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Summary

Ageing is a very complex process, the result of the dysregulation of multiple

systems interacting in many ways. A prominent change occurring with

ageing is related to the architecture and functioning of the immune system,

viewed commonly as detrimental and termed ‘immunosenescence’.

However, age-associated changes may also lead to increased function in

certain respects, which can be viewed as adaptive. None the less, on balance

it is well-recognized that immunosenescence is accompanied by the low-

grade inflammation observed commonly in elderly people, which has been

dubbed ‘inflamm-ageing’. The exact cause and significance of all these

changes is not clear, but there is a consensus that they are related to the

occurrence of chronic non-infectious age-associated disease, as well as

increased susceptibility to infections. Alterations to immune cell signalling

may be a prominent cause of malfunctioning immunity. Emerging attempts

to reverse immunosenescence have recently targeted the signalling pathways

in various different cell types of the immune system. Here, we review and

discuss alterations in the signalling pathways of immune cells with ageing

and consider current targets and means to modulate altered functions. We

discuss the potential dangers as well as the benefits of these interventions,

and consider future approaches to this problem.
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Introduction

Ageing is a very complex process involving most of the

physiological systems of the body. It may be considered as a

dysregulation of these physiological systems interconnected

through various regulatory mechanisms [1]. One of the

most important physiological/regulatory systems is the

immune system. It is well established that many aspects of

the immune response are decreased with ageing, whereas

others are increased, resulting in dysregulation. The result

has been designated ‘immunosenescence’ [2]. Other

prominent age-associated changes include the presence

of a low-grade inflammation, sometimes referred to as

‘inflamm-ageing’ [3,4]. An important question is whether

the multitude of reported differences between younger and

older individuals actually represent changes over time and,

if so, whether they are decreases due to ageing of the differ-

ent systems or an ongoing adaptation/remodelling result-

ing primarily from lifelong pathogen exposures [5,6].

Thus, in this context, immunosenescence as an adaptation

to ageing-associated deterioration of other bodily systems

requires more, or a different type, of protection against

internal and external challenges, not only pathogens;
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therefore, the changes in immune cell signalling that we

observe and will discuss during ageing would (or could)

also be adaptive in nature, even if leading eventually to

functional impairment of the immune system (overall

insufficient protection against different challenges). In any

event, immunosenescence is viewed as being related to the

occurrence of age-associated diseases, such as cardiovascu-

lar, neurodegenerative and endocrine disease. A major aim

of research into ageing is not only to understand the sys-

tems altered over the lifespan, but also to identify targets

for interventions to revert or slow down the age-associated

erosion of the different systems, which is often driving

elderly people to disease. However, if we consider the

immune changes with ageing as adaptive the question

arises as to whether they should be reversed or whether this

would be harmful long-term. We will consider these aspects

when discussing potential interventions here.

Following thymic involution, a developmentally pro-

grammed event occurring around puberty, phenotypical

changes at the single cell level, as well as in terms of cell

subset distribution, are observed in the adaptive immune

system, both resulting in functional changes; in addition,

innate immunity is also affected [2]. One of the most

important changes underlying the functional alterations is

the dysregulation of signalling at the cellular level [7–9].

This is accompanied by hallmarks of senescence, which

include the deregulation of mitochondrial function, telo-

mere regulation, nutrient-sensing pathways, proteostasis

and others [10]. Additional to the stimuli and stressors

encountered by most cells (DNA damage, free radical dam-

age, etc.), immune cells react upon encountering their spe-

cific ligands (pathogen antigens, cancer antigens, etc.) via

cell surface receptors, which must process signals and

transmit the appropriate information to the nucleus via

signalling pathways [10–12]. The communication of exter-

nal signals to the nucleus through the cytosol is complex,

and results ultimately in a response such as cytokine secre-

tion, chemotaxis, phagocytosis, proliferation, acquisition of

cytotoxicity or apoptosis [7,13]. We will review here the

key alterations during ageing with a focus on the associated

signalling pathways as well as ways to modulate these to

potentially reverse adaptive and innate immunosenescence.

