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Abstract

Motivation: With the rapid increase of infection resistance to antibiotics, it is urgent to find novel

infection therapeutics. In recent years, antimicrobial peptides (AMPs) have been utilized as poten-

tial alternatives for infection therapeutics. AMPs are key components of the innate immune system

and can protect the host from various pathogenic bacteria. Identifying AMPs and their functional

types has led to many studies, and various predictors using machine learning have been de-

veloped. However, there is room for improvement; in particular, no predictor takes into account the

lack of balance among different functional AMPs.

Results: In this paper, a new synthetic minority over-sampling technique on imbalanced and multi-

label datasets, referred to as ML-SMOTE, was designed for processing and identifying AMPs’ func-

tional families. A novel multi-label classifier, MLAMP, was also developed using ML-SMOTE and

grey pseudo amino acid composition. The classifier obtained 0.4846 subset accuracy and 0.16

hamming loss.

Availability and Implementation: A user-friendly web-server for MLAMP was established at http://

www.jci-bioinfo.cn/MLAMP.

Contacts: linweizhong@jci.edu.cn or xudong@missouri.edu

1 Introduction

With rapid increase in the infection resistance of antibiotics, it is

urgent to find novel infection therapeutics. Over the past decade

antimicrobial peptides (AMPs) have been utilized as potential al-

ternatives for fighting infectious diseases. AMPs are key compo-

nents of the innate immune system and can protect the host from

various pathogenic bacteria. In invertebrates and vertebrates,

AMPs have dual roles: rapid microbial killing and subsequent im-

mune modulation (Wang, 2014). These effects result from AMP

inducing multiple damages in bacteria by disrupting bacteria

membranes (Malmsten, 2014), by inhibiting proteins, DNA

and RNA synthesis, or by interacting with certain intracellular

targets (Bahar and Ren, 2013). Therefore, AMPs were developed

increasingly for new drugs. Some examples of using AMPs in

therapeutics have been reported. Popovic et al. (2012) found

that peptides with antimicrobial and anti-inflammatory activities

had therapeutic potential for treatment of acne vulgaris.

Yancheva et al. (2012) synthesized a novel didepsipeptide

with antimicrobial activity against four of five tested bacterial

strains of Escherichia coli. Conlon et al. demonstrated that pep-

tides with antimicrobial activity from frog skin could stimulate in-

sulin release, and hence had potential as an incretin-based therapy

for Type 2 diabetes mellitus (Conlon et al., 2014). In addition,
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AMPs have been used as anticancer peptides in cancer therapy

(Gaspar et al., 2013).

A surge in research on AMPs has promoted the development of

various databases and prediction tools. APD2 (Wang et al., 2009) is

a system dedicated to establishing a glossary, nomenclature, classifi-

cation, information search, prediction, design, and statistics of

AMPs. It gathered 2544 AMPs from the literature. CAMP (Thomas

et al., 2010; Waghu et al., 2013) holds 6756 antimicrobial sequences

and 682 3D structures of AMPs, together with prediction and se-

quence analysis tools. Niarchou et al. (2013) tested all subsequences

ranging from 5 to 100 amino acids of the plant proteins in

UniProKB/Swiss-prot and constructed an AMP database for plant

species, named C-PAmP. Zhao et al. (2013) developed LAMP, a

database used to aid the discovery and design of AMPs as new anti-

microbial agents. The database contains 3904 natural AMPs and

1643 synthetic peptides. DBAASP was a manually curated database

built by Gogoladze et al. (2014), and it collected those peptides for

which antimicrobial activities against particular targets have been

evaluated experimentally.

Generally, AMPs are short peptides with 10–50 amino acids

(Malmsten, 2014) and have very low sequence homology to one an-

other. So it is challenging to identify AMPs and its activities by auto-

matic tools. Researchers made considerable efforts in this regard. In

these studies, the support vector machine (SVM) was usually used as

prediction engine (Joseph et al., 2012; Khosravian et al., 2013; Lata

et al., 2010; Niarchou et al., 2013). Besides, nearest neighbor (Wang

et al., 2011) or k-nearest neighbor algorithm (Xiao et al., 2013),

random forests (RFs) (Joseph et al., 2012), decision tree model (Lira

et al., 2013) and hidden Markov models (HMMs) (Fjell et al., 2007)

were also applied as classifiers. Some predictors were only used to

identify whether novel peptides are AMPs (Khosravian et al., 2013;

