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Abstract

Summary: LongISLND is a software package designed to simulate sequencing data according to

the characteristics of third generation, single-molecule sequencing technologies. The general soft-

ware architecture is easily extendable, as demonstrated by the emulation of Pacific Biosciences

(PacBio) multi-pass sequencing with P5 and P6 chemistries, producing data in FASTQ, H5, and the

latest PacBio BAM format. We demonstrate its utility by downstream processing with consensus

building and variant calling.

Availability and Implementation: LongISLND is implemented in Java and available at http://bioin

form.github.io/longislnd

Contact: hugo.lam@roche.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
LongISLND is a software package designed to emulate third-

generation single-molecule sequencing (SMS) technologies (Eid

et al., 2009; Jain et al., 2015; Kumar et al., 2012; Ventra, 2013).

Development, deployment and adoption of new sequencing technol-

ogies can be accelerated by proof-of-concept downstream analyses

using simulated data, avoiding expensive and laborious experiments.

Such analyses, for example, include alignment (BLASR/GraphMap),

error correction and variant calling (Quiver/PBHoney/Nanopolish)

and genome assembly (MHAP/Falcon/MiniASM) (Berlin et al.,

2015; Chaisson and Tesler, 2012; Chin et al., 2013; English et al.,

2014; Li, 2016; Loman et al., 2015; Pendleton et al., 2015; Sovic

et al., 2016). Development of SMS can be further accelerated by

testing with realistic simulation of various chemistries and use cases.

To date, simulation has been hampered by the lack of a realistic

yet versatile long-read simulator. For example, PBSIM (Ono et al.,

2012) generates only the FASTQ data format, without the multi-

pass mechanism or additional per-base probability and kinetic data

required by downstream analysis tools. The Alchemy simulator in

the BLASR package (Chaisson and Tesler, 2012) is unmaintained

and generates data for an older PacBio format incompatible with

modern downstream analysis tools. In addition to practical usability

issues, a general concern is that the simulators are tailored to a par-

ticular chemistry of a particular sequencing technology, resulting in

idealized error models which might not capture true error

characteristics.

These issues have been addressed by our new software package

LongISLND. The method is designed to be independent of the

underlying sequencing mechanism. The implementation is poly-

morphic with respect to output file formats. We train our software

for multiple PacBio chemistries, instantiate output for multiple file

formats, then demonstrate its utility by VarSim (Mu et al., 2014)

evaluation of PacBio’s latest CCS2 consensus builder (https://github.

com/PacificBiosciences/pbccs) and of various germline and somatic

variant callers for PacBio reads.

2 Methods

A sequencing experiment generates multiple reads, each a series of

basecalls based on an optimally tuned combination of chemistry,

sequencing and primary analysis. Bioinformaticians pay most

attention to the quality of the resulting basecalls. To remain
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platform-agnostic, LongISLND uses a learn-and-simulate approach

detailed in the Supplementary Material. Briefly, real data is aligned

to truth sequences. The alignment records are then analyzed to ex-

tract a non-parametric model, from which error profile can be ex-

tracted and according to which simulation is performed for a set of

target sequences, such as a genome (Supplementary Fig. S1). The

learning step records samples for a given set of real data, forming an

empirical model. The software architecture allows for sampling

highly customizable features; for instance, data in the popular

FASTQ format may sample basecalls and quality values (QV), but

additional features may be sampled as well. For example, with

PacBio data the architecture supports the inclusion of the Phred

probability of a base being an insertion (Qins), the Phred probability

of the previous base having been deleted (Qdel), the most probable

deleted base (tagdel), the Phred probability of the last base having

been combined with current base (Qmerge), the Phred probability of

the current base being a substitution (Qsub), the most probable sub-

stituted base (tagsub), the overall Phred quality value (QualityValue)

and the separation between two signal pulses (IDP). To the best of

our knowledge, PacBio’s QualityValue feature correlates with the

probability of no ins/del/sub/merge and is used as the QV in the

FASTQ format.

