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Summary

The immune system undergoes age-associated changes known as

immunosenescence, resulting in increased susceptibility to infections,

cancers and autoimmunity in the aged. The basis of our understanding of

immunosenescence has been derived primarily from studies examining

intrinsic defects within many of the cells of the immune system. While these

studies have provided insight into the mechanisms of immunosenescence, a

picture is now emerging that the stromal microenvironment within

lymphoid organs also contributes significantly to the age-associated decline

of immune function. These extrinsic defects appear to impact the functional

activity of immune cells and may offer a potential target to recover immune

activity. Indeed, rejuvenation studies which have targeted the stromal niche

have restored immune function in aged successfully, highlighting the impact

of the microenvironment towards the aetiology of immunosenescence.
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Introduction

The microenvironment of primary and secondary lymph-

oid organs (e.g. bone marrow, thymus) plays a critical role

in the development and activation of immune cells by reg-

ulating cellular differentiation and proliferation [1–3].

These highly specialized environments consist of various

cell types (fibroblast, endothelial cells, epithelial cells),

extracellular matrix molecules and adhesion molecules,

which regulate the processes of cellular differentiation and

proliferation through the production of soluble factors and

cell-to-cell interactions [1–3]. Such interactions are essen-

tial, as defects within the stromal niche severely hamper the

function of primary and secondary lymphoid organs.

It is now evident that, with increasing age, there is a decline

in immunological competence, which is displayed by a

reduced response to vaccination and infections, together with

an increase in the incidence of cancers and autoimmune

disorders [4–7]. Our understanding of the mechanisms under-

lying immunosenescence is based primarily on the identifica-

tion of intrinsic changes in cells of the immune system [8–10]

and while these studies have provided some insight, what is

often overlooked is the potential role of extrinsic factors (see

Fig. 1). Moreover, an increasing number of studies have identi-

fied the aged microenvironment as a contributing factor to the

clinical manifestations of immunosenescence [11]. In this

review we describe the impact of the stromal niche in the age-

associated decline of immune function.

The aged bone marrow niche

Documented changes in aged haematopoietic stem cells

(HSC) include reduced repopulation activity, homing and

self-renewing capacity together with a skewed differentiation

along the myeloid lineage [12]. Aged HSC show altered gene

expression in comparison to young HSC, in particular up-
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regulation of the senescent marker p16, which is associated

with reduced differentiation and proliferative potential [13]

and increased DNA double-strand breaks [14]. These obser-

vations imply strongly that the mechanisms involved in HSC

ageing are a consequence of cell-intrinsic changes [12].

However, other studies have suggested that perhaps some of

these alterations may be due, in part, to the influence of the

aged microenvironment [15]. For instance, young HSC dif-

ferentiated preferentially towards the myeloid lineage when

transplanted into aged recipients [16,17]. In contrast, trans-

plantation of aged HSC into the young niche produces fewer

myeloid cells [18]. This could be attributed to the increased

inflammatory status within the aged bone marrow (BM)

niche, as studies have shown elevated levels of proinflamma-

tory cytokines [18–20]. Indeed, it has been demonstrated

that the chemokine RANTES (regulated upon activation

normal T cell expressed and secreted), which is elevated in

the aged BM, is able to stimulate myeloid-biased HSC differ-

entiation [18]. Furthermore, aged mesenchymal stromal cells

(MSC; also known as mesenchymal stem cells [21]) show a

reduced osteogenic activity while, conversely, preferring to

differentiate into adipocytes, correlating with the reduced

osteogenesis that is seen in elderly people together with the

age-related increase in yellow BM [22,23]. Kfoury and Scad-

den recently proposed the term mesenchymal stromal cells

[21], not to dispute the presence of stem cells within this

population of cells, but they noted that the majority of pub-

lications using these cells have not necessary examined their

precursor activity. This altered differentiation of aged MSC

may be due to the age-associated reduction in the expression

of the CXCR4 receptor [24], as MSC deficient in this receptor

exhibit impaired osteogenesis [24,25]. Additionally, aged MSC

show a preference to differentiate into adipocytes which might

be related to the age-related increase in yellow marrow and,

interestingly, adipocytes appear to exhibit reduced HSC differ-

entiation in human and mice [26,27].

