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Summary

Ageing is characterized by increased low-grade chronic inflammation, which

is a significant risk factor for morbidity and mortality of elderly individuals.

Similar to ageing, obesity is considered to be an inflammatory

predisposition associated with chronic activation of immune cells and

consequent local and systemic inflammation. Both ageing and obesity are

characterized by reduced innate and adaptive immune responses. This

review focuses on B cells, how they may contribute, at least locally, to low-

grade chronic inflammation in ageing and obesity and on the mechanisms

involved.
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Ageing and related inflammation decrease B cell
responses

With ageing, the innate and adaptive immune responses

deteriorate, leading to greater susceptibility to infectious dis-

eases and reduced responses to vaccination [1]. The

decreased ability of aged individuals to respond effectively

against infectious agents and vaccines includes defects in T

cell signalling to B cells [2–4], reduced somatic hypermuta-

tion (SHM) [5,6] and class-switch recombination (CSR) in

germinal centre B cells [7], and intrinsic shifts in the VH rep-

ertoire [8]. Functional alterations in T cells have been consid-

ered for a long time to be sufficient per se to explain the age-

related decrease in antibody responses to exogenous antigens

and vaccines in elderly people. However, a large amount of

work has been conducted more recently showing that defects

in other components of the innate and adaptive immune sys-

tems also occur with age and contribute to the increased fre-

quency and severity of infectious diseases in elderly people.

Our laboratory has characterized age-related intrinsic B

cell defects, which are responsible for suboptimal antibody

responses of elderly individuals to infections and vaccines

[9–13]. A reduction in activation-induced cytidine deami-

nase (AID), the enzyme necessary for CSR, SHM and

immunoglobulin (Ig)G production, as well as in E47, a key

transcription factor regulating AID [14], has been

identified by our group. It has also been established that

AID correlates with optimal B cell function and therefore

AID can be used a predictive marker of optimal B cell

response. The decrease in AID and E47 leads to a reduced

ability to generate higher-affinity vaccine-specific antibod-

ies [5]. The antibody response to the seasonal and pan-

demic influenza vaccines measured in serum is associated

with the B cell response after vaccination to the vaccine in

vitro. In-vivo and in-vitro B cell responses have been meas-

ured, respectively, by the haemagglutination inhibition

assay and by AID mRNA expression by quantitative poly-

merase chain reaction (qPCR) after B cell restimulation

with the vaccine. It has been shown that the specific

response of B cells to vaccination in vivo and in vitro are

both decreased by ageing and are correlated significantly

[5,11,13]. Moreover, the percentages of switched-memory

B cells and cytosine–phosphate–guanine (CpG)-induced

AID before vaccination are both good B cell biomarkers

that are reduced in elderly people and are correlated signifi-

cantly with the in-vivo antibody response to the vaccine

[11,13], indicating that they can be used as predictive bio-

markers of optimal vaccine-induced antibody responses.

It has been shown that elderly individuals have a signifi-

cant reduction in B cell repertoire diversity and that this

correlates with their health status, and that B cell clonal

expansions with age had been reported previously [15].
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Using high-throughput long read sequencing of human

antibody repertoires in the context of Epstein–Barr virus

(EBV) or cytomegalovirus (CMV) serum positivity [16]

and influenza vaccination [17], it has been shown that

elderly individuals have decreased numbers of lineages but

increased prevaccination mutation load in their repertoire

and the diversity of the lineages is reduced greatly com-

pared to young individuals, consistent with earlier reports

on contraction of B cell repertoires in elderly people [18].

These findings could help to explain the impaired vaccine

responses observed in elderly people.