LongISLND learns from alignment data by recording base calls,

with and without error, according to sequencing contexts of the ref-

erence. Single molecule sequencing, either by synthesis (Eid et al.,

2009; Kumar et al., 2012) or by direct measurement (Ventra, 2013),

probes the nucleotide sequence incrementally. Such technologies

aim to achieve position-independent error rates; however, the error

rate can be sensitive to the short-range sequencing context which

may affect a range of characteristics from steric and chemistry prop-

erties to analog signal processing (Eid et al., 2009; Kumar et al.,

2012; Ventra, 2013). Another source of error is the inference of

homopolymer count from analog signal. Such inference can have

homopolymer-length-dependent bias (see Supplementary Material)

and, in the case of insertion-deletion cancellation, the inserted bases

might not be the same as the deleted bases. The relevant sequencing

context can be categorized by the length and base identity of the

homopolymer, as well as the identity of flanking bases. We call this

information an extended-k-mer (EKmer), detailed in the

Supplementary Material. In brief, the use of EKmer facilitates ana-

lysis and simulation based on empirical sequencing context without

assuming an analytical model. Ordinary k-mer-based analysis is lim-

ited to contexts shorter than or equal to k base-pairs; in particular,

k-mer-based methods would collapse all information of all homo-

polymers of length L>k to that of length k. EKmer can be applied

to homopolymer whose length exceeds k. The importance of captur-

ing and replicating homopolymer error profiles has been demon-

strated in the literature (Ross et al., 2013), the Supplementary

Material and Figure 1b.

Simulation is performed as follows: according to the fragment

distribution of the empirical model, LongISLND draws a simulation

fragment from a set of user-specified FASTA genomic sequences.

Table 1 illustrates the processing of a simulation fragment. The frag-

ment is treated as the truth and translated into a series of EKmer

contexts. For each context in the series, an event type (insertion/de-

letion/substitution/match) is randomly drawn according to the

context-specific frequency recorded in the empirical model. From an

EKmer- and event-type-specific bin, a set of basecalls and per-base

data are randomly drawn and appended to an output buffer. For ex-

ample, a match event would append matching basecalls and a dele-

tion event would append a shortened homopolymer (possibly of

length zero). The simulated read sequence is assembled from the buf-

fer when the whole series has been processed.

The empirical model can also provide optionally the number of

passes, Np, which is unity for single-pass sequencing and greater

than 1 for multipass sequencing. The above context-series process-

ing is repeated for each of the Np passes, alternating between the

forward and reverse strands of the simulation DNA fragment. The

results are concatenated with adapter sequences to form a full read,

which is then fed into an output generator instance. For PacBio

reads, we have implemented generators for FASTQ, H5 and the new

PacBio BAM formats.

One potential use of a read simulator is to test a hypothetical

error profile. We allow such usage by accepting custom rates of in-

sertion, deletion and substitution. For each EKmer considered in the

simulation, we first randomly draw an event type according to the

Fig. 1. (a) Number of 7-mers binned with respect to accuracy, determined within 1% as discussed in the Supplementary material. A context-independent error

profile would yield a delta peaking function centered at the global accuracy. (b) Fraction of samples of a certain sequence length aligned to a homopolymer of

true length 6. Compared to the analytical expression derived in the Supplementary Material, G/C deletion bias is observed in both P5 and P6 chemistries
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custom rates, then randomly draw a corresponding set of basecalls.

With the software hooks for modifying error rate, position-

dependent errors, such as quality degradation towards sequence

ends, can be easily added via position-dependent scaling. We note

that the distribution of fragment lengths and numbers of passes are

also modifiable. We also note that LongISLND can take into ac-

count the variations among different sequencing runs by merging

multiple empirical models.