Such alterations in the aged BM niche have led to the

speculation that these changes might also play a role in the

development of haematological malignancies [15], which

are often age-related; this is supported by the observation

that a pre-leukaemic cell line showed preferential growth in

aged BM [28]. In another study by the same authors, they

showed that transplantation of transformed HSC clones

developed preferentially in the aged BM microenvironment

in comparison to the young BM niche [29]. Moreover,

studies using MSC from multiple myeloma patients (a B

cell malignancy) have shown that they exhibit a senescent

profile [30], altered phenotype, differentiation and prolifer-

ative capacity [30,31] and produce higher levels of proin-

flammatory cytokines [30,32], giving rise to the suggestion

that the BM microenvironment may be a key component

in the pathogenesis of this disease [33].

The development of B cells is critically dependent upon

the stromal environment within the BM [34], and although

maturation of B cells resides within a different compartment,

which is associated with HSC differentiation, given the age-

related changes within the BM niche [15], the defects of B

cell function in the aged could nevertheless be attributed, in

part, to the aged microenvironment. Previous studies have

shown that primary culture of stromal cells from old and not

young fail to support B cell development, due possibly to a

defect in the secretion of interleukin (IL)-7, a key cytokine

for B cell maturation, from ageing stromal cells [35]. Adop-

tive transfer experiments suggest that the aged BM stroma

may reduce the recombinase activity in B cell progenitors

which leads to the inability to undergo gene rearrangement,

resulting in a decrease in B cell differentiation [36]. Further-

more, adipocytes, which increase in the aged BM, appear to

inhibit B cell lymphopoiesis [37]. The impact of the aged BM

is not confined only to B cell differentiation, as recent trans-

plantation studies involving mixed BM chimeras in mice

have shown that the age-associated decline of natural killer

(NK) cell function might also be due to the BM stroma

[38–40]. NK cells develop in the BM and their numbers,

together with their activity (such as cytotoxicity), decline

with age [10]; these recent studies [38–40] have suggested

Environmental
Extrinsic Factors 

Cell Intrinsic Factors 

Immune Senescence

• Telomere shortening
• Change in cellular phenotype
• Altered differentiation status
• Altered proliferation status
• Defects in homing properties

• Tissue disorganisation
• Accumulation of different cell types
• Pro-inflammatory environment
• Change in the niche area 
(eg ECM, adhesion molecules, 
chemokine production)

Fig. 1. Examples of intrinsic and extrinsic

factors that can contribute towards immune

senescence.
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that this may be attributed to the failure of the aged BM

stroma to provide the necessary developmental cues.

Aged thymic stromal microenvironment contributes
to immunosenescence

The thymus is a central T lymphoid organ responsible for

both the production of functional naive T cells and the

generation of immune tolerance. It is able to carry out this

function due to the presence of cortical and medullary thy-

mic epithelial cells (TEC), which represent a crucial com-

ponent of the thymic niche [1]. Age-associated thymic

involution represents one of the most acknowledged

changes in the ageing immune system and appears to occur

in all vertebrates, implying that it is an evolutionary con-

served event [41]. This involution results in the reduced

output of naive T cells [42,43], leading to the oligoclonal

expansion of memory T cells. Consequently, the T cell

receptor repertoire is diminished [44,45] together with a

decline in T cell functional activity, resulting in immune

senescence [5,9]. Furthermore, age-associated thymic invo-

lution also induces defects in the establishment of immune

tolerance, thereby resulting in enhanced propensity for

autoimmune responses [46].

Several studies have demonstrated that the thymic

microenvironment undergoes age-associated changes,

including alterations of TEC cortical and medullary

markers [47,48], changes in TEC gene expression profile

[49,50], which includes a decline in the production of the

thymopoietic cytokine IL-7 [51], together with a disrup-

tion of the structural organization and integrity of the thy-

mic niche [52,53]. Given that such changes can affect the

thymopoietic activity of the thymus [1], it is not unreason-

able to propose that the thymic stromal microenvironment

contributes towards the process of age-associated thymic

involution [11,48].