The inflammatory status of an individual may impact

upon the function of cells of the immune system. B cells

from elderly individuals spontaneously make higher

amounts of tumor necrosis factor (TNF)-a than those

from young subjects and B cell intrinsic TNF-a levels are

correlated positively with serum TNF-a. Importantly, these

B cell levels of TNF-a before stimulation are correlated

negatively with the response of the B cells from the same

individual after in-vitro stimulation which is measured by

AID [9]. Additionally, high prevaccine serum and B cell

TNF-a levels are also correlated negatively with the in-vivo

serum response to the influenza vaccine [9]. In line with

these results, an anti-TNF-a antibody was found to

increase significantly the response in cultured B cells from

elderly individuals, providing a proof-of-principle that it is

possible to improve antibody production in elderly indi-

viduals by counteracting autocrine TNF-a [9]. These find-

ings identify serum and cytoplasmic B cell TNF-a as other

B cell-specific biomarkers, which can help to predict the

quality of in-vivo and in-vitro B cell responses. Although

our studies have shown that serum and B cell TNF-a are

correlated positively in the majority of individuals, some

people show lower levels of B cell TNF-a and lower AID.

These results suggest that not only TNF-a but also other

markers of intrinsic B cell inflammation may contribute to

the down-regulation of AID in B cells from aged individu-

als; for example, microRNAs, which have been correlated

negatively with AID [19].

Ageing is characterized not only by increased circulating

levels of proinflammatory cytokines [TNF-a, interleukin

(IL)26, C-reactive protein (CRP)], but also by latent infec-

tions with viruses such as CMV. Stimuli triggering inflamma-

tion can also be generated by the age-related increase in the

amount of self-debris due to the continuous turnover of

cells and tissues, such as circulating mitochondrial DNA

(mtDNA) and post-translationally modified macromolecules

(DNA or proteins modified by oxidation, acylation, glycosy-

lation), which are recognized by immune sensors as exoge-

nous and represent a potent inflammatory stimulus [20].

CMV-seropositivity has been shown to have a negative

effect on influenza vaccine-specific antibody responses.

Our group has demonstrated recently for [21] the first

time a negative association between CMV seropositivity

and the B cell predictive biomarkers of optimal vaccine

responses characterized previously in our laboratory, and

found CMV seropositivity associated with increased levels

of serum and B cell-intrinsic TNF-a; this increase in

inflammation, contributed in part by CMV, may be one of

the mechanisms to down-regulate the B cell antibody

response. One proposed mechanism by which CMV

decreases B cell function may be an increase in systemic/

serum TNF-a which induces B cell-derived TNF-a which,

in turn, activates the promoter/enhancer of CMV and

proinflammatory cytokine production. In addition to this

mechanism acting directly on B cells, CMV may also

down-regulate the antibody response to the influenza vac-

cine indirectly through the induction of terminally differ-

entiated T cells and accumulation of senescent T cells

[22,23], which could lead to reduced generation of mem-

ory T cells [24,25].

Obesity is associated with decreased B cell
responses

Obesity and obesity-related diseases are a significant risk to

public health, and the numbers of obese individuals in the

United States have increased dramatically in the last few

years (Obesity Data Prevalence Map, http://www.cdc.gov/

obesity/data/prevalence-maps.html). More than one-third

of US adults are obese, with more in the African American

population, and these numbers are predicted to increase

alarmingly in the next few years. Increased weight and

abnormal accumulation of fat tissue lead to detrimental

health consequences, mainly because increased adipose tis-

sue is associated with increased inflammation, insulin

resistance (IR), p53 activation and telomere shortening

[26,27]. The growing interest in the field of obesity research

is aiming to discover and unravel the cellular and molecu-

lar mechanisms leading to the increase in body weight and

how this affects health outcomes. While prevention is of

great importance, it is medically relevant to identify biolog-

ical pathways with the potential to treat obesity and related

disorders, particularly in adults with fully established obe-

sity and associated conditions.

Obesity is associated with chronic activation of cells of

the innate immune system and consequent local and sys-

temic inflammation, which contributes to pathological

conditions such as type 2 diabetes (T2D) [28–30], cancer

[31], psoriasis [32], atherosclerosis [33] and inflammatory

bowel disease [34]. Obesity is linked to increased suscepti-

bility to bacterial, viral and fungal infections [35,36], and

obese individuals develop more postsurgical infections

than do lean individuals [37,38].