Lata et al., 2007; Vishnepolsky and Pirtskhalava, 2014; Wang et al.,

2011). In addition to these simple binary classifiers, there were some

multi-class classifiers. Lira et al. (2013) created a decision tree model

to classify the antimicrobial activities of synthetic peptides into four

classes: none, low, medium and high. Joseph developed ClassAMP

to predict the propensity of a peptide sequence to have antibacterial,

antifungal, or antiviral activity (Joseph et al., 2012). Khamis et al.

studied 14 AMP families and sub-families. They selected a specific

description of AMP amino acid sequence, and identified compos-

itional and physicochemical properties of amino acids to distinguish

each AMP family (Khamis et al., 2015). Furthermore, Xiao et al.

(2013) proposed a two-level multi-label classifier, iAMP-2L, which

identifies not only whether a peptide is an AMP, but also its func-

tional activities.

Although these methods have their own advantages and did play

an important role in the research, they have following problems.

First, most models only identified whether a new sequence is AMP,

but not its type. Second, it is hard to search short peptides in the

database because AMPs usually have only 5–50 amino acids.

Methods based on Blast search and gene ontology (Lin et al., 2013)

are often ineffective. Last but not least, classifying AMPs’ functions

is a multi-label classification (MLC), especially when the number of

AMPs with different activities does not distribute evenly. From

APD2 (Wang et al., 2009), it is seen that antibacterial peptides oc-

cupy more than 90% of all AMPs, which is a highly unbalanced

MLC. None of aforementioned automatic models considered the

unbalanced amounts among various activities.

In the past two decades, the topic of learning from multi-label

datasets (MLDs) has drawn significant attention from researchers.

Moreover, MLC methods are increasingly applied in various fields,

such as semantic annotation of images (Zhang and Zhou, 2007),

categorization (Liu and Chen, 2015) and bioinformatics (Chou,

2015; Chou and Shen, 2007, 2008; Chou et al., 2011, 2012, 2014;

Sadasivam and Duraiswamy, 2015; Shen and Chou, 2007, 2009,

2010a,b; Wu et al., 2012; Yu et al., 2013). The existing MLC meth-

ods can be grouped into two categories: (i) problem transformation

methods, which transform MLC either into one or more single-label

classification or regression problem, and (ii) algorithm adaptation

methods, which extend specific learning algorithms in order to han-

dle MLDs directly (Tsoumakas et al., 2010). Numerous MLC algo-

rithms were proposed, such as Adaboost.MH and Adaboost.MR

(Schapire and Singer, 2000), ML-KNN (Zhang and Zhou, 2007),

Classifier chains (Read et al., 2009, 2011) and Multi-label Naı̈ve

Bayes (Zhang et al., 2009).

MLC often has serious issues of unbalanced datasets, in which

the numbers of samples from minority classes are substantially fewer

than from majority classes. For example, in subcellular localization

prediction (Lin et al., 2013), the number of the cytoplasm proteins is

44 times the number of the melanosome proteins. A similar situation

occurs in many studies (Liu and Chen, 2015; Wan et al., 2012; Wu

et al., 2011; Xiao et al., 2011). Standard machine learning algo-

rithms often cannot achieve ideal performance when trained on

unbalanced dataset. One approach to address this issue is to adapt

existing classifier learning algorithms to strengthen learning with re-

gard to the minority class (Xu et al., 2013). Another approach is to

artificially sample the class distribution (Dong and Wang, 2011;

Luengo et al., 2011; Tahir et al., 2012). Combining both approaches

can also achieve strong classifiers (Zhang et al., 2012).

Unquestionably, the sampling approach continues to be popular

(Chawla, 2010). Various over- and under-sampling methods have

been proposed (Bunkhumpornpat et al., 2009; Chawla, 2010;

Chawla et al., 2002; Dong and Wang, 2011; Gao et al., 2011a,b;

Luengo et al., 2011; Seiffert et al., 2008; Zhang et al., 2012).