Indeed, this is the conclusion reached from several trans-

plantation studies, which demonstrated that the thymo-

poietic activity of early thymic precursor (ETP) from

young and old mice appear similar and that the defects in

age-associated thymic involution seem to reside in the aged

thymic stroma [17,54–56]. In particular, Zhu and col-

leagues observed that transplanted fetal thymi were repo-

pulated with equal efficiency in young and old mice,

whereas intrathymic injection of ETP from young mice fail

to develop in the thymus of old mice [56]. However, it

should be noted that there are studies showing aged

ETP exhibiting reduced proliferative and differentiation

potential [57].

The thymus establishes immune tolerance through

thymocyte negative selection and the generation of

thymus-derived regulatory T cells (tTregs) [58], mainly by

presenting self-reactive peptide/major histocompatibility

complexes (MHC) on medullary TEC (mTEC) [59] to

induce either negative selection [60] or the differentiation

of tTregs [61–63]. The mechanism of self-antigen presenta-

tion is controlled at least partially by the autoimmune reg-

ulatory gene (AIRE) [64,65], and there is evidence to

suggest the aged thymus contains a reduced number of

Aire1 mTEC [46,66], leading possibly to impairment of

negative selection which may reflect the increased preva-

lence of autoimmunity in elderly people [4]. However, it is

still unclear whether tTreg selection is also disrupted in the

involuted thymus, with studies identifying a decrease in the

generation of tTreg in the aged thymus [67], while others

reveal no reduction in tTregs [46].

It is often stated that thymic involution is initiated at the

start of puberty [68], although some have argued that this

process may occur earlier in life [69–71]; nevertheless, the

thymic stroma has been identified as the target of androgen-

induced regression [72]. Furthermore, gene expression analy-

sis comparing young and old thymi revealed that the majority

of changes occur within the cortical TEC compartment [50].

An extension of this study from the same group revealed that

TEC are deficient in the anti-oxidant enzyme catalase and, by

elevating levels of catalase through transgenesis or using anti-

oxidants in the diet, they observed that thymic atrophy was

diminished [73]. Interestingly, the authors propose that these

findings may offer a rationale as to why the thymus begins to

‘age’ much earlier than other organs [74].

Overall, these studies highlight that TEC homeostasis

represents an important element in the aetiology of age-

associated thymic involution and factors linked with TEC

maintenance and integrity could represent key triggers in

involution. One potential trigger appears to be the tran-

scription factor forkhead box nude N1 (FoxN1), which is

crucial for TEC development [75]. Studies have revealed

that the intrathymic expression of FoxN1 shows an age-

associated decrease [49,76], with a recent study showing

that the most dramatic decline of FoxN1 occurs at the

onset of thymic involution [77]. Moreover, the generation

of transgenic mice that have a reduced expression of FoxN1

in the postnatal thymus mimic thymic involution [78–80].

In contrast, over-expression or induction of expression of

FoxN1 in the postnatal thymus can delay thymic involution

[80–82]. Similarly, mice deficient in the intrathymic pro-

duction of retinoblastoma show an enlarged thymus due to

the up-regulation of expression of FoxN1 [83].

Other significant changes that have been identified within

the aged thymic microenvironment includes an accumulation

of adipose tissue [84], fibroblasts [85] and senescent cells [85],

and evidence suggests that such cells, in particular adipocytes

and fibroblasts, are derived from TEC [86]. Furthermore, the

presence of these cell types appears to inhibit thymopoiesis

and may therefore contribute to thymic involution [87].

Indeed, thymi from caloric-restricted mice, which exhibit an

increased lifespan, show a delayed involution due primarily to

a reduction in thymic adipogenesis [84]. This reduction may

be mediated by fibroblast growth factor 21 (FGF21), which is

expressed within the thymic stroma and is up-regulated in
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caloric-restricted mice [88]. Moreover, over-expression of

FGF21 inhibited the accumulation of fat within the thymus

and abrogated thymic involution [88]. The presence of senes-

cent cells within the thymus may correlate with the age-

associated increase in proinflammatory cytokine expression

which is seen in the human thymus [89]. Such cells, which

produce a variety of molecules, are termed senescence-

associated secretory phenotype (SASP) [90] and have been

suggested to cause alteration in tissue function and structure

[90,91]. Indeed, administration of IL-6 is known to cause thy-

mic atrophy in mice [89]. Further evidence suggesting that

TEC are regulators of thymic involution comes from several

studies that have rejuvenated the ageing thymus successfully by

targeting the thymic stroma [11]. These include the adminis-

tration of IL-7 [92], keratinocyte growth factor [93], IL-22

[94] and ghrelin [95], and in most instances thymic function

and structure were restored. In contrast, intrinsic interventions

have proved so far to be less efficacious in comparison to tar-

geting the stromal niche.