3 Results and discussions

The importance of context-dependency was demonstrated by a com-

parison between PacBio’s CHM1 human datasets generated using P5

and P6 chemistries. Supplementary Table S1 shows that the bulk

accuracy increased from 86% to 88% with a P5-to-P6 upgrade; fur-

thermore, sequencing error non-uniformity had been significantly

reduced as shown in Figure 1a. For example with P5 chemistry, a 0.15

fraction of sequencing context had <80% accuracy. Such fraction

was decreased to 0.05 for P6. Figure 1b shows the homopolymer bias

as captured by EKmer. Supplementary Figure S2 shows that the

homopolymer bias, with respect to both length and base composition,

also changed significantly enough that bioinformatic tools should

treat P5 and P6 data with different models. Capturing these biases is

one improvement over existing long-read simulators (Chaisson and

Tesler, 2012; Ono et al., 2012).

Another valuable and unique feature of LongISLND is the easily

customizable output format, which is crucial in facilitating apples-

to-apples comparisons among a wide range of tools. Supplementary

Figure S4 demonstrates FASTQ, PacBio H5 and PacBio BAM out-

put, with empirical models of PacBio P5 and P6 chemistry.

Supplementary Tables S2 and S3 establish the realism of

LongISLND by demonstrating model convergence and by compar-

ing the coverage-dependent variant calling accuracy as computed by

PacBio’s BLASRþQUIVER pipeline using real and simulated E.coli

data. Supplementary Table S5 further demonstrates agreement in

variant calling results using real NA12878 data (Pendleton et al.,

2015) and simulated reads. We demonstrated downstream process-

ing of 10-to15-pass of high-error circular sequenced reads (Eid et al.

, 2009) with PacBio’s latest CCS2 consensus builder, whose output

is evaluated to have>99% mappability and Q30 median accuracy.

We also demonstrated the VarSim (Mu et al., 2014) evaluation of

several off-the-shelf variant calling pipelines, some of which require

PacBio-specific data. Supplementary Table S5 also demonstrates sig-

nificant difficulties in detecting heterozygous variants with P5C3

chemistry. We found that FreeBayes (Garrison and Marth, 2012)

yielded the best diploid SNV accuracy and Quiver (Chin et al.,

2013) yielded the best diploid Ins/Del accuracy. Furthermore, we

observed significant increase in SNV accuracy at 200X.

Supplementary Table S6 shows that VarDict (Lai et al., 2016)

yielded the best somatic mutation accuracy.

Although a large Oxford Nanopore dataset is thus far unavail-

able to us for detailed analysis, the use of LongISNLD and

GraphMap to the learn and simulate according to a small Oxford

Nanopore R7.3 dataset (Loman et al., 2015) is demonstrated in the

Supplementary Material.

LongISLND currently captures context-dependent yet positionally

uniform errors found in single-molecule sequencing technology. Error

features longer than the EKmer length have not been captured. One

long-range error feature is random patches of garbage data. In the

context of the PacBio H5 convention, usable reads are separated from

garbage reads by a high-quality-read-region flag. If garbage stretches

of basecalls are inadvertently included in the high-quality region, the

empirical long reads could contain long patches of garbage data

(https://dazzlerblog.wordpress.com/2015/11/06/intrinsic-quality-val

ues). Another long-range error feature is chimeric reads. Emulation of

such structural errors would require alignment junction analyses.

4 Conclusions

LongISLND is an accurate simulator that uses context-dependent

error profiles to realistically simulate single-molecule sequencing

technologies. It is a valuable tool for bioinformaticians who want

to tune for bias in sequencing characteristics, as well as for

primary-analysis developers who want to predict the performance

of downstream analyses. The simulator can be easily extended to

support various I/O formats required by different bioinformatic

tools.
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Table 1. Step N to Nþ 5 of a series of extended-k-mer operations across a hypothetical truth sequence

Number of flanking bases is taken to be a small value of 2 for illustration only. At step N, the truth has an A flanked by GT and CG, this is characterized by

GTACG. The read has a matching A, so a Match event is recorded/simulated. At step Nþ 1, the truth has a C flanked by TA and GT, this is characterized by

TACGT. The read has a deleted C, so a Deletion event is recorded/simulated. At step Nþ 3, the truth is a length-5 T homopolymer flanked by CG and AC, this is

characterized by CGT5AC. Over the stretch of homopolymer, one A is inserted in the read, and a insertion event is recorded/simulated.
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