The innate immune response is different in elderly
and young people

Many aspects of innate immunity are impacted by age

[14,15]. These functional changes are caused partly by dif-

ferent cell subset distribution, as reflected at the phenotypi-

cal level, but cannot be explained fully by this mechanism

[16]. The changes occurring in the innate compartment

may be loss or gain of functions [14,15]. Here, we assume

that differences between old and young people actually

reflect changes in the individual over time, although this

has been demonstrated only rarely in humans because

most studies are cross-sectional.

The first cells to arrive at the site of aggression are neu-

trophils. Their adhesive capacity and their phagocytic

activity are not different in older or younger people

[14,15,17]. In contrast, chemotaxis and free radical and

cytokine production decreases with age [14,18]. Similar

changes are also encountered in monocytes/macrophages,

although data from humans are scarce [19–21]. Natural

killer (NK) cells are also altered, with decreased cytotoxic

function at the single cell level, but compensated in most

cases by an increase in their number to retain or even

increase overall functionality [16]. Similar changes were

observed in plasmocytoid and myeloid dendritic cells,

resulting in impaired antigen presentation and CD41 T cell

activation, which is not compensated by increased cell

numbers [22]. It is of note that these innate immune cells

are able to secrete a significant amount of proinflammatory

cytokines especially in the quiescent state, suggesting that

there is a higher level of basal activation and activity of

these cells in elderly people [2,23]. It is likely that because

of the constant immune challenges over the lifetime, cells

of the innate immune system are already in a higher basal

activation state [18,24]. Most cellular functions are trig-

gered through different receptors, such as Toll-like recep-

tors (TLRs,) receptors for Fc and C3b. [23,25], the

numbers of most of which do not change [14]. Thus, the

higher basal activation state must be explained by some

mechanism other than unchanged numbers of receptors.

The adaptive immune response is different in
elderly and young people

Several important phenotypical changes occur with ageing

in the adaptive immune system, mainly in the CD81 T cell

compartment, although qualitatively similar observations

in CD41 T cells have been reported [26]. The decrease in

number and frequency of naive CD81 T cells and the

increase in the number of memory (CD28–CD81) and

potentially terminally differentiated effector T cells

(CD45RA1CD28–CD81) are explained mainly by the con-

tinuous antigenic exposures throughout life [27–32].

Chronic antigenic stimulation may originate either from

pathogen sources or from intrinsic stresses such as inflam-

mation, oxidative stress or tissue damage which can modify

self-antigens [33]. The most common antigenic stimulation

in this context is due to persistent infection with latent

cytomegalovirus (CMV) [27–29]. As an opportunistic her-

pesvirus, CMV has the tendency to reactivate when

immune surveillance decreases, which is the case of immu-

nocompromised individuals such as HIV patients but also

very likely in healthy elderly people [26]. The main issue

with CMV is the induction of a bystander effect on other

immune cells, as shown by the impressive accumulation of

late-stage, potentially dysfunctional, CD81 memory T cells
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and in some cases to a decrease of the CD4/CD8 ratio

below unity, where these expansions are especially large.

These observations lead to the definition of an immune

risk phenotype (IRP) based on results from the Swedish

Octo and Nona studies. This IRP was linked to higher mor-

tality during the follow-up period [34,35].

Inflamm-ageing

These changes in the immune response with ageing are

often paralleled by inflamm-ageing [3], a state associated

with increased levels of proinflammatory mediators which

develops gradually due to continuous antigenic stimulation

and cellular deterioration in aged subjects. This stress can

be contributed to by pathogens such as CMV, herpes sim-

plex virus-1 or by cellular and molecular debris arising

from damage caused by reactive oxygen species (ROS),

by the Maillard reaction (i.e. advanced glycation end-

products), by nitrosylation and even cancer [33]. These

stressors are often present at the same time, and very prob-

ably the ability to cope with each and all together will

determine the overall capacity to control inflamm-ageing.