Secondary lymphoid stromal cells: an underlying
contributor to immunosenescence?

Stromal cells in secondary lymphoid organs (lymph nodes,

spleen) were once considered purely structural in nature.

During the past decade this simplistic view has been over-

turned by an insurgence of research revealing the integral

role of stroma in maintaining and controlling immune cell

function. While much of ageing immunology research has

been focused heavily upon determining cell intrinsic

defects in adaptive and innate immune cells, the

contribution of secondary lymphoid stromal cells to age-

related defects in immunity are just beginning to become

unravelled [96–98].

Age-related alterations of lymph node stromal cells

Lymph nodes are highly organized structures important for

the development of adaptive and innate immune responses.

In lymph nodes, B cells are segregated to peripheral follicles

and T cells remain the central T cell zone, also known as

paracortex. The medullary sinus is a site where activated T

cells exit the lymph node through lymphatic vessels (Fig.

2a). The majority of secondary lymphoid organ stromal

cell research has focused upon the lymph node stromal

cells. Recent reviews by Fletcher et al. [99] and Change

et al. [100] describe in detail the biology of the various

lymph node stromal cell niches. Simplistically, lymph node

stroma can be divided into four subsets; lymphatic endo-

thelial cells (LECs), blood endothelial cells (BECs), fibro-

blastic reticular cells (FRCs) and cells negative for the

markers of these subsets, called double-negative cells

(DNCs) [99] (Fig. 2b).

Lymphatic endothelial cells compose the lymphatic ves-

sels in lymph nodes [101]. Lymphatic vessels are conduits

that transport lymph, soluble antigens and immune cells

from tissues to draining lymph nodes [102]. Aged lym-

phatic collectors have increased leakiness and a decreased

ability to support active lymph flow [103–105], which

results in decreased capacity to transport bacteria [105].

Functional attrition of aged lymphatics is due in part to

increased oxidative stress and protein carbonylation [105].

Fig. 2. Lymph node architecture. (a) The main architectural components of a lymph node are B cell follicles (dashed white line), T cell zone and

lymphatic rich medullary sinus. Stroma are show in green with ER-TR7 staining. The T cell zone contains a net-like fibroblastic reticular cell

(FRC) network magnified in (b). (b) Image of the stromal cell subsets in the lymph node T cell zone. The FRC network is shown in green as

podoplanin (PDPN)1. Lymphatic endothelial cells (LEC) shown in blue with Lyve-1. Blood endothelial cells (BECs) are shown in red using

CD31. High endothelial venules (HEVs), a subset of BECs, are the cuboidal shaped CD311 areas, one of which is denoted by an arrow. Image

was acquired using confocal microscopy. (a) scale bar 5 100 lm, (b) scale bar 5 70 lm. Images are of mediastinal lymph nodes from C57BL/6

mice, acquired by A. R. M.
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Defects in cellular and antigenic transport caused by age-

related changes in lymphatic collectors may be a contribut-

ing factor behind the delayed initiation to immune

responses found in elderly people.

Blood endothelial cells in the lymph node can be sepa-

rated into capillaries and cuboidal-shaped high endothelial

venules (HEVs) [101]. BECs facilitate entry of naive T and

B cells into the lymph node [101], but how ageing impacts

HEVs or capillaries in the lymph node is still unclear. One

recent study by Richner et al. shows that aged naive CD41

T cells transferred into young mice have delayed entry into

the lymph node, and it was observed that aged CD41 T

cells have altered migration through HEVs compared to

young T cells [106], suggesting T cell intrinsic defects.