Among them, SMOTE (Synthetic Minority Oversampling

TEchinque) (Chawla, 2010; Chawla et al., 2002) is a state-of-art

over-sampling methods. Chawla (2010) argued that SMOTE creates

effective regions for learning the minority class rather than being

subsumed by the majority class samples around them. In bioinfor-

matics, some studies have applied SMOTE to balance the skewing

benchmark datasets (Jia et al., 2016a,b; Liu et al., 2015; Xiao et al.,

2015). In addition, similar approaches have been recently intro-

duced to handle the unbalanced datasets, such as Monte Carlo sam-

pling (Jia et al., 2016c) and fusion ensemble approach (Liu et al.,

2016a; Qiu et al., 2016).

Although the aforementioned methods have some success in ad-

dressing unbalanced datasets, they have not achieved a satisfactory

result in processing multi-labeled and imbalanced datasets simultan-

eously. Few works address the imbalance problem in MLC. He et al.

(2012) took into account the imbalance in predicting subcellular

localization of human proteins. Charte et al. (2015) built an under-

sampling and oversampling algorithm on MLDs. Those studies im-

proved the multi-label classification performance; however, they

have some drawbacks in how to address the multi-label character of

the new synthetic instance. In this paper, we tackle the imbalanced

problem by a novel oversampling model referred to as ML-SMOTE,

which is a synthetic minority oversampling on MLDs. We developed

a new tool as a two-level AMP predictor based on ML-SMOTE. For

a peptides sequence, we first identify whether it is an AMP. If yes,

we then predict what potential activities it has. The first-level is a

binary predictor, and the second-level predictor is an unbalanced

and multi-labeled multi-classes predictor. The result shows ML-

SMOTE can adjust the label set distribution to improve the perform-

ance of the predictor.
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2 Methods

2.1 Benchmark dataset
The benchmark dataset S

Bench used in this study was taken from

Xiao et al. (2013). The dataset can be formulated as

S
Bench ¼ S

þ [ S
� (1)

where S
þ contains 879 AMPs, and S

� contains 2405 non-AMPs.

The 879 AMPs are formulated as

S
þ ¼ [5

i¼1Si (2)

where S1 contains 770 antibacterial peptides, S2 140 anti-cancer/

tumor peptides, S3 366 antifungal peptides, S4 84 anti-HIV peptides

and S5 124 antiviral peptides.

2.2 Sequence encoding scheme
To develop a powerful method for classifying AMPs and their func-

tional families according to the sequence information, one of the

keys is to formulate the peptides with an effective mathematical ex-

pression that can truly reflect the intrinsic correlation with the target

to be identified. However, when comparing with other protein func-

tional predictions, the challenge is identifying how AMPs deal with

shorter peptides. For a peptides sample P of L amino acids

P ¼ R1R2R3 . . . RL (3)

where Ri ð1 � i � LÞ represents the ith residue, L is usually be-

tween 5 and 50.

In this study, we formulated an amino acids sequence by using

Chou’s PseAAC(Chou, 2001, 2005) with the grey model (GM)

(Deng, 1989). According to Chou’s general PseAAC formula (Chou,

2009, 2011), the peptides P in Eq. 3 can be represented as

P ¼ p1 p2 � � � pk � � � pX½ �T (4)

where T is a transpose operator, while the subscript X is an integer

and its value as well as the components p1, p2, . . . depend on how to

extract the desired information from the amino acid sequence of P.

In our study, we use the GM(1,1) model, which is an important

and generally used model in GM. GM(1,1) firstly converts a series

without any obvious regularity into a strict monotonic increasing

series by using the accumulative generation operation (AGO). This

process can reduce the randomness and enhance the smoothness of

the series and minimize any interference from the random informa-

tion. Let us assume that

Xð0Þ ¼ x 0ð Þ 1ð Þ; x 0ð Þ 2ð Þ; . . . ; x 0ð ÞðnÞ
� �

(5)

is a non-negative original series of real numbers with an irregular

distribution. Then

Xð1Þ ¼ x 1ð Þ 1ð Þ; x 1ð Þ 2ð Þ; . . . ; x 1ð ÞðnÞ
� �

(6)

is viewed as the first-order accumulative generation operation (1-

AGO) series for X(0), and the components in X(1) are given by

x 1ð Þ kð Þ ¼
Xk

i¼1

x 0ð Þ ið Þ; k ¼ 1; 2; . . . ; n (7)

The GM(1,1) model can be expressed by the following grey dif-

ferential equation with one variable:

dXð1Þ

dt
þ aXð1Þ ¼ b (8)

where a and b are elements of parameters vector ba, that is

ba ¼ ½a; b�T (9)

In Eq. 8,�a is the developing coefficient and b the influence co-

efficient. They can be solved using a least square estimator.

ba ¼ a; b½ �T ¼ ½BTB��1BTY (10)

where

B ¼

�0:5 x 1ð Þ 1ð Þ þ x 1ð Þð2Þ
� �

�0:5 x 1ð Þ 2ð Þ þ x 1ð Þð3Þ
� �

..