Recently, this concept was complemented by the identifica-

tion of the senescence-associated secretory phenotype

(SASP) [36–38]. The SASP concept suggests that cells

reaching (replicative) senescence display a secretory profile

that may generate and/or sustain the low grade inflamma-

tory response in ageing, but may also play a (beneficial)

role in other physiological processes such as tissue repair or

remodelling. Cells with such a profile seem to accumulate

during the ageing process and secrete proinflammatory

cytokines. Eventually they may resist elimination by the

immune system [39] so, despite being a tumour suppressor

mechanism, dysregulated cellular senescence may contrib-

ute to the phenomenon of inflamm-ageing. Recently, we

drew attention to the notion that levels of proinflammatory

molecules alone cannot explain inflamm-ageing, as this is a

very complex process with various interactions with anti-

inflammatory molecules and the innate immune system

[1]. Very recently the molecular mechanism behind this

sustained inflammatory state was suggested to be ‘trained’

innate immunity, representing a sort of innate memory

[40]. The trained status of innate immune cells via epige-

netic memory presents a persisting proinflammatory phe-

notype maintained by the age-related constant challenges

resulting in the maintenance of the differential functioning

of the immune system, suggesting its contribution to the

onset of various age-related, chronic inflammatory diseases

[33,41,42].

Most of the above-mentioned changes in phenotype and

alterations of functionality with ageing are still not

explained at the molecular level. For instance, expression

or loss of markers at the surface is used to define T cell

populations but the signals and mechanisms involved are

poorly understood. The same applies to dysfunctional

immune cells. We believe that intracellular signalling is a

key element in this process, as outlined below.

Signal-aging

Innate immune cells

Receptor signalling is the way a cell communicates the

external ligand challenge translated through transcription

factors into specific gene expression which ultimately

drives the immune response. In innate immune cells

(neutrophils, monocyte/macrophages, NK cells) the

central signalling events resulting in immune functions

are the mitogen-activated protein kinase (MAPK), the

phosphatidylinositol-4,5-bisphosphate 3 kinase (PI3K) and

the Janus kinase/signal transduction and activator of tran-

scription (JAK/STAT) pathways [24]. These signalling

pathways are initiated by ligation of the Toll-like receptors

(TLRs), Fcg, C3b, formyl peptide receptor 1 (FLMP-R1) or

cytokine receptors. Following stimulation of the appropri-

ate receptors there is a lower activation (phosphorylation

on tyrosine or threonine) of extracellular-regulated kinase

(ERK)1/2, protein kinase B (Akt) and JAK2/3 molecules

[2,23]. These changes occur differentially depending on the

receptor studied. More specifically, for example, during

TLR-2/4 stimulation there is a decreased activation of mye-

loid differentiation primary response gene 88 (MyD88)

and interleukin-1 receptor-associated kinase 1 (IRAK1)

[23,43]; during stimulation via TLR-3/7 there is an altera-

tion in the regulation of the interferon regulatory factor

(IFR) element [44].

In neutrophils several receptors mediate cellular effector

functions. Historically, N-formylmethionyl-leucyl-

phenylalanine (fMLP), Fcg and the C3b receptors have

been studied extensively. Functions mediated by these

receptors are altered with ageing, explained by changes in

the associated signalling pathways, mainly MAPK, PI3K

and Akt [24]. The reported changes in these signalling

pathways are not related to changes in the number of

receptors triggered, but rather to impaired signalosome

formation that contributed largely to age-related impair-

ment of neutrophil functions [45]. Neutrophils of aged

individuals present alterations in TLR signalling due to

modified MyD88 and IRAKs activation [23]. Whereas the

number of these receptors is not affected significantly with

ageing, there is a significant alteration in the trafficking of

the pathway-associated signalling molecules in the plasma

membrane [46]. Membrane microdomains called lipid rafts

support early intracellular signalling events by enabling

membrane-bound receptors and their adaptor proteins to

coalesce at the site of stimulation [47]. This signalling plat-

form is critical for the downstream signalling cascade.

Studies have reinforced the role of the membrane in driv-

ing the signalling events leading to optimal responses

[48,49]. We and others have shown that disruption of the
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tightly regulated composition of these microdomains leads

to faulty signalling with direct consequences for cellular

function [23,50]. Not only is the location of the signalling

molecules in these lipid rafts important, but the biochemi-

cal composition is also crucial. The cholesterol-rich micro-

domains have a very specific lipid composition that enables

them to coalescence. Many studies suggest that dysregula-

tion of cellular lipid turnover could be an important driver

of cell dysfunction [48,51].