However, this study did not examine directly the changes

occurring in aged HEVs, which may contribute to the

delayed entry of young cells into aged lymph nodes. Ageing

of the vascular system is a well-studied phenomenon char-

acterized by mechanical and structural changes to the vas-

cular including arteriolar stiffening [107]. It is likely that

lymph node blood vessels would experience age-related

changes which could result in delayed immune responses

found with increasing age.

Double-negative cells are a poorly defined subset of

lymph node stromal cells, and they are believed to be con-

tractile FRC-like pericytes [108]. As little is known about

these cells, it is not surprising that how ageing changes

their function or numbers is unknown.

Fibroblastic reticular cells are a diverse subset of stromal

cells in the lymph node. Follicular dendritic cells (FDC) are

one type of FRC. The impact of ageing on FDCs is dis-

cussed separately below. The most thoroughly studied is

lymph node T cell zone FRC biology. T cell zone FRCs

maintain the architectural organization of the T cell zone

and B cell follicles [109]. FRC-produced chemokines

CCL19 and CCL21 interact with their receptor, CCR7, on

T cells and dendritic cells controlling the localization of

these immune cells to the T cell zone of the lymph node

[110]. One recent study showed that at steady state, CCL21

concentration was similar in young and aged popliteal

lymph nodes, but after infection with West Nile virus aged

lymph nodes had lower CCL21 concentrations when com-

pared to young lymph nodes [106]. Disruption of B cell

follicles in aged lymph nodes [106,111] may suggest altera-

tions in T cell zone FRCs, but this has not been studied

thoroughly. It is unclear whether there are fewer T cell zone

FRCs in the aged lymph node or if the aged FRCs are func-

tionally impaired. Future studies are required to under-

stand fully how ageing changes lymph node FRC function.

Functional changes in FRCs with age may have a major

impact on the initiation and control of adaptive immune

responses in aged individuals. Decreased CCL21 concentra-

tions may decrease the recruitment and localization of acti-

vated dendritic cells and naive T cells into draining lymph

nodes, which could diminish dramatically the immune

response magnitude. FRCs are also a major source of IL-7

and CCL19, both of which are important for survival of

naive T cells [112,113]. Ageing reduces the number of naive

T cells dramatically, due in part to thymic involution, and

results in changes to T cell homeostasis [48]. FRCs may

contribute to T cell homeostatic difficulties if IL-7 and

CCL19 production is altered.

Age-related alterations of splenic stromal cells

The spleen is a secondary lymphoid organ located in the

upper right quadrant of the abdomen that filters blood, and

is a critical component in the defence against blood-borne

pathogens such as encapsulated bacteria [114]. The spleen is

compartmentalized into red and white pulp, as shown in

Fig. 3. The white pulp consists of B cell follicles which sur-

round a T cell periarteriolar sheath. The marginal zone sur-

rounds the B cell follicle. This is where the central arteriole

empties and immune cells enter the spleen [114]. Bridging

channels are FRC-lined conduits that allow for entry of

immune cells into the splenic T cell zone from the marginal

sinus [115]. A frequently overlooked component of immune

Fig. 3. Splenic architecture. The T cell zone of the splenic white pulp

is supported by podoplanin (magenta)-positive fibroblastic reticular

cells (FRCs). B cell follicles surround the T cell zone and are devoid

of FRCs, but contain follicular dendritic cells. The red pulp consists

of ER-TR71 red pulp fibroblasts (green). Bridging channels, lined

with FRCs, connect the T cell zone of the white pulp to the

marginal zone and red pulp of the spleen. Image was acquired using

confocal microscopy. Scale bar 5 100 lm. Imaged is a C57BL/6

mouse spleen, acquired by A. R. M.
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system efficacy is locality [116]. Immune responses are

dependent upon the interaction of rare cells with one

another, and the intricate organization of secondary lymph-

oid organs is designed to increase the probability of these

interactions occurring [116]. With age, there is considerable

attrition of splenic white pulp organization. The splenic

marginal zone (B cells [98] and macrophages [96,117]) and

follicular dendritic cells [118] show significant disruption

with age, and there is also a merging of the B cell follicles

and the T cell areas [96–98]. Stromal cells are a non-

haematopoietic component of secondary lymphoid tissues.