.

1

1

..

.

�0:5 x 1ð Þ n� 1ð Þ þ x 1ð ÞðnÞ
� �

1

26666666664

37777777775
(11)

Y ¼

x 0ð Þð2Þ

x 0ð Þð3Þ

..

.

x 0ð ÞðnÞ

266666664

377777775 (12)

The coefficients�a and b should carry some intrinsic informa-

tion contained in the discrete data sequence X(0) sampled from the

system investigated. In view of this, we incorporate these coefficients

into the general form of PseAAC (Eq. 4) to reflect the correlation be-

tween the peptide sequence and prediction labels. In order to trans-

late an amino acid sequence expressed with alphabets in Eq. 3 into a

non-negative real series in Eq. 5, we need the amino acid numerical

codes. In the same manner as that shown in (Xiao et al., 2013), we

also use the numerical value of the following five physical-chemical

properties for each of the 20 amino acids: (1) hydrophobicity; (2)

pk1 (Ca � COOH); (3) pk2 (NH3); (4) PI (25
�
C); and (5) molecular

weight. Finally, we used a 30-D features vector to represent a pep-

tide; i.e. instead of Eq. 4, we now have

P ¼ p1; p2; . . . ; p20; p21; . . . p30½ �T (13)

where pi ð1 � i � 20Þ are the frequencies of 20 amino acids; and

p21 and p22 are the coefficients of Eq. 10 when amino acids are

coded by hydrophobicity numerical values; p23 and p24 are the coef-

ficients of Eq. 10 when amino acids are coded by pk1 numerical val-

ues, and so on.

2.3 ML-SMOTE algorithm
In Eq. 2, the AMP function family dataset is an unbalanced MLD, in

which the antibacterial peptides have nine times the amount of the

anti-HIV peptides. How to handle the MLC in unbalanced MLD is

essential for improving prediction performance.

Let X � Rm denote an m-dimensions real vector of instance and

let

Y ¼ l1; l2; . . . ; lq
� �

(14)

be a class label set. MLD can be represented as

D ¼ x; yð Þj x 2 X; y � Yf g (15)

We define the sample set with the j-th 1 � j � qð Þ label as

DðjÞ ¼ xðjÞ; yðjÞ
� �

j ðxðjÞ; yðjÞÞ 2 D and lj 2 yðjÞ
n o

(16)
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If kDj1k 	 kDj2k, the class lj1 is a majority class and the class lj2
is a minority class.

Different from SMOTE (Chawla et al., 2002) in a single label

dataset, the new synthetic instance maybe have one or more

labels. Hence, in (Charte et al., 2015), Charte et al. compared

random undersampling (RUS) and random oversampling (ROS)

based on Label Power-set (LP) and Multi-Label (ML), respect-

ively. However, their LP-RUS and LP-ROS methods can only

work well when the label density is low. Moreover, because their

ML-ROS just clones the minority class samples, it is ineffective

when these samples simultaneously have the majority class label,

which happens often in MLD. In this study, we propose a novel

oversampling model named ML-SMOTE. In the following algo-

rithm description, we express a multi-label dataset (see Eq. 15)

with N samples as

D¼ ti¼ xi;yið Þjxi¼ xi;1; . . . ;xi;mÞ; yi¼ ðyi;1; . . .yi;q

� �
;1� i�N

� �
(17)

where yi;j¼
1; if xi has lj label

0; otherwise
ð1� j� qÞ

(
and the subset D(j) in which each sample is labeled lj class:

DðjÞ ¼ ft jð Þ
i ¼ ðx

jð Þ
i ; y

jð Þ
i Þj x

jð Þ
i ¼ ðx

jð Þ
i;1; . . . x

jð Þ
i;mÞ; y

jð Þ
i ¼ ðy

jð Þ
i;1; . . . y

jð Þ
i;qÞ;