Adaptive immune cells: focus on T cell signalling

T cell activation requires recognition of antigenic epitopes

presented by professional antigen-presenting cells (APC)

within the context of major histocompatibility complex

(MHC) class I or class II molecules (signal 1) at the immu-

nological synapse (IS), where assembly of the T cell signal-

ling machinery occurs within lipid rafts and involves ad hoc

formation of multi-molecular complexes called signalo-

somes [52–54]. One of the first events following TCR liga-

tion is the up-regulation of lymphocyte-specific protein

tyrosine kinase (Lck) activity that targets immunoreceptor

tyrosine-based activation motif (ITAM) motifs of the CD3

complex and initiates recruitment and activation of zeta-

chain-associated protein kinase 70/linker for activation of

T cells/SRC homology 2 domain-containing leucocyte

phosphoprotein of 76 kDa (ZAP70/LAT/SLP76) [55,56]. At

every step of the signalling cascade following TCR and co-

stimulatory receptor (e.g. CD28) ligation, age-associated

alterations have been reported which can lead to altered

nuclear factor kappa B (NF-kB) and nuclear translocation

of nuclear factor of activated T cells (NFAT) translocation

[7]. The most notable alterations are at the very early

phases of the signalling pathway with the Src tyrosine

kinases, Lck notably being the most affected. The activation

of Lck, which transduces signals via the phosphorylation of

Zap70 to the whole machinery, is altered with ageing [57].

All were shown to have differential lipid raft association

during ageing [8]. For instance, high levels of phosphoryl-

ated p38 have been recorded in CD41 T cells displaying a

CD27–CD45RA1 phenotype [58]. Signals from the TCR/

CD3 complex, co-stimulatory receptors and cytokine

receptors converge leading to p38 phosphorylation which,

in turn, leads to interleukin (IL)-1b, tumour necrosis fac-

tor (TNF)-a and IL-6 cytokine production. It was demon-

strated that anti-TNF treatment in rheumatoid arthritis

patients depletes CD81 effector memory RA (EMRA) T

cells [59] while leaving other T cell subpopulations unaf-

fected, suggesting a role for TNF-a in the signalling events

leading to the generation of CD81 EMRA T cells in vivo.

The relationship between cytokine secretion switch and

p38 signalling-mediated T cell senescence remains to be

defined more clearly, but it is likely that dysregulation of

TCR signalling cascades will also influence differentiation,

as suggested previously [58,60,61]. Not only is the forward

signalling compromised, leading to activation through

tyrosine phosphorylation to the tyrosine kinase activation,

but also the feedback control.

The phosphatases are part of the feedback control of the

signalling pathways in both the innate and the adaptive

immune responses. There is evidence that these pathways are

also affected by ageing at least at two check-points in neutro-

phils and lymphocytes. Src homology region 2 domain-

containing phosphatase-1 (SHP)-1 activity could not be

modulated in neutrophils and lymphocytes of elderly sub-

jects when these cells were stimulated through specific recep-

tors, in contrast to younger individuals. In neutrophils, SHP-

1 exerts negative control on Lyn tyrosine kinase but cannot

function properly because of lipid raft alterations [51]. Simi-

larly, in T lymphocytes SHP-1 activity was not decreased to

permit the activation of Lck to transmit the signal adequately

for clonal expansion and IL-2 secretion [57]. In fact, SHP-1

activity was higher in healthy elderly subjects than in young

individuals, an observation consistent with the decreased T

cell response. In addition, there were significant differences in

active (pY394) and inactive (pY505) forms of Lck in response

to T cell activation with ageing. In T cells it was also shown

that altered ERK activation was due to altered activities of

dual specificity phosphatase 4 (DUSP4) and DUSP6 via

mRNA-181 [62]. Thus, the dysregulation of the negative reg-

ulation of immune cell activation could be an important

driver of immune dysfunction in ageing.

One other potentially important signalling pathway with

implications for the erosion of immunity with age is in the

mammalian target of rapamycin (mTOR) pathway. This

critical pathway regulates many processes but has been

linked mainly to glucose metabolism and longevity.

Recently, it became evident that mTOR, as a serine threo-

nine kinase, may also play an important role in T cell acti-

vation and differentiation especially of naive CD41 T cells

in their differentiation towards the T helper type 1 (Th1)

or Th17 phenotype [10]. The mTOR signalling pathway

activation is under the control of TCR/CD28 stimulation

[63,64]. Target of rapamycin complex 1 (TORC1) is acti-

vated through Akt phosphorylation via the 3-

phosphoinositide dependent kinase-1 (PDK1) pathway.

