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Summary

The world is undergoing an unprecedented shift in demographics, with the

number of individuals over the age of 60 years projected to reach 2 billion

or more by 2050, representing 22% of the global population. Elderly people

are at a higher risk for chronic disease and more susceptible to infection,

due in part to age-related dysfunction of the immune system resulting from

low-grade chronic inflammation known as ‘inflamm-ageing’. The innate

immune system of older individuals exhibits a diminished ability to respond

to microbial threats and clear infections, resulting in a greater occurrence of

many infectious diseases in elderly people. In particular, the incidence of

and mortality from lung infections increase sharply with age, with such

infections often leading to worse outcomes, prolonged hospital stays and

life-threatening complications, such as sepsis or acute respiratory distress

syndrome. In this review, we highlight research on bacterial pneumonias

and pulmonary viral infections and discuss age-related changes in innate

immunity that contribute to the higher rate of these infections in older

populations. By understanding more clearly the innate immune defects in

elderly individuals, we can design age-specific therapies to address lung

infections in such a vulnerable population.
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Introduction

In elderly people, the environment of the lung is character-

ized by chronic low-grade inflammation, an aspect of a sys-

temic inflammatory state associated with ageing often

referred to as ‘inflamm-ageing’ [1–3]. Many studies have

found higher baseline levels of proinflammatory mediators,

such as C-reactive protein, tumour necrosis factor (TNF)-a,

interleukin (IL)21b and IL-6 in elderly individuals, and ele-

vated levels of these mediators correlate with disease-

associated mortality in this population [4–10]. Moreover,

the heightened basal levels of proinflammatory mediators

present in older subjects probably contributes to decreased

pulmonary function and blunted immune responses to

respiratory tract infections [11–13]. Seniors, defined as those

greater than 65 years of age, are at higher risk for developing

lung infections and, once acquired, have more complica-

tions, longer hospital stays [14] and increased mortality

[15]. While seniors have higher rates of co-morbidities that

may worsen clinical outcomes after infection, baseline

immune dysfunction plays a central role in their susceptibil-

ity to respiratory infections and higher mortality rates [16].

It is known that advanced age affects multiple aspects of

pulmonary immunity, including the structure and function of

the lung itself, and both the innate and adaptive arms of the

immune system [11]. Immunosenescence is thus one of the

major factors underlying the increased incidence and severity

of respiratory tract infections in elderly people. In this review,

we will discuss studies examining age-related changes in the
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response to lung infections, with a particular focus on cellular

dysfunction and altered signalling in the innate immune sys-

tem. By understanding the effects of ageing on the cells of the

innate immune system in the context of respiratory infections,

we can gain insight into the common deficits in innate immu-

nity that predispose elderly people to these illnesses.

Pulmonary infections in elderly people

Pneumonia is a primary cause of morbidity, mortality and

socioeconomic cost leading to >50 000 deaths [17] and

costing more than $7 billion in medical costs annually in

the United States alone [18]. The incidence of pneumonia

has been increasing in elderly people in recent years [19];

in 2014, more than 83% of pneumonia deaths in the

United States occurred in seniors [17]. The leading cause of

community-acquired pneumonia among elderly individu-

als is streptococcal respiratory infections [20]. Fewer stud-

ies have examined the ageing immune system in the

context of Gram-negative pneumonias, yet these infections

also contribute to the overall increase in pneumonia-

related deaths in this population [20]. Furthermore, rates

of hospitalization, requirements for intensive care and

mortality rates from respiratory tract infections increase

drastically as seniors continue to age [17]. Nosocomial

pneumonias are common after hospitalization [21], partic-

ularly in geriatric trauma patients [22,23], with bacterial

infections as the most frequent cause of ventilator-

associated [24] and hospital-acquired pneumonias [25].

Individuals aged 65 years and older also have higher

mortality rates due to viral infections in the lung, the two

most prevalent being influenza virus and respiratory syncy-

tial virus (RSV) infections [26]. Infection with respiratory

syncytial virus (RSV) is a major cause of morbidity and

mortality in individuals over the age of 65, with rates just

below that of influenza virus infection [26–32]. RSV, like

influenza virus, infects cells of the respiratory tract [33].

