Skip to main content
. 2016 Oct 25;6(23):8389–8401. doi: 10.1002/ece3.2535

Table 3.

Parameter values, standard errors and associated probability levels of ordinary least‐squares (OLS, a, b) and spatial autoregressive (SR, c, d) best‐fit models for nonstygobiotic and noncold stenotherm species richness, and log‐transformed environmental variables

OLS models
Nonstygobiotic species Noncold stenotherm species
Variable Coefficient Standard error p(t) Variable Coefficient Standard error p(t)
a b
Constant 29.306 6.969 <.001 Constant 42.789 5.703 <.001
Area 1.085 0.625 .095 Area 1.396 0.512 .011
Elevation −0.810 2.211 .001 Elevation −12.698 1.809 <.001
Autoregressive models
Nonstygobiotic species Noncold stenotherm species
Variable Coefficient Standard error p(t) Variable Coefficient Standard error p(t)
c d
Constant 28.863 14.097 .051 Constant 43.007 11.438 <.001
Area −0.003 0.819 .997 Area 0.886 0.665 .194
Elevation −7.762 4.763 .115 Elevation −12.252 3.865 .004

OLS regression statistics: a) = 30, R 2 = .624; = 22.443, < .001, AICc = 142.361; b) = 30, R 2 = .846; = 74.085, < .001, AICc = 130.328. SR regression statistics: c) = 30, R 2 (pseudo) = .540 (AICc = 152.363), R 2 (predictors + space) = .379 (AICc = 161.376); rho = .987, = 15.844, < .001; d) = 30, R 2 (pseudo) = .832 (AICc = 136.895), R 2 (predictors + space) = .689 (AICc = 155.261); rho = .987, = 63.680, < .001.