TORC2 regulates naive CD41 T cell differentiation towards

the Th2 phenotype. There are few studies on T cell mTOR

alterations with ageing and most are in mice. Thus, Perkey

et al. [65] showed recently that TORC2 signalling is

increased in murine CD41 T cells in ageing and its

enforced over-expression in CD41 T cells of young mice

reproduced age-related CD41 T cell functional changes.

Our own data suggest differential phosphorylation status

[cAMP response element-binding protein (CREB, Akt, S6,

eukaryotic translation initiation factor 4E-binding protein

(ElF4E), 4EBP1] of memory compared to naive T cells.

Very recently, Arnold et al. [66] demonstrated that TCR

stimulation induced autophagy in CD81CD281 T cells,

while in the CD81CD28– subset autophagy was decreased,
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which largely seems to compromise their survival under

specific antigen stimulation. These emerging data under-

line the importance of mTOR-related metabolic control

interwined with the TCR feed-forward and negative signal-

ling pathways to induce efficient T cell activation leading to

appropriate functioning. Therefore, further investigation of

this signalling pathway is fundamental for the understand-

ing of the functional changes in T cells with human ageing.

An oppositely directed (stimulating) regulator of the

autophagy pathway is the metabolic sensor 5’-adenosine

monophosphate-activated protein kinase (AMPK), already

implicated in the regulation of inflammatory processes

[66]. It was demonstrated recently that AMPK activates

p38 which leads to T cell immunosenescence, which can be

prevented by blocking the AMPK [60].

Thus, with ageing there are many signalling alterations

contributing to the changes in immune cell functions lead-

ing to the well-known modification of immune reactivity

[9,13,14]. Consequently, the question arises as to whether

the various modulations of these signalling alterations may

result in changes in functions which would offer an oppor-

tunity to revert to immunosenescence. There are some

experimental data that suggest that modulation of signal-

ling pathways may lead to beneficial changes in the altered

functions of immune cells. However, it remains question-

able whether the changes in immune cell functions repre-

sent a reversal per se of immunosenescence or only changes

in individual functions from the context of the immune

regulation occurring with ageing.

Signalling as a target for reversing
immunosenescence

From the perspective that we consider the changes occur-

ring in the immune system with ageing as detrimental, it

seems that altered signalling represents a good candidate

for trials to reverse immunosenescence. This notion is

strengthened by the present tendency towards personalized

medicine. These molecules are perfectly specific targets to

be considered when we wish to change specific functions,

such as phagocytosis, proliferation and others. There are

still some drawbacks, as we are currently not able to target

individual and specific cell populations specifically in a

human-orientated approach. In the following section, we

will summarize trials aimed at modulating signalling and

their effects on immune cells with ageing. We discuss the

innate and the adaptive immune response separately,

because despite many similarities they display significant

differences in signalling pathways.

Modulation of signalling in innate immune cells with
ageing

There are a few studies aiming at modulating innate

immune cell functions through signalling [51,67]. All these

studies have been performed in polymorphonuclear neu-

trophils (PMN). Our study targeted SHP-1 in neutrophils

to increase some of their crucial functions. Granulocyte–

macrophage colony-stimulating factor (GM-CSF) is a well-

known modulator of PMN functions, which were found

previously to be altered with ageing [2,45]. We found

strong tyrosine phosphorylation of Lyn in lipid rafts of

PMN from young subjects following GM-CSF stimulation

compared with the almost non-phosphorylated basal sta-

tus. In contrast, there is no phosphorylation of Lyn with

GM-CSF stimulation in PMN of elderly donors compared

with the higher phosphorylated basal status. A similar sit-

uation has been demonstrated already for MAPKs in PMN

of elderly [24]. The use of protein tyrosine phosphatase

(PTP) inhibitors has a strong influence on Lyn phosphoryl-

ation and recruitment to lipid rafts. The inhibition of

phosphatase activity, including SHP-1, revealed that it is

necessary to maintain phospho-Lyn in rafts to achieve opti-

mal cellular activation. Additionally, incubation of PMN

with a PTP inhibitor cocktail, followed by GM-CSF stimu-

lation, resulted in a significant increase in ROS production

and chemotaxis. It is of note that the PTP inhibitor cocktail

induced a significant increase in ROS production in PMN

of elderly people compared with GM-CSF alone (and not

observed for chemotaxis). This suggests that modulation of

signalling could lead to effective modulation of PMN func-

tions. This was also true for essential cellular processes such

as susceptibility to apoptosis. In PMN of young subjects,

the PTP inhibitor alone or PTP inhibitor and GM-CSF

treatment blunted the GM-CSF apoptosis-rescuing effect.