However, less is known about the host immune response to

RSV compared to influenza virus, due mainly to a lack of

decent animal models that recapitulate the response to

infection in humans [34]. Studies examining the impact of

advanced age on the immune response to RSV infection

have demonstrated that viral titres are higher and the virus

persists longer in aged compared to younger hosts. Inter-

estingly, some studies have shown an early delay in viral

replication in older hosts, which the authors hypothesize is

due possibly to changes in the pulmonary epithelium due

to ageing [35–39]. Contributing to the enhanced mortality

is that elderly individuals do not respond to influenza virus

vaccinations as well as younger individuals, and a Food

and Drug Administration (FDA)-approved RSV vaccina-

tion does not currently exist [40,41]. Underlying poor vac-

cination responses and higher prevalence of and mortality

due to infection in older individuals is the reduced respon-

sive capacity of the immune system of this population [42].

However, this discussion will focus upon the innate arm of

the immune system in the lungs, although a diverse body

of detailed literature exists on changes in adaptive immu-

nity with ageing. Furthermore, it should be noted that

while similar responses to vaccination and natural infection

by bacterial and viral pathogens are useful to examine gen-

eral age-related dysfunction in leucocytes and pulmonary

immunity, such disparate models are not directly compara-

ble and may yield different conclusions based on the patho-

gen and type of immunological challenge.

Changes in the ageing lung environment

There are many alterations in the ageing lung environment

that impact innate immune function and host defences

against lung infections. For example, the mucociliary bar-

rier is an important defence against pathogens in the upper

respiratory tract and bronchioles of the lung, both provid-

ing a physical barrier as well as sweeping microbes and

debris upwards out of the airways. It has been shown that

elderly individuals exhibit reduced mucociliary clearance

[43,44], contributing to microbial invasion of the lower air-

ways and alveoli. The chronic inflammation present in

aged mice also causes an up-regulation of two proteins

implicit in the attachment and infiltration of bacteria in

the lung in epithelial cells: polymeric immunoglobulin

receptor and platelet-activating factor receptor (PAFr)

[45,46]. Shivshankar et al. demonstrated the importance of

these findings for host survival, in that increased expression

of bacterial adhesion ligands in the lungs, including PAFr,

correlated with mortality after pulmonary infection. Fur-

thermore, up-regulation of such proteins and other

markers of cellular senescence were identified in the lung

tissue from both elderly humans and aged mice, demon-

strating that immunosenescence probably plays an impor-

tant role in the increased susceptibility to infection in

ageing populations [47]. Other factors in the immune envi-

ronment of the lung are also susceptible to age-related

changes. Pulmonary levels of complement proteins and

surfactant proteins, important anti-microbial factors in the

lung, have been found to increase with age [48]. While

antibodies from aged individuals opsonize bacteria

adequately, research suggests that serum levels in seniors

are insufficient to facilitate antibody-mediated phagocyto-

sis of microbes by innate immune cells [49,50]. As such,

host defence in the ageing lung is impaired not only by leu-

cocyte dysfunction, but also by other changes in innate

immunity and the local tissue environment resulting from

inflamm-ageing.

There is recent evidence that the age-related changes in

resident gut and lung microbiota may also be involved in reg-

ulating overall immunity to respiratory infections. Micro-

biome studies have revealed an age-related shift in the

composition and diversity of the respiratory tract micro-

biome [51]. Endogenous bacteria of the murine gut
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microbiome are protective against both Pseudomonas aerugi-

nosa and Staphylococcus aureus pneumonia [52,53], and

alterations in the lung microbiome of aged mice may also

play a role during the host response to these lung infections.

For example, dysbiosis of the respiratory tract is observed in

elderly pneumonia patients [54] as well as aged mice colon-

ized with Streptococcus pneumoniae [55–57]. Although these

results hint that age-related changes in microbiota corre-

spond with alterations in immune function, there is currently

no evidence directly connecting age-related alterations in

respiratory microbiome with innate immunity.

