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Abstract

We consider a phenomenological continuum theory for an extensile, overdamped active nematic 

liquid crystal, applicable in the dense regime. Constructed from general principles, the theory is 

universal, with parameters independent of any particular microscopic realization. We show that it 

exhibits two distinct instabilities, one of which arises due to shear forces, and the other due to 

active torques. Both lead to the proliferation of defects. We focus on the active torque bend 

instability and find three distinct nonequilibrium steady states including a defect-ordered nematic 

in which  disclinations develop polar ordering. We characterize the phenomenology of these 

phases and identify the relationship of this theoretical description to experimental realizations and 

other theoretical models of active nematics.

Introduction

Liquid crystals are anisotropic fluid mesophases that exhibit broken rotational symmetry and 

have been extensively studied for many years1. The study of topological defects in the 

orientational order in these systems, which typically occur under driving, has had a central 

role in developing our understanding of the material properties of these systems2,3. Active 
liquid crystals are driven at the scale of the microscopic nematogen, and the microscale 

internal forces give rise to spontaneous nucleation of defects and novel defect dynamics4–7.

One system, composed of cytoskeletal filaments driven by motor proteins4–6 confined to a 

fluid interface, has inspired much theoretical effort to understand its dynamics6,8–19. These 

theories show how fluid mediation, in the form of active and passive backflow, can lead to 

the formation and propulsion of defects. However, these nonequilibrium phenomena also 

arise in active nematic systems in which fluid mediation plays little or no part, such as 

vibrated monolayers of granular rods20, epithelial cell monolayers21, and elongated 

fibroblasts22. It must therefore be possible to describe these systems with overdamped 

dynamics, in which activity is transmitted directly, rather than through the mediation of a 

fluid.
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In this work we develop a phenomenological continuum theory that describes the dynamics 

of an overdamped active nematic in two dimensions, and is applicable to all systems in this 

symmetry class. This theory contains two mechanisms through which the active forces give 

rise to instabilities in the homogeneous nematic state in the dense regime. One is analogous 

to the instability due to flow alignment in fluid-mediated theories11,13,23, in that it arises due 

to reorientation of the director under shear. The other is an instability that arises due to 

rotation of the director by internal forces in an active nematic.

We unfold the rich phenomenology that emerges due to the active torque instability in the 

numerical investigation, focusing on extensile systems in the dense regime. The 

nonequilibrium steady-states that we find are (i) a defect-ordered nematic that exhibits 

emergent polar ordering of  defects, (ii) a defect-free undulating nematic (see Fig. 1 and 

ESI†), and (iii) a defective, turbulent nematic (see Fig. 2).

The appearance of a defect-ordered state is of particular interest, as defect-ordering was 

recently discovered in layers of active cytoskeletal filaments and in simulations of 

overdamped extensile rigid rods6. While the long-range ordering of defects in these states is 

reminiscent of blue phases24 and twist-grain-boundary phases25 in equilibrium liquid 

crystals, the defect-ordered states in the active systems differ in that the defects themselves 

are motile and transient rather than existing in a static lattice.

The defect ordering in the experiment had nematic symmetry, while simulations displayed 

the same polar symmetry that we observe. We show that polar ordering of defects is a 

metastable state that occurs below the threshold for any instability of the homogeneous 
nematic state and depends on the breaking of Galilean invariance in the overdamped limit. 

Further, we identify the relationship of our approach to other theories in the literature.

Theoretical Framework

An equilibrium nematic is described by the well-known Landaude Gennes free energy ℱ 
that is a functional of the density ρ(r⃗, t) and the nematic order tensor, Q(r⃗, t), associated with 

rotational symmetry breaking1,26. Its dynamics is given by gradient descent on this free 

energy landscape: ‘Model A’ dynamics for the director, , and 

‘Model B’ dynamics for the conserved density field, . For an 

active nematic, however, microscopic forces exerted by the constituent particles can give rise 

to dynamics that are not integrable, and are therefore inherently nonequilibrium.

We shall consider the dynamics of systems of extensile particles, which push along their 

long axes, acting as force dipoles. The forces exerted by the particles cause a stress σ = fQ§. 

In a flat nematic these forces are locally balanced and the stress is exerted only on the 

boundary. When there is a local distortion of the order, however, there is a net force F ∝ − ∇⃗ 

§f is positive (negative) if the particles are extensile (contractile)

Putzig et al. Page 2

Soft Matter. Author manuscript; available in PMC 2016 December 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



· Q from this stress. This force can lead to a flow of particles ρu⃗ = −F⃗/ξ (where ξ is a 

friction coefficient). We postulate that an active liquid crystal undergoes gradient descent 

dynamics in the local rest frame of a self-generated flow arising from the activity.