(18)

and y
jð Þ

i;j ¼ 1 g ð1 � j � qÞ

For a new sample (v, u) synthesized from t
ðjÞ
i and its near neigh-

bor z in DðjÞ,

uw ¼

1 if y
ðjÞ
i;w ¼ 1 and zy;w ¼ 1

0 if y
ðjÞ
i;w ¼ 0 and zy;w ¼ 0

0 or 1; randomly if y
ðjÞ
i;w 6¼ zy;w

ð1 � w � qÞ

8>>>><>>>>: (19)

3 Results

After the sequence feature retrieval and ML-SMOTE preprocessing

as described above, a two-level AMP predictor named MLAMP was

constructed, in which the Ensemble of Classifier Chains (ECC) algo-

rithm (Waghu et al., 2014) was adopted as the prediction method

(Fig. 1). We used the canonical implementation of ECC provided by

the MULAN (Tsoumakas et al., 2010; Tsoumakas et al., 2011)

multi-label learning in the Weka (Hall et al., 2009) library And for

ECC, the binary and multi-class learners are implemented on the

Weka platform using the Random Forest (RF) algorithm (Breiman,

2001).

MLAMP is a two-level prediction engine (See Fig. 1). The first

level of MLAMP predicts a query peptide as AMP or non-AMP by

using the RF algorithm. It belongs to the case of single-label classifi-

cation. The following four measures were used for examining the

performance of a single-label predictor, they are: (i) overall accuracy

or Acc; (ii) Mathew’s correlation coefficient or MCC; (iii) sensitivity

or Sn; and (iv) specificity or Sp.

Sn ¼ TP

TPþ TN

Sp ¼ TN

TN þ FP

Acc ¼ TPþ TN

TPþ TN þ FPþ FN

MCC ¼ TP
 TNð Þ � FP
 FNð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPþ FPð Þ TPþ FNð Þ TN þ FPð Þ TN þ FNð Þ

p

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

(20)

where TP represents the true positive; TN, the true negative; FP, the

false positive; FN, the false negative.

Algorithm ML-SMOTE algorithm’s pseudo-code

Inputs: Dataset: D with m features and q labels (see Eq. 17);

k (the number of nearest neighbors)

Outputs: Preprocessed dataset S

(1) S¼D

(2) MeanSize ¼ 1
q

Pq
j¼1 kDðjÞk (Ti is defined as Eq. 18)

(3) For j¼1!q

(4) If kDðjÞk < meanSize

(5) For each sample t
ðjÞ
i in kDðjÞk, do

(6) Find k-nearest neighbors set knn of sample t
ðjÞ
i in

DðjÞ

(7) Randomly select a sample z from knn

z ¼ zx; zy

� �
; where zx ¼ zx;1; . . . zx;m

� �
; zy ¼ zy;1; . . . ; zy;q

� �
(8) Get a random vector¼ ðr1;1; . . . ; r1;m;|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

r1

r2;1; . . . r2;q|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
r2

Þ, where

each element of r is a random number between 0 and 1.

(9) Calculate features of new sample: v ¼ 1� r1ð Þ:�
x

jð Þ
i þ r1:�zx:

Calculate labels of new sample: u ¼ INT 1� r2ð Þ:�½
y

jð Þ
i þ r2:�zy�

where .* means array multiplying with element by

element, and INT �½ � means round number.

(10) Add new sample (v, u) to S

(11) End for

(12) End if

(13) End for

Fig.1. This flowchart shows the training process of MLAMP. T1 represents the

data taken from the dataset SBench for training the 1st-level predictor; T2 repre-

sents those from the dataset Sþ for training the 2nd-level predictor
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Although Eq. 20 was often used in the literature to measure the

prediction quality of a method, they often lack intuitiveness, espe-

cially to biologists, particularly the MCC. According to Chou’s for-

mulation, these four measures can be expressed as (Chen et al.,

2016; Lin et al., 2014)

Sn¼1�Nþ�
Nþ

; 0 � Sn � 1

Sp¼1�N�þ
N�

; 0 � Sp � 1

Acc¼1�Nþ� þN�þ
Nþ þN�

; 0 � Acc � 1

MCC¼
1� Nþ�

Nþ
þN�þ

N�


 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þN�þ �Nþ�
Nþ


 �
1þNþ� �N�þ

N�


 �s ; 1 �MCC � 1

8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:

(21)

where Nþ stands for the total number of AMP samples investigated,

whereas Nþ� for the number of AMP samples incorrectly predicted

to be of non-AMP; N� for the total number of non-AMP samples

investigated, whereas N�þ for the number of non-AMP samples in-

correctly predicted to be of AMP. With such a formulation as given

in Eq. 21, the meanings of sensitivity, specificity, overall accuracy

and Mathew’s correlation coefficient and their scopes would be-

come more intuitive and easier-to-understand, particularly for the

Mathew’s correlation coefficient, as concurred by a series of studies

published very recently (Jia et al., 2016b,c,d; Lin et al., 2014, Liu

et al., 2016a,b,c; Qiu et al., 2016; Xiao et al., 2016)

If a query peptide is predicted as AMP, the second level of

MLAMP will start to classify its functional families. This process be-

longs to the case of multi-label classification. Hamming loss, Subset

Accuracy, Accuracy, Precision and Recall are the mostly used evalu-

ation metrics for the performance of a multi-label classifier (Lin et al.,

2013; Tsoumakas and Katakis, 2007; Tsoumakas et al., 2010; Xiao

et al., 2013). Suppose Lk is the subset that contains all the labels for

the kth sample Pk; L
�
k is the subset that contains all the predicted

labels for the kth sample Pk; N is the total number of samples; and M

is the total number of labels. In this study, N¼879 and M¼5. The

five metrics have been clearly defined as follows (Chou, 2013):

Precision ¼ 1

N

XN

k¼1

kLk \ L
�
kk

kL�Kk


 �
Recall ¼ 1

N

XN

k¼1

kLk \ L
�
kk

Lk


 �

Accuracy ¼ 1

N

XN

k¼1

kLk \ L
�
kk

kLk [ L
�
kk


 �
Subset Accuracy ¼ 1

N

XN

k¼1
D Lk;L

�
k

� �
Hamming Loss ¼ 1

N

XN

k¼1

kLk [ L
�
kk � kLk \ L�kk

M


 �

8>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>:

(22)

where k k is the operator acting on the set therein to count the num-

ber of its elements, and

D Lk;L
�
k

� �
¼

1;

if all the labels in Lk are

indentical to those in L
�
k

0; otherwise

8>>>><>>>>: (23)

When assessing a predictor, the following three cross-validation meth-

ods are often used in the literature: independent dataset test, subsam-

pling (K-fold cross-validation) test and jackknife test. However, as

elaborated in (Chou and Zhang, 1995), among the three cross-

validation methods, the jackknife test is deemed the least arbitrary

and most objective because it can always yield a unique result for a

given benchmark dataset. Hence, the jackknife test was adopted in

this study to examine the anticipated success rates of the current pre-

dictor. The process of jackknife test can be explained as follows:

Table 1 compares the performance of MLAMP with an existing

method iAMP-2L in the first-level result on the benchmark S
Bench

(Eq. 1), where overall accuracy Acc and MCC achieved by MLAMP

are higher than those achieved by iAMP-2L.

To further demonstrate the power of the MLAMP predictor, we

compared it with other classical predictors on an independent data-

set S
Ind containing 920 AMPs and 920 non-AMPs. This comparison

was used for independent testing in (Thomas et al., 2010; Xiao

et al., 2013). The results listed in Table 2 were obtained by

MLAMP, iAMP-2L (Xiao et al., 2013) and CAMP (Thomas et al.,

2010) on S
Ind. As shown in Table 2, the performances achieved by

MLAMP is remarkably higher than the performances reported by

iAMP-2L (Xiao et al., 2013) and CAMP (Thomas et al., 2010) in all

metrics (Sn, Sp, Acc and MCC).

Input: multi-label dataset T¼ {Pi j 1�i�N}.

Output: predicted label set.

For i: 0!N

T is divided into testing dataset Ts¼ {Pi},

and training dataset Tr¼T-Ts.

Generate new training dataset Tr’ by using ML-SOMTE on Tr.

Train model on Tr’ by using ECC algorithm.

Predict the label set of Pi by the model trained above.