Age-related defects in innate immune receptors

Infection by microbial pathogens activates multiple patho-

gen recognition receptors (PRRs) in both respiratory epi-

thelial cells and haematopoietic innate immune cells,

including Toll-like receptors (TLRs), retinoic acid inducible

gene (RIG)-I-like receptors (RLRs) and nuclear oligomeri-

zation domain-like receptors (NLRs) [58,59]. Triggering of

these receptors leads to the induction of cytokine and che-

mokine production and maturation of some cell types,

such as dendritic cells (DCs) [60–64]. Several studies have

shown that ageing leads to reductions in TLR expression

(both mRNA and protein), signalling and downstream

cytokine production in some cell types and models

[59,65,66]. Unfortunately, there is a paucity of information

regarding changes due to advanced age in PRR-mediated

signalling after influenza virus infection. However, a recent

study of influenza virus infection in mice suggests that

monocytes from aged animals have diminished anti-viral

interferon production but intact inflammasome responses

[67]. RSV is thought to be detected by various TLRs, RLRs

and NLRs, but the exact role of each type of receptor in

host immunity to this virus has not been studied exten-

sively [33]. Activation of these PRRs in lung epithelial cells

and other innate immune cells initiates a signalling cascade

that results in the secretion of important proinflammatory

cytokines, such as IL-1b and IL-6 [33,68]. In response to

RSV infection, advanced age alters cytokine production

such that there are decreased levels of type I and II interfer-

ons (IFNs) and TNF-a, but elevated levels of IL-1b and IL-

4 [35,37,38,69–71]. As a result, older animals exhibit

increased bronchopulmonary inflammation after RSV

infection compared to younger animals. Infiltrating cells

are comprised of granulocytes, with the large majority

being neutrophils [36,37,71]. Tissue damage caused by

immune cells may contribute to the elevated rate of RSV-

induced mortality in elderly people.

Similarly, peripheral blood mononuclear cells isolated

from elderly individuals exhibit reduced and delayed pro-

duction of TNF-a, IL-6, IL-1b, IFN-a, IFNc, C-C motif

chemokine ligand (CCL)2 and CCL7 after stimulation with

TLR-4, TLR-7/8 and RIG-1 agonists, subsequently hinder-

ing the ability of stimulated cells to induce T cell

proliferation in vitro [72]. Hinojosa and colleagues demon-

strated that the chronic, low-grade inflammation in the

lungs of aged mice up-regulates regulators of immune sig-

nalling such as A20, a de-ubiquitinase that inhibits TLR

signalling and downstream nuclear factor kappa-light-

chain-enhancer of activated B cells (NF-jB) activation,

showing that not only is TLR signalling itself dampened by

ageing, but negative feedback loops associated with TLR

signalling are up-regulated with advanced age [45,73].

Constitutive expression of such negative regulators impede

the ability of epithelial and immune cells to sense and

respond to microbes, decreasing the host’s ability to mount

an immune response to microbial challenge. Thus, age-

mediated deficiency in proper TLR (and probably other

PRR) function by epithelial cells and leucocytes probably

contributes to dysregulated inflammation and worsened

outcomes in elderly people infected with respiratory

infections.

Ageing and alveolar macrophages

Alveolar macrophages, the resident innate immune cells of

the airways, stand as the first line of defence against

microbes, including those that cause pneumonia, and play

central roles in the initiation and resolution of inflammation

(Fig. 1). The initial response of macrophages to microbes

and other inflammatory stimuli is reduced in aged hosts,

which has been attributed to inflamm-ageing [45,72,74–77].