In the spleen, the markers podoplanin (PDPN) and CD31

can be used to identify three stromal subsets: fibroblastic

reticular cells (PDPN1CD31–), blood endothelial cells

(CD311PDPN–) and double-negative cells (PDPN–CD31–),

which are mainly red pulp fibroblasts [119,120]. Unlike the

lymph node, spleens do not contain lymphatic endothelial

cells.

Splenic FRCs (gp381CD31–ERTR71) play a variety of

roles in the immune response, including providing a con-

duit for lymphocytes, dendritic cells [115,121] and antigen

[122] trafficking, production of homeostatic chemokines

important for T and dendritic cell localization to the T cell

area (CCL19, CCL21) [110], production of IL-7 [113],

maintenance of the B cell homeostasis and follicular orga-

nization [110]. A recent report by Aw et al. used micros-

copy to examine how ageing altered splenic FRC

morphology [96]. In this study, aged mice had an increased

area of splenic FRCs which correlated with the merging of

the T cell zones and B cell follicles [96]. Splenic FRC pro-

duction of homeostatic chemokines CCL19 and CCL21

have been shown to decrease in aged mice after antigenic

challenge [97], which contributes to improper migration of

T cells into the T cell zone [97]. One report suggests that

aged splenic stroma in vitro have increased production of

IL-6, but this study used a relatively crude stromal cell iso-

lation technique and needs to be repeated [123]. Studies of

human spleens have noted increased collagen composition

in spleens of elderly people [124] and attrition of elastic

fibres in splenic capsules [125]. Further studies are required

to determine how ageing alters red pulp fibroblasts, and

splenic arteries. Senescence may also have a profound

impact upon age-related splenic stromal cell dysfunction,

but this has yet to be determined. Wang et al. quantified

senescent cells in the spleens of aged mice using gH2Ax

staining and found that senescence increases with age

[126]. Further analysis of other senescence markers and

careful identification of which splenic cells are senescent

needs to be performed. We are just beginning to under-

stand how ageing impacts splenic stromal cells.

Age-related changes in follicular dendritic cells

Follicular dendritic cells (FDCs) are a subset of FRCs that

defines the structure of B cell follicles in secondary lymphoid

organs [127]. Functionally, FDCs facilitate B cell-mediated

responses by maintaining the germinal centre and facilitating

the production of high-affinity antibodies [128]. Ageing is

associated with a decline in antibody-mediated responses

which can, in part, be attributed to B cell intrinsic defects

[129] and functional attrition of T follicular helper cell

responses [97,106,130]. Age-related changes in FDC func-

tion may also contribute to the decline of humoral response.

One way that FDCs maintain the organization of the B cell

follicle is through production of the chemokine CXCL13

[131]. Conflicting reports exist about how ageing changes

CXCL13 production. Splenic production of CXCL13 in aged

BALB/c mice was shown to be increased compared to young

mice at steady state [98], whereas 18 h after antigenic chal-

lenge it was determined that CXCL13 localization in the

spleen was diffuse and spread into the T cell areas of aged

C57BL/6 mice [97]. Quantification of CXCL13 in young and

aged lymph nodes at steady state showed no significant dif-

ference, but after infection with West Nile virus aged mice

had lower CXCL13 levels [106]. Aged FDCs also have defects

in their ability to trap and present immune complexes to B

cells [132]. Decreased expression of FCgRII, CD21L and

FDC-M2 on FDCs after antigenic challenge may contribute

to these defects [118,132,133]. Defects in aged FDCs may be

a major contributor to age-related defects in the humoral

response.

Concluding remarks

Much of our understanding of the underlying mechanisms

of immunosenescence has come from examining intrinsic

defects of immune cells, which has provided valuable

insight. However, the impact of the stromal microenviron-

ment to the process of immunosenescence is often over-

looked, despite the importance of the stromal niche in the

development, maintenance and proliferation of immune

cells. There are now a number of studies identifying the sig-

nificance of the stromal niche in immunosenescence, and

moreover it is tempting to postulate that perhaps some of

the intrinsic defects are derived through interaction with

the aged microenvironment. The stromal environment-

induced immunosenescence is largely unknown and worth

being determined, as it appears to offer a potential target to

rejuvenate the ageing immune system.
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