End For

Table 3. Performance metrics achieved at the 2nd-level by MLAMP

on the AMP dataset .Sþ

Predictor Hamming loss Accuracy Precision Recall Subset Accuracy

MLAMP 0.1595 0.6864 0.8338 0.7631 0.4846

iAMP-2L 0.1640 0.6687 0.8331 0.7570 0.4305

Table 1. Result obtained by MLAMP in identifying AMP in identify-

ing AMP and non-AMP on benchmark S
Bench

Predictor Sn Sp Acc MCC

MLAMPa 77.0% 94.6% 89.9% 0.737

iAMP-2L 87.1% 86.0% 86.2% 0.726

aThe two parameters, i.e. the number of trees and features used in Random

forest were 500 and 6, respectively.

The bold font indicates the better performance in the category.

Table 2. Comparison of MLAMP with iAMP-2L and CAMP on the in-

dependent dataset S
Ind

Predictor Algorithm Sn Sp Acc MCC

MLAMP Random forest 97.3% 92.1% 94.7% 0.895

iAMP-2L Fuzzy k-nearest neighbor 97.2% 86.3% 92.2% 0.845

CAMP Support vector machine 88.4% 66.6% 77.5% 0.55

Random forest 89.7% 26.0% 57.8% 0.157

Discriminant analysis 86.6% 64.1% 75.4% 0.508
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Furthermore, in the second level prediction, MLAMP also ob-

tained better performance than iAMP-2L. Some different metrics

were used from single-label classification, in particular-Hamming

loss, Accuracy, Precision, Recall and Subset Accuracy (Tsoumakas

et al., 2010) were commonly applied in MLC. Table 3 gives the de-

tailed jackknife test results on the AMP dataset S
þ (Eq. 2).

Especially MLAMP gained a 0.4846 success rate in the strict assess-

ment of subset accuracy and this performance was 5% higher than

that by iAMP-2L.

Why can these metrics be improved so remarkably by using

MLAMP? There are two key reasons. The first reason is probably

the new peptide feature coding model (see Eq. 13). Table 4 sorts the

30 features in decreasing order after analyzing the benchmark data-

set S
Bench by the feature selection tool minimal-redundancy-

maximal-relevance (mRMR) (Kolde et al., 2016). As shown in

Table 4, those features generated by the grey model include more in-

formation than amino acids frequency, especially their biochemical

properties. And one can draw a conclusion that some physicochemi-

cal properties of amino acids may play an important role in AMP,

such as molecular weight, PI and Pk2. The second reason points to

the new ML-SMOTE model. The AMP dataset Sþ is an imbalance

MLD, and previous studies did not take it into account. After pro-

cessing the training dataset Sþ by the ML-SMOTE model, the bal-

ance property of the new synthetic training dataset was improved,

which can help the machine learning obtained a better performance.

4 Conclusion

Due to increasing antibiotic resistance, AMPs, which are key com-

ponents of innate immune system, are becoming more and more im-

portant in drug development. Efficiently and effectively identifying

AMPs and their functional types has become an urgent research

topic. The results reported in this study indicate that the novel pre-

dictor, MLAMP, provides an accurate and useful tool for re-

searchers to find new infection therapeutics.

MLAMP obtained a better prediction performance than that of a

previous method. The primary reason for our good performance is

our formulation model’s peptide extraction features. Since AMPs

usually have 5–50 amino acids, our model (Eq.13) is good for for-

mulating short peptides. It includes the internal relationship of

amino acids sequence in various physical-chemical properties. The

second reason is the ML-SMOTE model, which does a good job of

handling the lack of balance problem in multi-label datasets.

Compared with other methods, the sample synthetized by using

ML-SMOTE retains the multi label distributions. It not only accu-

mulates minority samples but also keeps the label density of MLD.

In the future, the MLSMOTE model can be extended to assist with

imbalance and multi-label datasets for other problems.

For practical applications, a user-friendly web-server for

MLAMP has been established at http://www.jci-bioinfo.cn/

MLAMP, which allows users to easily obtain their desired results

without the need to follow the complicated mathematical equations

involved in developing the predictor. Users can submit a peptide se-

quence to the webserver and subsequently the webserver will return

the predicted result in real time. Alternatively, users can choose the

batch prediction by entering their e-mail address and their batch in-

put file of many peptide sequences. They will quickly receive an

email showing the predicted results from seconds to hours depend-

ing on the number of sequences.
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