In contrast, preincubation of PMN from elderly people

with the PTP inhibitor before the 18-h culture with GM-

CSF resulted in recovery of the lost GM-CSF-induced res-

cue from apoptosis. Together, these results suggest that by

modulating phosphatase activity, such as SHP-1, PMN

functions can be improved with ageing.

As mentioned above, phosphorylation of signalling mol-

ecules in resting cells from elderly individuals is dysregu-

lated. This higher basal phosphorylation level suggests that

PMN are already primed for action and is characteristic for

the PMN of elderly people. This is the consequence of a

low-grade, chronic inflammation that we referred to earlier

as inflamm-ageing. Many signalling molecules, such as Lyn,

ERK1/2 and PI3K, were shown to exhibit this higher activa-

tion state in neutrophils with ageing. It is of interest that

increased phosphorylation of PI3K was demonstrated in

neutrophils, with its consequent decreased further activa-

tion during specific receptor stimulation [67]. This

increased basal activation was linked mainly to altered che-

motaxis, but also phagocytosis and free radical production

[67]. Sapey et al. [67] have shown that inhibiting specifi-

cally PI3Kg and PI3Kd at the basal state in neutrophils of

elderly people increases PI3K activity under stimulation

which will lead to increased chemotaxis. The authors con-

cluded that ‘targeting PI3K signalling may therefore offer
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new strategies in improving neutrophil functions during

infections and reduce inappropriate inflammation in older

patients’. Despite the attractiveness of this approach, it

remains to be determined whether this is a meaningful

approach in the whole ageing organism, resulting ulti-

mately in a better defence against infections or in the

decrease of low-grade inflammation. It is not to be

excluded that the higher basal phosphorylation status of

signalling molecules, besides altering the threshold for cel-

lular activation, also increases the susceptibility of these

cells to develop the secretory phenotype (SASP) described

earlier, which would further suggest the appropriateness of

such interventions but perhaps at an earlier period of life.

This area needs further research, and eventually clinical

studies to confirm the global effects of these changes in the

evolutionary perspective of immune changes as part of the

collection of other adaptations that happen during ageing.

Modulation of signalling in adaptive immune cells
with ageing

There are many more studies targeting signalling molecules

specifically to reverse functional changes in T cells. Histori-

cally, changes in the T cell compartment with ageing were

considered more important than in the innate compart-

ment. Studies are beginning to reveal that this may not be

true, especially in light of new knowledge that the majority

of immune cells resides in tissues and that most approaches

to study immunosenescence are restricted to the peripheral

blood. Nevertheless, alterations of T cell signalling pathway

are better characterized.

We have shown that pharmacological inhibition of SHP-

1 results in recovery of TCR/CD28-dependent lymphocyte

proliferation and IL-2 production to levels similar to those

of young adults [57]. These studies provide a lead for a

strategy aimed at modulation of the negative feedback loop

of T cell activation by targeting SHP-1 and PTPases in gen-

eral. The inhibition of SHP-1 activity resulted in recovered

Lck activity modulation in T cells of elderly subjects. This

approach is supported further by recent data from other

laboratories where higher DUSP4 and DUSP6 phosphatase

activities were inhibited by various means, such as siRNA,

a specific allosteric inhibitor, or miR-181a, and resulted in

increased T cell signalling and associated functions [64].

This modulation targeted the activity of ERK1/2, which

improved significantly in T cells, especially in CD41 T cells

of elderly subjects. Thus, these phosphatases are potential

targets to restore T cell functions in elderly subjects, with

the aim of improving response to vaccination or control

persistent infections such as CMV more effectively. How-

ever, based on an extensive literature search we can say that

such an approach has not yet been tested in vivo, due possi-

bly to limited specificity and other problems with the in-

vivo use of the available PTP inhibitors, such as possible

autoimmunity [68].