The flows which we consider are the motions of particles which reside near some surface, 

and in which neighboring particles are pushing on each other. We will therefore use a 

generalized form of the Beris-Edwards equations26, which describe how flow modifies the 

gradient descent dynamics of particles which are suspended in fluid when they interact 

solely through stresses in the fluid.

(1)

(2)

where  is the vorticity tensor,  is the strain-

rate tensor associated with the flow, λ1 and λ2 are the first and second-order flow-alignment 

parameters, and (A)  denotes the traceless version of A (e.g. ).

The dynamical equations above are a generalization of the Beris-Edwards dynamical 

equations in that the equations above are not coupled to the flow of an incompressible 

medium, and in that these equations allow for broken Galilean invariance through the 

inclusion of coefficients in front of the convective and rotational terms, λ̄
C and λ̄

R 

respectively. It is relevant to consider an effectively compressible flow on a two-dimensional 

surface, as fluid can be pushed out into the third dimension. Also, in an overdamped system 

which is moving with respect to a fixed substrate, Galilean invariance may be broken, as that 

surface provides a reference frame. This generalization is also logical in the case of particles 

which are in direct contact, rather than suspended and interacting purely through a fluid. 

Broken Galilean invariance has been shown to make a significant difference in the dynamics 

of active polar fluids27–31, but its consequence for a fluid of nematic symmetry has not been 

considered in existing literature.

When the flow from the active forces  is replaced in Eqs. 1 and 2, the 

dynamical equations for an active nematic take the form

(3)

Putzig et al. Page 3

Soft Matter. Author manuscript; available in PMC 2016 December 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(4)

where A : B = AijBij, and  denotes symmetrization (i.e. )

The self-generated flow enters through the curvature induced density flux (CIDF), controlled 

by DQ in the dynamics of the density, and through the coefficients λx in the dynamics of the 

order parameter. , and  control the strength of active 

convection and active torque, and flow-alignment due to active shearing respectively. The 

term with coefficient  also comes from the flow-alignment, and appears as the 

Laplacian of the nematic order tensor. This term, therefore, acts as a negative Frank 

elasticity in the dynamics.

Before we proceed with the analysis of our theory, we make the following observations in 

order to place this model in the context of other the existing literature in this field:

1. The CIDF, introduced by Ramaswamy et. al.32,33, is the only active 

contribution to the dynamics which is first order in Q and therefore gives a 

universal description of the behavior of active nematics near the critical 

density, where Q is small. This term gives rise to striking phenomena, 

such as giant number fluctuations, phase separation, and band formation 

near the critical density20,34–45. In this work we will focus on the 

dynamics of a system which is well above the critical density and highly 

ordered, away from this well-studied regime.

2. Existing theories of active nematics that account for the novel defect 

dynamics seen in these systems consider nematohydrodynamic equations 

coupled to a Stokes equation for the activity-induced flow (such as8–14,18). 

In the presence of a screening mechanism such as confinement to 2D, the 

flow field can be eliminated in terms of the active stress yields Eqs. (3–4), 

but with DQ = λC = λR i.e., a Galilean invariant version of our 

theory18,46–48.

3. The approach taken here is one which can be generalized to other active 

systems. We consider gradient descent on a free energy, in an imposed 

flow, and allow for broken Galilean invariance. We then replace the 

general flow with one which depends on the local order parameter, and 

arises due to the active forces. The same prescription can be applied to 

polar systems to get the dynamical equations of Toner and Tu27–29. The 

difference being that, in a polar system, the flow from the active forces is u⃗ 
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∝ P⃗ where P⃗ is the polar order parameter. In both cases the gradient 

descent dynamics are purely smoothing and allow for a homogeneous 

solution, but the flow which arises due to the motion of those particles, or 

the forces that they exert, can lead to instabilities in that homogeneous 

solution, and inhomogeneous dynamical steady states.

Parameters of the Theory

The relaxational contributions to the dynamics of the order parameter arising from a free 

energy take the form

where α = (ρ − 1) and , Dr is the rotational diffusion constant and Dρ is a 

kinetic term also seen in prior works36,37,41. There are three elastic terms. D̄
E is the mean 

elasticity, and it competes with the active term with coefficient λE. We will therefore work 

with an effective mean-elastic relaxation term with coefficient DE = D̄
E − λE. Dδ is a 

differential elasticity, measuring the difference between bend and splay energies. Finally, a 

fourth-order gradient term (with coefficient K) is included to ensure smoothness and 

numerical stability.

The relevant parameters for the phenomenology discussed are: the active force and torque 

(λC,R) and the effective mean and the differential elastic constants DE and Dδ. The active 

shear (with coefficient λS) does not affect the linear stability or the phenomenology 

considered here. In the following, we nondimensionalize our equations by setting our time 

scale to be the rotational diffusion time, , and our length-scale to be the diffusion length, 

. In all of the subsequent sections we will work in these dimensionless 

variables.

