theoretical relation between a specific omitted 

variable and the included variables, by using prior research where the confounder was 

measured and included in a similar model, or by selecting values to examine the amount of 

bias in b and c′ that would result from omitting a confounder with specific effects (e.g., 

positive medium effects) on M and Y (see also Cox et al., 2014). Values of reliability used in 

the equations to assess how measurement error affects mediation analysis can be obtained 

from published studies and other prior information or by assessing how different 

hypothetical reliability values affect results. Perhaps a first goal for applied researchers who 

use mediation models is to obtain information about possible confounder effects and 

reliability of measures for their variables of interest. Routinely reporting information about 

reliability, suspected omitted confounders, and sensitivity analyses as part of all statistical 

mediation analysis results would go a long way towards providing information about the 

magnitude and direction of bias found in different research areas.

We wish to emphasize that researchers should not use the results presented here to justify 

ignoring measurement error and confounders. In order to cancel out completely, the effects 

of measurement error and the omitted variable need to be approximately equal. As shown in 

Table 3, as the reliability of M decreases, the size of the effect of the omitted variable needed 

to exactly cancel the effect of measurement error can become quite large. For very low 

reliabilities, the effects of the presumed omitted variable needed to cancel out the effect of 

measurement error are so large that it may not even be possible to find an effect that large in 

the social sciences. In turn, for omitted confounders with very large effects, in order to 
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exactly cancel out the effect the reliability of the mediator would need to be so low that the 

measure of M would be essentially useless.

Additionally, the discussion of confounders was necessarily simplified here to one very 

specific scenario in order to clearly illustrate the potential impact of the single-mediator 

model simultaneously containing measurement error and omitted confounders. When cases 

are randomly assigned to levels of X, as assumed in the examples presented, then in most 

cases it can be assumed there are no confounders of the X to M or X to Y relation (Holland, 

1988; Judd & Kenny, 2010; MacKinnon, 2008). There are exceptions to this, however, 

including a failure of the random assignment to create groups balanced on the pre-

randomization level of the confounder, a post-treatment confounder that is actually a 

mediator, and attrition. Besides causing X and the confounder to be related, attrition 

represents another possible source of bias not considered here. If the data are missing due to 

M or Y, the data are missing not at random. If the data are missing due to the treatment or 

the confounder, then the data are missing at random (MAR). Because models for MAR data, 

such as full information maximum likelihood and multiple imputation, require the source of 

the missingness to be included in the model to obtain unbiased estimates (Enders, 2010), 

data missing due to treatment should be ignorable in the example presented here. Data 

missing due to the confounder, however, are nonignorable because the omitted confounder is 

by definition not included in the model, resulting in further bias to the mediated effect.

Regardless of the reason for the relation, when a confounder that is related to X is omitted 

from the single-mediator model, then the estimates of a and c are biased and the bias in the 

estimates of b and c′ changes. If the confounder exerts its influence after the cases are 

randomly assigned to levels of X or if X is not a manipulated variable, such as in a purely 

observational study, then it is more likely that X and the confounder are related. When X and 

the confounder are related, consideration must be given to whether the confounder is only a 

confounder of the M to Y relation or is directly caused by X, which means the confounder is 

actually a mediator of the X to M and X to Y relations. As noted by numerous authors (e.g., 

Baron & Kenny, 1986), it is unlikely in the social and behavioral sciences for a single 

variable to completely mediate the relation between two other variables. Instead, single-

mediator models represent a small portion of a much larger process consisting of numerous 

variables that are all interrelated, some causally, others noncausally. What complicates this 

further is that a single construct may have multiple roles depending on when it exerts its 

influence on the other variables in the model (e.g., is it time-varying or time-invariant) and 

when these effects are measured.