This reduction in pathogen detection is probably a result of

changes in TLR signalling pathways and constitutively ele-

vated negative feedback signalling due to chronic inflamma-

tion present in older individuals [73]. Specifically, studies of

macrophages isolated from aged mice show a diminished

response to TLR-1, TLR-2 or TLR-4 stimulation with pepti-

doglycans, zymosan or lipopolysaccharide (LPS), respec-

tively. Specifically, these cells produced less TNF-a and IL-6

due to attenuated activation of proinflammatory signal

transduction in the NF-jB, p38 and c-jun NH2 terminal

kinase (JNK) pathways [45,75–79]. Furthermore, the same

decreases in proinflammatory cytokine (TNF-a, IL-1b and

IL-6) production by macrophages from aged mice have been

observed after pulmonary infection with S. pneumoniae, sug-

gesting that the reduction in TLR signalling occurs in vivo

during an active infection [45,73,77]. These alterations in

TLR signalling and associated downstream events are high-

lighted in Fig. 2. Furthermore, the ability of macrophages to

activate CD41 T cells is also probably impaired due to age-

ing, as macrophages from aged mice do not express the

same levels of major histocompatibility (MHC) class II mol-

ecules (required for antigen presentation to CD41 T cells) as

macrophages from younger animals [80].

In addition to initiating and sustaining the innate

immune response to bacterial infection, macrophages pro-

mote resolution of inflammation caused by infection by

removing extracellular debris and clearing apoptotic cells
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from the airways, a process known as efferocytosis.

Advanced age disrupts these functions, reducing the ability

of macrophages to remove apoptotic cells and resulting in

prolonged inflammation after infection, even after the

pathogen is cleared [81,82]. Monocytes and macrophages

from aged individuals and mice also exhibit reduced phag-

ocytic capacity [83–85], impairing their ability to remove

microbes from the host in the inflammatory response to

infection. Macrophages further play an essential role in

controlling inflammation and restoring tissue homeostasis

after infection by producing signalling molecules such as

the anti-inflammatory cytokines IL-10 and transforming

growth factor beta (TGF-b), and pro-resolving lipid medi-

ators [86]. In response to pneumococcal pneumonia, aged

mice produce less IL-10 but higher levels of chemokines

chemokine (C-X-C motif) ligand (CXCL)9, CXCL12, che-

mokine (C-C motif) ligand 3 (CCL3), CCL4, CCL5,

CCL11 and CCL17, suggesting a defect in anti-

inflammatory cytokine production by immune cells in the

lung [87]. Similarly, others have found a decline in IL-10-

producing macrophages with ageing in a murine model of

spinal cord injury [88].

The effect of advanced age on the production of lipid

mediators by alveolar macrophage has not been studied.

However, evidence from infections at other sites suggests

that this probably also occurs in the lung. For example, in a

model of self-resolving peritonitis, macrophages from aged

mice produced more proinflammatory eicosanoids and less

specialized pro-resolving mediators (SPMs), contributing to

delayed resolution of acute inflammation [82]. Moreover,

SPMs may serve as potential therapeutics in the context of

prolonged inflammation due to respiratory infection, as

nanoparticles loaded with leucocyte-derived SPMs (resolvins

D1 and D3) were able to correct age-related decline in

efferocytosis by macrophages. Although there is still much

to be learned about the resolution of acute inflammation in

the lung, these data hint at a significant impairment in the

ability of macrophages from aged subjects to promote reso-

lution, further adding to the inability of the aged immune

system to properly clear pulmonary infections with excessive

inflammation and tissue damage.

DCs in the ageing lung

DCs are another immune cell subset residing in the lungs

that are affected by the detrimental effects of inflamm-

ageing (reviewed in [89]). Macrophages and DCs both

carry influenza virus antigen, and upon activation of PRRs

they can traffic to the draining lymph node to present anti-

gen and activate virus-specific T cells [90]. Similarly, upon

detection of RSV by PRRs and in response to proinflamma-

tory cytokines, DCs traffic to the lung draining lymph

nodes, where they activate CD41 and CD81 T cells

[68,91]. DCs from aged subjects have impaired phagocyto-

sis and pinocytosis in vitro [92], and the migratory capacity

of DCs is reduced in aged mice, decreasing the number

available to stimulate T cells in the lymph node after influ-

enza or RSV infection [93,94]. Ageing reduces the up-

regulation of co-stimulatory molecules critical for T cell

priming and diminishes cytokine production by alveolar

macrophages and DCs after exposure to influenza virus

[94–96]. These age-mediated alterations in macrophages

and DCs are sufficient to cause a reduction in the ability of

these antigen-presenting cells (APCs) to activate CD81 T

cells [93,95]. There is mounting evidence that these defects

in APC function, in combination with intrinsic changes in

T cells, are responsible for the blunted adaptive immune

responses that occur in elderly people [97–99]. The

Fig. 1. Innate immune functions of

alveolar macrophages. As the resident

innate immune cell of the pulmonary

airspace, alveolar macrophages stand

at the forefront of host defence

against microbial invaders in the lung.