The adipose tissue is a major immunologically active

organ that contributes to systemic inflammation. Adipose

tissue inflammation is characterized by infiltration and

activation of immune cells that produce cytokines and che-

mokines that contribute to the ongoing chronic inflamma-

tion that promotes the degradation of metabolic pathways
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in obesity. Most of the studies conducted so far support a

crucial role for proinflammatory T cells and macrophages

in promoting local inflammation in the visceral adipose tis-

sue (VAT) leading to IR. It has been shown that, in obesity,

IFN-g-producing CD81 and T helper type 1 (Th1) CD41

T cells infiltrate VAT [39] and promote secretion of proin-

flammatory cytokines from M1 macrophages which con-

tribute to both local and systemic IR [40]. Conversely, in

lean individuals, IL-4/5/13-producing Th2 CD41 T cells,

CD41 regulatory T (Tregs) and invariant natural killer

(iNKT) cells are predominant in the VAT and promote

secretion of IL-10 and other anti-inflammatory cytokines

from M2 macrophages which maintain insulin sensitivity

(IS). There is increasing evidence that subcutaneous adi-

pose tissue (SAT) in the belly may also be dangerous in

promoting inflammation [41].

Studies elucidating B cell function in obesity are limited,

although B cells have emerged recently as crucial players in

regulating inflammation in murine VAT by presenting anti-

gens to T cells, secreting proinflammatory cytokines and

secreting pathogenic antibodies [42]. B cells infiltrate the

expanding adipose tissue in response to hypernutrition [43].

B cells can be activated by products of altered lipolysis in the

expanding adipose tissue to release proinflammatory

cytokines (TNF-a/IL-6) or chemokines (IL-8), thus contrib-

uting to local and systemic inflammation [44,45]. Antibod-

ies can also regulate obesity at the level of lipid absorption

from the gut and Bnull mice show reduction in lipid absorp-

tion [46]. Consistently, Bnull mice fed with a high-fat diet

show reduced visceral fat pad weights compared to wild-

type controls, suggesting that B cells play a role in changing

nutrient absorption, perhaps through local inflammatory

responses which could also shape mucosal immunity and

change gut microbiota [42,47]. Moreover, murine and

human B cells support T cell inflammation in obesity [48].

Our group has shown recently [49] that obesity is

associated with attenuated in-vivo and in-vitro antibody

responses in both young and elderly individuals and

that the peripheral B cell pool of individuals with

obesity is characterized by decreased percentages of anti-

inflammatory B cell subsets (transitional B cells) and

increased percentages of proinflammatory late/exhausted

memory B cells. Moreover, total B cells from both young

and elderly individuals with obesity, compared to lean indi-

viduals, have impaired function, as measured by AID in

response to CpG stimulation, and they secrete more proin-

flammatory (IL-6) and fewer anti-inflammatory (IL-10)

cytokines in culture supernatants. Before stimulation, total

Table 1. Effect of obesity and ageing on B cell function in humans

Individuals

Young Lean Young Obese Elderly lean Elderly Obese

In vivo influenza vaccine responsea 196 6 33 80 6 16** 56 6 8��� 28 6 4** ��

B cell subsets in bloodb

– Switched Memory 15 6 0.9 6 6 0.6**** 4 6 0.5���� 2 6 0.3** ����

– IgM Memory 29 6 1 27 6 2 22 6 2 21 6 3

– Na€ıve 50 6 0.8 57 6 2** 61 6 2��� 64 6 0.9��

– Late/Exhausted Memory 4 6 0.4 126i **** 12 6 0.6���� 14 6 2

– Transitional B cells 8 6 0.9 4 6 0.5** 3 6 0.6��� 1.7 6 0.4* ��

Cytokine production

– icTNF-a in unstimulated B cellsc 5 6 3 18 6 2* 14 6 2� 26 6 1*** ��

– IL-6 in stimulated B cellsd 68 6 6 244 6 24**** 181 6 20��� 323 6 2o** �

– IL-10 in stimulated B cellsd 58 6 3 37 6 2** 26 6 4���� 6 6 0 6*** ����

CSR

– AID expression in stimulated B cellse 0.2 6 0.03 0.09 6 0.01* 0.08 6 0.01�� 0.03 6 0.003* ���

– E47 expression in stimulated B cellse 0.16 6 0.008 0.08 6 0.008*** 0.06 6 0.007���� 0.03 6 0.004* ���

– IgG in sups of stimulated B cellsd 41 6 4 2o63*** 21 6 2�� 7 6 1*** ��

Results are from reference 48 (Frasca et al., Obesity 2016).
aResults are reciprocal of the titers after vaccination.
bResults are percentages of CD191 B cells.
cResults are percentages of icTNF-a-positive B cells, as evaluated by flow cytometry and intracellular (ic)

staining.
dMeasured by ELISA.
eMeasured by qPCR.

*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 indicate significant differences between lean and obese within the

same age group.
�p<0.05, ��p<0.01, ���p<0.001, ����p<0.0001 indicate significant differences between young and elderly within

the same weight group.
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B cells from obese individuals show higher immune activa-

tion (IA), as measured by increased levels of intracellular

TNF-a (icTNF-a), TLRs and inflammatory micro-RNAs

(miRs), all of which associate negatively with AID in stimu-

lated B cells. B cells from young and elderly individuals

with obesity also support the production of the proinflam-

matory cytokines IL-17 and IFN-g in T cells. These results

are summarized in Table 1. In conclusion, the effects of

ageing seem to be more pronounced than those of obesity

on in-vivo responses to the influenza vaccine and on circu-

lating B cell subsets. Conversely, obesity, more than ageing,

seems to affect the induction of IA markers in unstimulated

B cells (higher icTNF-a and IL-6 in young obese versus

lean individuals and lower IL-10 in elderly obese versus

lean individuals). Also, CSR seems to be affected more by

obesity in elderly individuals, although values are already

very low in the lean ones.

Mechanisms for the down-regulation of B cell
responses in ageing and obesity

As summarized above, ageing and obesity are associated

with metabolic, physiological and functional changes. Both

ageing and the increase in fat mass lead to higher produc-

tion of proinflammatory cytokines and chemokines, which

increase the risk of developing chronic diseases and

decrease life expectancy. Moreover, glucose tolerance

decreases with age [50] and percentages of abdominal (vis-

ceral and subcutaneous) fat also seem to be the major

determinants of IR in elderly individuals. Because of these

similarities, it is likely that these conditions share similar

cellular pathways.

In humans, adiposity increases with age. Computational

tomography scans have shown that as age increases SAT

decreases, whereas VAT increases [51]. Aged mice also

develop increased fat mass, with an increase in VAT, similar

to elderly humans [52]. In humans and mice, VAT and SAT

are biologically distinct in terms of secretion of proinflam-

matory mediators, including leptin, the adipocyte-derived

factor linking nutritional status with neuroendocrine and

immune functions, with VAT being more inflammatory.

Furthermore, expression of adipokines from adipose tissue

is regulated by nutrients, and these responses are increased

with ageing [53].

One of the mechanisms responsible for reduced B cell

function in individuals with advanced age or obesity may

be leptin-induced systemic and B cell intrinsic inflamma-

tion. Plasma levels of leptin, produced by fat cells, correlate

with the amount of body fat and body mass index (BMI)

and increase with age [54–56]. High serum levels of leptin

contribute to the inflammatory state of the adipose tissue

associated with obesity [57,58]. Leptin can modulate both

innate and adaptive immune responses. For example, it

regulates the macrophages’ acute inflammatory response

by inducing the secretion of proinflammatory cytokines

[59,60], activates B cells to produce cytokines [61], pro-

motes B cell survival by inhibiting apoptosis and inducing

cell cycle entry [62], controls the activation of CD41 effec-

tor T cells [63] and regulates the balance between prolifera-

tion and anergy in Tregs [64]. In-vitro incubation of B cells

from lean individuals with leptin increases phospho-signal

tranducer and activation of transcription factor (STAT)-3,

crucial for TNF-a production, and decreased phospho-

AMP-activated protein kinase (AMPK), the energy-sensing

enzyme upstream of AID activation [49].