For example, consider the role of employment status, as suggested by one reviewer, on the 

Morse et al. (1994) data used in the empirical example. Employment status prior to random 

assignment of individuals to the intensive case management and treatment-as-usual groups, 

C1,t=0, is likely to be unrelated to X. In addition, pre-treatment employment status cannot be 

a mediator of the relation between treatment and number of housing agency contacts or days 

stably housed, since this variable is measured prior to treatment (i.e., temporal precedence 

states that an effect cannot exist prior to a cause). But pre-randomization employment status 

could be a confounder of the M to Y relation, reducing or completely removing the relation 

between M and Y when added to the model. It is highly unlikely that employment status 
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would remain constant for all individuals across the sixteen months of the study, however. 

Therefore, employment status one month after assignment to treatment, C1,t=1, could also be 

a confounder of the M to Y relation and is more likely to be related to treatment than C1,t=0. 

But if the treatment was believed to take at least three months to have a measureable effect 

on any mediators, then C1,t=1 could not be a mediator of X. If employment status nine 

months after treatment began, C1,t=9, (i.e., at the same time as M is measured) is a 

confounder of the M to Y relation and was directly affected by treatment, then C1,t=9 would 

not be a confounder in the conventional sense. Instead it would be an additional mediator 

between intensive case management and days housed that could also reduce or completely 

remove the relation between agency contacts and days housed when added to the model. 

Finally, employment status sixteen months after assignment to treatment, C1,t=16, (i.e., at the 

same time Y is measured) is likely to be related to X, M, and Y, but cannot be a mediator or 

a confounder of the M to Y relation. That is four potential roles for employment status 

depending on when the effect of employment status is considered! This illustrates two 

important points. First, the timing of effects is as important as the variables themselves when 

identifying the role (e.g., mediator, outcome, confounder, and so on) of a specific variable 

and estimating mediated effects. And second, adding any variables to the single-mediator 

model, regardless of their role, can have a large impact the mediated effect and any 

conclusions based upon it.

Although many researchers understand that estimating mediation effects using cross-

sectional data often results in biased estimates of longitudinal mediation effects (Maxwell & 

Cole, 2007), longitudinal data alone do not guarantee unbiased results. For example, the 

variables in the Morse et al. (1990) data presented here were each measured once at a 

different point in time (i.e., 0, 9, and 16 months), but that does not guarantee that the 

mediation results presented here are unbiased. Mitchell and Maxwell (2013) call this a 

sequential design and found that the estimates of the mediated effect from a sequential 

design are not necessarily less biased than those from cross-sectional designs. If the Morse 

et al. data had repeated measurements of the variables, as recommended by Mitchell and 

Maxwell, there would be a greater opportunity to explore the timing of effects, including 

whether a previous measure of M or Y served as a confounder of the M to Y relation. Even 

repeated measurements are not a guarantee of unbiased effects because the repeated 

measures must have the correct elapsed time between the first and last measurement, as well 

as the number and spacing of the repeated measurements, collectively known as the 

temporal design of the study (Collins & Graham, 2002).

What this means for researchers applying mediation models is that in most social and 

behavioral science studies, the assumptions that all variables are measured without error and 

that all relevant variables have been included in the model at the correct points in time are 

always violated. Rather than let the almost certain violation of these assumptions prevent us 

from using these models completely, we can recognize that even the best mediation models 

contain only the variables that were measured at specific times in that study and represent 

only a small part of what is probably a much larger causal process that may change over 

time. Thinking of every mediation model as a smaller piece of a larger longitudinal process 

forces us to consider how the effects in our estimated model would change if we were able 

to include these additional variables from the larger process or change based on when we 
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measured the variables. And it is within this context that the results presented here should be 

considered. The information provided here should not be used as a reference that can be 

cited to justify ignoring measurement error and omitted confounders since in very specific 

situations the effects can cancel out, but as a tool to examine how the effects in an 

incomplete model may change if additional variables could be added to make a less 

incomplete model.
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Figure 1. 
The single-mediator model.
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Figure 2. 
The single-mediator model with a confounder C1 of the mediator to outcome relation.
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Figure 3. 
Modeling measurement error in the mediator and outcome variable in the single-mediator 

model.
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Figure 4. 
The single-mediator model with measurement error in M and Y, and a confounder C1 of the 

M to Y relation.
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