As mentioned above, ageing is characterized by the

increase of putatively terminal effector memory CD81 T

cells (TTE), at least some of which are very likely to be sen-

escent, and as such to have lost their proliferative capacity.

Thus, there is great interest to reverse this functionally

semi-inert state. Furthermore, the modulation of
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Fig. 1. Different signalling pathway targets

already used for interventions to reverse

immunosenescence. Immune cells use receptor-

mediated signalling pathways to respond to their

ligands. With ageing, the changes in the

signalling pathways may lead to changes in

immune cell functions of the innate and the

adaptive immune response. To improve the

functioning of the immune cells with ageing,

these signalling pathways seem to be good

targets. The main targets used in various studies

in vitro (*) and in vivo (†) are indicated. ?

Suggests that other possible targets not yet

explored in the context of immunosenescence.
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inhibitory receptors such as programmed death 1 (PD-1)

(also acting through phosphatases such as SHP-1)

increased the functions of old CD81 T cells successfully

[72]. Moreover, the inhibition of p38 MAPK resulted in

inhibition of TNF-a secretion. It is of note that simultane-

ous PD-1 inhibition counteracted this decreased TNF-a

secretion. Thus, simultaneous inhibition of the PD-1 and

p38 MAPK signalling pathways may result in unblocking

terminal-effector CD81 T cell proliferation capacity.

Together with their sustained cytokine production capabil-

ities, this may result in reverting the status from TTE to

‘TEM-like’. There are risks associated with this modulation,

as long-term blockade of p38 may result in cell escape from

senescence to malignant transformation. However, com-

bined short-term inhibition could reduce the extent of

immune ageing in populations at risk (e.g. frail category or

those with intense immunological history) in a specific sit-

uation where the functionality of the immune response

may be critical for morbidity.

There have also been attempts to modulate immune cell

functions through global changes in the signalling pathway

network. One of these methods consists of using nutrition

or physical activity as a modulator of T cell function. In

particular, it was shown that high-density lipoprotein

(HDL) may influence various signalling pathways affecting

T cell proliferation [69]. However, the exact mechanism is

not yet understood. Of interest, elderly individuals under

physical exercise treatment showed increased circulating

levels of killer-cell lectin like receptor G1 (KLRG-1)1 T

cells [70]. This may simply reflect mobilization of cells

from the tissue to the periphery. More studies are required

to identify whether exercise is a way to regulate the organ-

specific immune senescence burden or whether this is sim-

ply a response to stress. Together, mimicking ageing of

immune cells has shown value for understanding the role

of specific alterations on cellular functions. For instance,

increasing cholesterol levels in T cell membranes (and lipid

rafts) has resulted in similar functional defects as in T cells

from elderly individuals. Approaches are still needed to

rejuvenate immune cell functions by restoring the right

biochemical properties of membranes.

Very recently it was shown that mTOR inhibition can

improve immune function in elderly people. This is the

first demonstration in vivo that the modulation of a signal-

ling pathway could result in significant functional changes

leading to a clinically significant effect; namely, improving

the response to influenza vaccination [71]. Everolimus

(RAD001) administered to elderly subjects enhanced the

antibody response to influenza vaccination by 20%. This

intervention was relatively well tolerated. The mechanism

seemed to be via a decrease of the PD-1 receptor on CD41

and CD81 T cells, as this receptor inhibits T cell signalling

and is expressed more highly with ageing. However, it is

not known whether this increased response was translated

to a better protection against influenza in these subjects.

None the less, this first human study shows the feasibility

of some interventions (Fig. 1).

Conclusion

Together, the data reviewed here suggest that age-related

signalling changes may be targeted for restoring immune

function in vitro in immune cells. However, considering

the concept of immune adaptation/remodelling of the

immune system with ageing we do not know what the

physiological consequences of the reverted changes within

the immune system could be. Would they completely

unbalance the whole system? Would they cause even more

damage than good? Before being able to conclude that a

beneficial effect of the restoration of immunosenescence is

the most likely outcome, these questions should be

addressed. However, the study with the mTOR inhibitor

RAD001 holds promise, but even in this case the long-term

effects have not yet been investigated. In theory, each sig-

nalling molecule/pathway may be targeted [72,73], but a

systems approach is needed to choose the best-defined

hubs to intervene more precisely and without compromis-

ing other beneficial pathways.
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