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Terpenes are the major secondary metabolites produced by plants,
and have diverse industrial applications as pharmaceuticals, fragrance,
solvents, and biofuels. Cyanobacteria are equipped with efficient
carbon fixation mechanism, and are ideal cell factories to produce
various fuel and chemical products. Past efforts to produce terpenes in
photosynthetic organisms have gained only limited success. Here we
engineered the cyanobacterium Synechococcus elongatus PCC 7942 to
efficiently produce limonene through modeling guided study. Compu-
tational modeling of limonene flux in response to photosynthetic out-
put has revealed the downstream terpene synthase as a keymetabolic
flux-controlling node in the MEP (2-C-methyl-D-erythritol 4-phosphate)
pathway-derived terpene biosynthesis. By enhancing the downstream
limonene carbon sink, we achieved over 100-fold increase in limonene
productivity, in contrast to the marginal increase achieved through
stepwise metabolic engineering. The establishment of a strong limo-
nene flux revealed potential synergy between photosynthate output
and terpene biosynthesis, leading to enhanced carbon flux into the
MEP pathway. Moreover, we show that enhanced limonene flux
would lead to NADPH accumulation, and slow down photosynthesis
electron flow. Fine-tuning ATP/NADPH toward terpene biosynthesis
could be a key parameter to adapt photosynthesis to support biofuel/
bioproduct production in cyanobacteria.
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Efficient carbon partition into desired molecules is a major
scientific challenge in producing chemicals in photosynthetic

organisms (1). Earlier approaches often involved overexpressing
pathway enzymes to enhance carbon flux, but these approaches
were hindered by the limited understanding of metabolic network
and its regulation. In particular, many low-flux pathways (e.g.,
terpene biosynthesis) impede carbon partition due to metabolic
rigidity (2, 3). Moreover, the importance and requirement of en-
ergy balance in improving photosynthetic productivity (4), is often
neglected in engineering efforts. Recently, a few studies have
demonstrated the possibility of producing terpenes in cyanobac-
teria, but the productivity is rather low (2, 5–7). Enhancing carbon
flux into a low-flux terpene pathway could provide intuitive insight
to both carbon partition and photosynthesis regulations. Through
computational modeling, we show that downstream limonene
synthase is a key flux-controlling node in the 2-C-methyl-D-
erythritol 4-phosphate (MEP)-derived limonene biosynthesis in
cyanobacteria. Overcoming this metabolic bottleneck led to a re-
cord limonene productivity in the engineered cyanobacteria.
Moreover, we show that enhanced limonene production led to
redox change and energy imbalance, which ultimately limit
photosynthesis capacity. The study demonstrates a successful
strategy to enhance carbon partition into MEP-derived terpene
biosynthesis, and reveals key photosynthesis regulations in pro-
viding ATP/NADPH to support terpene production.

Stepwise Metabolic Engineering Is Limited in Enhancing
Limonene Productivity
We first generated cyanobacterial strains to produce limonene
through stepwise metabolic engineering. Terpenes are synthe-
sized from two C5 precursor molecules, isopentenyl pyrophos-
phate (IPP) and dimethylallyl pyrophosphate (DMAPP). In
cyanobacteria, IPP and DMAPP are derived from the MEP
pathway, where glyceraldehyde 3-phosphate (G3P) and pyruvate
are condensed into the C5 precursors through seven enzymatic
steps (2) (Fig. 1A). Limonene synthase (LS) from spearmint
(Mentha spicata) was chosen to generate limonene because of its
high fidelity, i.e., >90% of LS product is limonene with minimal
isomers (8). The protein sequence of native LS includes a signal
peptide for its expression in plant chloroplasts. To enable het-
erologous expression, a truncated version of LS (9) was synthe-
sized and codon-optimized for Synechococcus elongatus PCC
7942 (hereafter S. elongatus) expression driven by an isopropyl-
β-D-thiogalactoside (IPTG) inducible promoter Ptrc. LS gene
was then integrated into neutral site I of S. elongatus genome
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(10), creating strain L111. The engineered strain was able to
produce limonene but at a low average productivity of 8.5 μg/L/OD/d
(SI Appendix, Figs. S1 and S2). To enhance LS expression, a synthetic
ribosomal binding site (RBS) sequence generated using an RBS
calculator (11) was engineered into the Ptrc promoter for LS
expression. Strain L113 in which LS expression was driven by Ptrc
promoter with the synthetic RBS increased the limonene pro-
ductivity to 32.8 μg/L/OD/d (SI Appendix, Fig. S1 and File S1).
The enzyme ahead of terpene cyclase was shown to play im-
portant roles in directing precursors into the downstream ter-
pene synthase in tobacco (12). A fir (Abies grandis) geranyl
pyrophosphate synthase (GPPS) (13) was thus synthesized and
codon optimized for S. elongatus expression, and coexpressed
with LS in a single operon, yielding strain L114. Limonene
productivity of L114 increased another fold to 65.4 μg/L/OD/d
(SI Appendix, Fig. S1). DXS (1-deoxy-D-xylulose 5-phosphate