Along with their role in effecting and

propagating the inflammatory

response by phagocytosing microbes

and secreting proinflammatory

mediators, alveolar macrophages also

facilitate resolution by clearing away

dead cells (efferocytosis) and

producing anti-inflammatory

mediators.
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reduction in DC and macrophage function due to ageing

leads to poor viral clearance, ultimately causing increased

mortality after influenza virus infection [93,94,100]. While

the exact underlying mechanism by which ageing alters DC

function has not been determined, one study suggests that

age-mediated changes in histone modifications might con-

tribute [96]. Others have implicated age-related mitochon-

drial dysfunction as resulting in impaired phagocytosis and

antigen presentation by DCs [101]. However, further work

is necessary to elucidate the intrinsic and extrinsic factors

that drive aberrant DC function in ageing, particularly in

the context of bacterial infections.

Age-related changes in neutrophil function

Neutrophils are another key effector cell in the innate

immune response to pathogens, employing a wide range of

microbicidal functions to clear pathogens from tissues in the

early stages of lung infections. Neutrophils migrate into

infected tissues soon after a pathogen is detected, and they

work together with macrophages to contain and clear infec-

tions [102,103]. However, neutrophil functions decline with

age in many different models, as summarized in Table 1. As

such, these granulocytes are impaired in their ability to

Table 1. Anti-microbial neutrophil functions altered by ageing

Function Species Reference

Phagocytosis Human, mouse 22,104,125–129

Cytokine production Human 130

ROS generation Human,

mouse, rat

104,126–128,130–133

Chemotaxis Human 114,126,127,131,134

NET formation Human, mouse 105,135

Degranulation Human 134

ROS 5 reactive oxygen species; NET 5 neutrophil extracellular

trap.

Fig. 2. Dysregulated Toll-like

receptor signalling associated

with advanced age. This figure

depicts signalling pathways

downstream of Toll-like

receptor signalling, some of

which have been shown to be

disrupted or altered with age.

Dashed red boxes indicate

specific pathway components

known to be affected by

ageing, as discussed in this

review [29–34].
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eliminate bacteria and other microbes. When considering

the sometimes conflicting results of in-vitro and in-vivo

studies on neutrophil function in elderly people, it is impor-

tant to note that many of the studies cited in this review

used different stimuli to examine neutrophil function, e.g.

particles versus microbes for experiments on phagocytosis,

with resulting discrepancies in results. For instance, neutro-

phils from aged individuals exhibit reduced ROS generation

in response to S. aureus but not Escherichia coli [104]. Such

a disparity in the response between Gram-positive and

Gram-negative organisms illustrates the different ways in

which ageing affects neutrophil responses to distinct stimuli.

Additionally, no reports to date have examined the impact

of ageing on the response of neutrophils during viral infec-

tion. None the less, the impaired functions observed in neu-

trophils from aged subjects can be taken collectively as a

consensus acknowledging general decline in cell-based

immunity, often with severe ramifications. One such exam-

ple comes from research by Tseng et al., suggesting that

impaired neutrophil extracellular trap (NET) formation per-

mits the systemic dissemination of bacteria from the lungs

of aged mice, demonstrating how such age-related defects in

neutrophil function may lead to dire outcomes [105].

Along with deficiencies in anti-microbial functions, there is

also evidence that neutrophil recruitment and in-vivo chemo-

taxis are dysregulated in the lungs of aged mice and elderly

patients. In some infection models neutrophil recruitment is

impaired at early time-points, while in others too many neu-

trophils accumulate at the site of infection and fail to disperse

later. For example, in a murine model of pulmonary infection

with Francisella tularensis, older mice exhibited delayed pro-

duction of neutrophil-attracting chemokines and diminished

neutrophil infiltration in the early stages of infection [106].