Instabilities of the Nematic State

In the homogeneous limit, Eqs. (4) and (3) admit a uni-axial nematic solution with average 

density ρ0 > 1, and the order parameter , with degree of ordering 

. Let us consider spatial fluctuations about this state.

Phase Separation Instability

There is an instability which occurs near the critical density for the onset of ordering, and 

leads to phase separation. It occurs when fluctuations perpendicular to the director cause an 

instability in the degree of ordering, which occurs for . This 
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instability causes phase separation into bands of dense ordered regions coexisting with dilute 

disordered regions when the material is near the critical density (ρc = 1). This has been 

discussed in previous work by us45 and others39–41,43,44,49,50. The nonlinear active terms 

(λC, λR and λS) do not significantly alter the phenomenology discussed in previous work.

Splay and Bend Instabilities

Let us also consider fluctuations in the direction of order δQxy. The Fourier transform (X̃ = 

∫ dr⃗eik⃗·r⃗X(r⃗, t)) of the linearized equation for this mode can be expressed as

where we consider only pure bend fluctuations which are parallel to the director (k⃗ = kx̂, 
upper sign) or pure splay fluctuations which are perpendicular (k⃗ · x̂ = 0, lower sign). Pure 

bend and splay decouple fluctuations in the direction of order from those in the degree of 

order (δQ̃
xy) and the density (δρ̃) which enables a clear identification of mechanisms at play. 

This equation reveals two instabilities in the direction of order which come from the activity. 

Both grow as k2, and the fourth-order gradient term with coefficient K guarantees that, when 

there is an instability in this mode, the ordered solution will restabilize at finite wavelength.

The generic instability

This instability occurs when DE = D̄
E − λE < 0, and it comes from the first order flow-

alignment term . This instability in the homogeneous nematic occurs for 

suspensions of extensile rods (f,λ1 > 0), which we consider here¶. It is a bend (splay) 

instability when λR > 2Dδ (λR < 2Dδ). The analogous instability has been identified and 

discussed in detail (in the Dδ = 0 limit) in existing active nematic theories for 

suspensions11,13,23,51 and for flows with damping18.

This instability has also been discussed in the overdamped limit, where it results in a Swift-

Hohenberg-type dynamical equation, which can lead to pattern formation, or a turbulent 

steady-state19. The systems with a negative effective elastic constant form steady-state 

patterns in the modulation of the director for the case of active systems18,19. This result is 

reminiscent of the patterns seen in equilibrium phases of liquid crystals which have a 

negative elastic constant due to their shape52–54. As this instability and its consequences 

have been the topic of previous theoretical and numerical investigation, we shall forgo 

further discussion of them here.

Active Torque Instability

Of primary interest here is a bend instability which arises from the active torque. This occurs 

when a ‘bend instability parameter’  where  (Fig. 3). 

¶The generic instability can also occur for contractile discs (f,λ1 < 0)
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This parameter reflects a competition between the active torque λR and the differential 

elasticity Dδ, which is positive if bend distortions are more energetically expensive than 

splay. This bend instability is also a mechanism for defect generation and formation of 

inhomogeneous steady states in this active system. Note that if the nematic was contractile, 

λR is negative and hence there exists a splay instability, which occurs when ψ < − 1. We 

have, however, focused on extensile systems for this study of the overdamped dynamics, and 

left the study of the contractile, overdamped dynamics to future work.

Consequences of the Active Torque

In order to elucidate the consequence of the active torque instability, we numerically 

explored the dynamics using a semi-implicit finite difference method, with periodic 

boundary conditions‖. Integrating from nematic initial conditions with small amplitude 

Gaussian noise, two states were found above the threshold for the bend instability (ψ > 1). 

These were (I) an undulating nematic state where the system is strongly ordered but the 

director undulates along the broken symmetry direction (see Fig. 1, and (II) a turbulent state 

(see Fig. 3,2) in which charge  disclinations continually form and annihilate and the 

defects are self-propelled as seen in4–6,8–10,10–15,51,55.

The structure of the undulating nematic state is reminiscent of twist-bend and splay-bend 

modulated structures found in equilibrium nematics52,56,57. This state present when active 

convection was large (λC > 1.0) or and it was small (λC << 1) and Dδ ≤ 0 (see ESI† for 

details). In other regions of parameter space the system transitioned directly into the 

defective nematic state.

The above analysis focused on the instabilities of the homogeneous nematic state. Next we 

consider isotropic initial conditions and vary parameters which control the bend instability 

(λR, Dδ, and ρ0) and the strength of active convection (λC) while keeping the other 

parameters fixed.