Another mechanism by which the adipose tissue may

down-regulate B cell function and induce the phenotypical

and functional changes in B cell subsets observed in indi-

viduals with obesity is the secretion by the adipocytes of

proinflammatory mediators contributing to systemic

chronic inflammation, and of chemokines promoting the

migration of B cells to the VAT and regulating B cell func-

tion in the VAT. Experiments in progress in our laboratory

are investigating these hypotheses.

Telomeres are key markers of biological ageing [65,66]

and are predicitve biomarkers of effective B cell responses

to the influenza vaccine [67]. In particular, B cells from

individuals with protective titres to the influenza vaccine

have significantly longer telomeres than those with poor

antibody responses [67]. The age-related increase in

inflammation decreases telomere length. Shorter telomeres

have also been associated with increased BMI and increased

waist : hip ratio and VAT accumulation [68], suggesting

that obesity may accelerate the ageing process.

Therapeutic interventions to reduce obesity and
delay ageing

Although recent studies have shown that overweight and

mildly obese elderly individuals may live longer than their

normal weight controls, obese elderly individuals may live

a greater portion of their life with some disability [69,70].

With the increasing obese population worldwide and with

the increasing elderly obese population [71], the develop-

ment of safe and effective therapeutic interventions is

needed urgently. These will not only enhance immune

responses to infectious agents and vaccines, but will also

improve the biological quality of life in these individuals.

Several epidemiological studies have evaluated the effects

of different types of diet in protecting subjects from dis-

eases associated with chronic low-grade inflammation. Tra-

ditional diets (Mediterranean) and other less-known diets

(Okinawan, DASH, Portfolio) share similar dietary pat-

terns, all of which are associated with reduced risk for

inflammation-associated diseases. The primary goal is to

treat obese patients to reduce their weight, and this would

also correct their other co-morbidities, as not all obese

individuals will have and/or take the option of bariatric

surgery. Calorie or food restriction without malnutrition

has been shown to delay ageing in animal models [72].
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This intervention prolongs the lifespan of different animal

species, from single-cell organisms to mammals, and pre-

vents or delays age-related diseases such as cardiovascular

disease [73], cancer [74] and renal failure [75]. In humans,

short-term calorie restriction decreases the expression of

biomarkers of reduced longevity, such as fasting insulin,

glucose levels and body temperature [76], similar to what

has been observed in mice [72].

Obesity is associated with low circulating levels of 25-

hydroxyvitamin D [25(OH)D], VitD [77], which decrease

the development of obesity-related pathophysiological dis-

orders such as adipose tissue inflammation and subsequent

IR. Using high-throughput methodology (transcriptom-

ics), it has been shown that VitD reduces chemokine

expression by adipocytes and macrophage migration in

vitro and limits NF-jB activation [78]. By limiting inflam-

mation, VitD supplementation has been proposed to also

benefit frail elderly people by enhancing long-term health

[79].

Pharmacological approaches are also being considered,

and these include inhibitors of glycolysis, growth hor-

mone/insulin-like growth factor 1 (GH/IGF-1) and inflam-

matory pathways, as well as activators of the AMPK

pathway and treatments with metformin, statins and b-

blockers [80]. Some of these interventions have already

been shown to improve immune responses in elderly indi-

viduals. As an example, a recent paper has shown that

pharmacological inhibition of mTOR with the mTOR

inhibitor RAD0 increased significantly the in-vivo response

to the influenza vaccine in elderly healthy individuals, and

reduced the percentage of CD4 and CD8 T lymphocytes

expressing the programmed death-1 (PD-1) receptor,

which inhibits T cell signalling and is expressed more

highly with age [81].

In conclusion, autonomous B cell biomarkers of ageing

and inflammation, which affect the production of protec-

tive antibodies, have been identified and characterized.

Investigation of the mechanisms whereby inflammation

and immune activation disrupt a functional immune

response adds a novel dimension to the current focus on

the relationship of inflammation with long-term metabolic

disease outcome. These studies will allow targets for design

of possible adjuvants, new drugs and/or non-invasive life-

style changes to improve the immune and effective vaccine

responses.
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