Conversely, elderly patients with S. pneumoniae respiratory

tract infections and aged mice infected with P. aeruginosa had

increased and prolonged neutrophil accumulation in the lung

parenchyma relative to young controls [107–109].

The deregulated recruitment of neutrophils is not

infection-specific; studies examining the role of ageing in

burn-induced pulmonary inflammation showed dysfunc-

tional neutrophil migration and chemotaxis in the lungs of

aged mice due to altered chemokine signalling through

CXCR2 [110,111]. Additionally, other pulmonary inflamma-

tory stimuli resulted in heightened neutrophil-attracting

chemokine levels and prolonged neutrophilia in aged mice

[112,113]. Therefore, inflammatory signalling in the lung is

altered markedly due to ageing, contributing to aberrant

neutrophil trafficking observed after infection or other pul-

monary insults. Few studies have examined the mechanism

by which this occurs, but one study suggests that constitutive

phosphoinositide-3-kinase (PI3K) signalling contributes to

the abnormal chemotaxis by neutrophils from older subjects,

finding that inhibition of PI3K g or d isoforms restored

accuracy to neutrophil migration [114]. Together, these

studies show that ageing alters neutrophil recruitment, the

direction of which is potentially pathogen- or insult-

dependent. Age-related changes in normally tightly regulated

neutrophil chemotaxis can result in delayed pathogen clear-

ance [115,116] and contribute to prolonged inflammation

and pulmonary tissue damage [114]. Thus, it is evident that

neutrophil dysfunction plays an important role in the inabil-

ity of older individuals to mount an effective response to

bacterial pathogens, and to properly resolve neutrophil-

mediated pulmonary inflammation.

Ageing and natural killer (NK) cells in the lung

NK cells are responsible for killing infected or transformed

cells and they secrete important cytokines for host defence,

including IFN-g [68,117]. Advanced age leads to a reduc-

tion in the frequency of NK cells present in the lung after

influenza virus infection, and cytokine production by NK

cells is diminished in older animals [94,118,119]. Both

human and animal studies have shown that ageing also

reduces the NK cell cytotoxicity in response to influenza

virus or RSV [35,71,118,120]. Exactly how advanced age

reduces the frequency and functional capacity of NK cells is

not known, although the basal low level of inflammation in

older individuals is thought to play a role [119]. Further-

more, one report suggests that age-related alterations in

non-haematopoietic cells drive the functional deficits in

NK cells in aged mice [121]. In summary, the functional

capacity of NK cells is reduced by advanced age, due prob-

ably to changes in the pulmonary microenvironment of

older individuals.

Outlook and future directions

While a commendable effort has been made to prevent

viral and bacterial pneumonias, both community and

hospital-acquired infections continue to be a significant

burden of morbidity, mortality and socioeconomic cost.

Furthermore, few therapeutic strategies or treatments

designed specifically for elderly patients with lung infec-

tions currently exist, despite the profound, age-dependent

changes in innate immune function discussed above. Pri-

mary data on elderly individuals’ innate immune response

during lung infections is still scarce, despite the growing

need for more knowledge regarding the physiological

changes due to ageing. Therefore, understanding how

advanced age alters innate immune cell populations,

including the changes in APCs that result in blunted

adaptive immune responses and the enhanced pulmonary

neutrophilia present in older individuals, is critical in

determining why mortality rates due to respiratory infec-

tion are higher in elderly people. There have been advan-

ces in our understanding of the biology of ageing that give

hope for improved care and treatment of elderly people,

such as age-specific vaccines and adjuvants [40,122–124].

As a greater proportion of the population become seniors,

VC 2016 British Society for Immunology, Clinical and Experimental Immunology, 187: 16–25 21

REVIEW SERIES: AGEING AND THE IMMUNE SYSTEM, EFFECTS OF IMMUNOSENESCENCE AND CLINICAL IMPLICATIONS

Innate immune responses in the ageing lung



it is increasingly important to identify reversible causes of

immunosenescence and inflamm-ageing in the lungs in

order to develop targeted therapies for this at-risk and

quickly growing patient population.
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