Defect-ordered state

When the strength of active torque is dominant over the strength of active convection (λR > 

λC), and Dδ > 0 there is a steady-state with finite defect density below the bend instability 
(ψ < 1). This is where the defect-ordered state occurs (see Fig. 4). The properties of this 

state are as follows: (i) Defects are point-like and the background is a (locally) well-ordered 

nematic (see Fig. 2). (ii) Defining the orientation of  defects to be opposite the “comet 

tail” (along the direction of propulsion), we find that these defects exhibit significant polar 
ordering. (iii) The degree of polar ordering decreases as ψ increases. (iv) The high degree of 

polar ordering corresponds with long splay distortions which are left by  defects as they 

‖The spatial resolutions (h, units of ℓD) used were 0.1 ≤ h ≤ 0.4, temporal resolutions were  diffusion times, and 
system sizes were between 400 and 1200 ℓD
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travel (see Fig. 1). Other  defects tend to reorient rather than cross these distortion-trails, 

leading to long parallel structures which are visible in the states with a large degree of polar 

ordering.

Turbulent nematic state

The turbulent, defective nematic state occurs above the bend instability when the defect 

density and vorticity increase sharply (Fig 4). The defects, which were small and circular 

near ψ = 1, become spatially extended and the average degree of ordering decreases. This 

turbulent nematic state appears distinct from the one arising through the generic bend 

instability through correlation function Cω(R) = 〈ω(0)ω(R)〉/〈ω2〉, where ρω⃗= λR∇⃗ × (∇ · 

Q). It scales with the bend instability parameter ψ (see Fig. 5), which is linear in the 

strength of the active torque λR. This differs from what was found in a recent study13 where 

vorticity scaled as the strength of the activity to the 1/4th power. Further, if the length scale 

for defect separation ℓd scales with the vorticity , then the defect density should 

scale as ψ2. This is compatible with the trend seen near the critical value of the bend 

instability parameter, but the range is not large enough for a conclusive comparison.

Summary

We have introduced a universal theory of an overdamped active nematic in which activity 

enters through self-induced flows. This theory encompasses the physics already identified in 

previous work and identifies additional phenomena particularly relevant for rigid rod 

extensile systems. We have identified three nonequilibrium steady states admitted by this 

theory. The first is a defect-ordered nematic state where polar ordering of +1/2 disclinations 

emerges from the underlying apolar theory. The theory provides robust predictions about 

when polar defect ordering will be found. The ordering occurs below any bend instability, 

i.e., ψ < 1 and DE > 0 and when Dδ > 0 and λR > λC. This result implies that an polar 

ordered fluid phase of defects may not occur in theories which have Galilean invariance (λC 

= λR). Other steady states found include an undulating nematic state which is reminiscent of 

the “walls” of distortion in the order parameter seen before the onset of defective states11,13, 

or the distortion of the director which happens during relaxation oscillations51,58. Finally we 

find a turbulent nematic state similar to that which occurs in theories of active nematic 

suspensions8–14.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Heatmaps of the degree of order (S/S0, colorbar on the right) showing the nonequilibrium 

steady-states. (a) The defect-ordered state, with a histogram inset showing the sharp polar 

ordering in the orientation of  defects. The lines, showing the direction of order, highlight 

the extended trails left by the motion of these defects. (b) The undulating nematic state is 

highly ordered (S ≃ S0) but the direction of order undulates. Scale bars are in the top right 

corners.
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Fig. 2. 
Heatmaps of the degree of order (S/S0, colorbar on the upper-right) showing the defective 

states (a) at low activity (ψ < 1) and (b) at high activity (ψ > 1). Insets on each heatmap 

include (1) a heatmap of the vorticity (colorbar on the lower-right), and (2) 2×-magnified 

region with lines showing the direction of order. Scale bars are in the top left corners.
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Fig. 3. 
Plots showing the end state which forms from nematic initial conditions. (a) At Dδ = 1.0, the 

homogeneous nematic state transitions into a defective nematic above the instability 

boundary. (b) At Dδ = −0.50 we find an undulating state at intermediate activities.
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Fig. 4. 
Plots of the defect density (defects per (100ℓD)2) as a function of ψ, for ρ0 = 2.0. (a) Curves 

with fixed Dδ = 1.0, for a range of λC/λR, show that when the strength of active convection 

is comparable to active torque, defects vanish near the bend instability. When λC < λR the 

defect density can be nonzero for ψ < 1, in which case it increases sharply when ψ crosses 

1, and then saturates. (b) Fixed λC = 1.0 (less than λR), and a range of Dδ, for ψ < 1. Defect 

density is greater for larger Dδ, and it vanishes as Dδ goes to 0. The shaded region indicates 

where there was statistically significant polar ordering of  defects.
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Fig. 5. 
Log-linear plot of vorticity correlation functions, Cω(R) for fixed parameters (λR, Dδ and 

ρ0) above the bend instability (ψ > 1.10). The length is scaled by ψ, which gives a data 

collapse for a large range of parameters.
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