synthase) is believed to be the flux-controlling point in the MEP
pathway (14), and essential in metabolic engineering to direct
carbon toward terpenes (7). The DXS-III gene from Botryococcus
braunii (15) was cloned and expressed under an IPTG inducible
promoter PlacO1, and integrated into the neutral site II of S. elongatus
strain L114 genome (16), creating strain L114/dxs. Limonene
productivity was further enhanced to 76.3 μg/L/OD/d (SI Appen-
dix, Fig. S1). The productivity of L114/dxs was very similar to the
maximum limonene productivity from a recent study where a
different LS gene and three bottleneck genes (dxs-ipphp-gpps)
were coexpressed in the cyanobacterium Anabaena sp. PCC 7120
(7). The limited productivity increase by stepwise metabolic en-
gineering might be attributed to the inherent metabolic rigidity of
terpene pathways. To produce high titer of bioproducts in mi-
crobes, high-flux pathways (17) are desirable to direct sufficient
carbon into target compounds. A few studies have implemented
primary metabolic pathways to reach a high yield of bioproducts in
cyanobacteria (3, 18, 19). In contrast, the MEP pathway is a sec-
ondary metabolic pathway with a low carbon partition, believed to
be 1% or less (1). Enhancing the carbon partition into the MEP
pathway thus requires an understanding of the metabolic network
to overcome pathway rigidity.

LS Is a Key Flux-Controlling Node in MEP-Derived Limonene
Production
The marginal productivity increase revealed limitations of apply-
ing stepwise metabolic engineering strategy on complex pathways
such as MEP-derived terpene biosynthesis. Computational simu-
lation could bypass limitations in experimental design, and identify
key flux-controlling node in a complex metabolic pathway. We
thus conducted a computational modeling study to evaluate how
enhanced carbon input to MEP pathway would impact the limo-
nene flux. The computational modeling suggested LS as a major
metabolic bottleneck for increasing limonene yield. When the
baseline or lower LS kinetics were used in the simulation, en-
hanced carbon input did not lead to an obvious increase in the
limonene flux, indicating major bottlenecks existing in the MEP
and/or downstream terpene pathways (Fig. 1B). We further sim-
ulated the effects of increased LS activity on the limonene flux.
Interestingly, enhanced limonene flux was observed following in-
creased carbon input when higher LS activity was used. Particu-
larly, terpene production had a nearly linear response to carbon
input when LS activity was increased to 100-fold of the baseline
level. Moreover, further enhancing LS activity to 1,000-fold did
not lead to limonene flux increase, indicating a saturated MEP
flux (Fig. 1B). We hypothesize that failure of producing a high

Fig. 1. Pathway modeling suggests LS as the key limiting step in cyano-
bacterial limonene production. (A) MEP pathway in cyanobacteria for gen-
erating IPP/DMAPP, which are further converted to downstream terpenes.
(B) Kinetics modeling to simulate limonene flux in response to carbon input.
The baseline LS kinetics was obtained from literature, and various fold
changes in LS activity were simulated.

Fig. 2. Enhanced limonene production by strengthening limonene synthase (LS) carbon sink capacity. (A) Growth of wild-type and engineered cyanobacterial
cells. (B) Average limonene productivity in engineered cyanobacterial cells. L111: LS expression driven by Ptrc promoter; L1115: LS expression driven by
S. elongatus native promoter encoding gene Hbs (Synpcc7942_2248); L1118: LS expression driven by PpsbA promoter with a synthetic RBS. Error bars indicate the
SD of six measurements from 2-d biological triplicates. The two-tailed t test showed that all three groups (L111 vs. L1115, L111 vs. L1118, and L1115 vs. L1118) had
significant differences with P values of <0.0001 (indicated by ***).
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yield of terpenes in cyanobacteria could result from low efficiency
in terpene synthases to establish a strong carbon sink.
We implemented various strategies to enhance downstream

LS expression to experimentally test the computational modeling
results. An important approach to enhance heterologous gene
expression is to identify and use strong native constitutive pro-
moters. A recent study used a protein fusion strategy to drive
β-phellandrene expression in Synechocystis by the native cpc operon
promoter, and enhanced the phellandrene production significantly
(20). We identified several potential promoters under which
S. elongatus proteins expressed at high levels based on proteomics
analysis. These potential promoters were used for LS expression
and showed various levels of limonene production in engineered
cyanobacteria. For example, when LS was driven by the predicted
promoter of a gene encoding protein Hbs (Synpcc7942_2248), the
strain (L1115) had a limonene productivity of 24.8 μg/L/OD/d (Fig.
2 and SI Appendix, File S1), similar to the level reached in strain
L113 (Ptrc:ls; synthetic RBS). Despite the efforts, it seemed that
endogenous promoters failed to enhance the protein expression to
a level to overcome the bottleneck indicated by computational
modeling. To fully explore the limonene sink capacity, we went to
seek promoters that had been validated in cyanobacteria for effi-
cient heterologous gene expression. The pea psbA promoter was
proved to be highly efficient for ethylene production in Synecho-
cystis (21). We thus tested this promoter with a slightly varied RBS
(SI Appendix, File S1) for LS expression. The result was striking that
limonene productivity of strain L1118 increased to an average pro-
ductivity of 885.1 μg/L/OD/d without any negative impact on growth
(Fig. 2). The limonene productivity in L1118 had over 30-fold in-
crease compared with L1115, and over 100-fold increase compared
with the initial L111 line. The proteomics analysis also verified the
increased expression of LS in L1118 line. Compared with L1115, LS
abundance increased over 13-fold in L1118 (SI Appendix, Fig. S3 and

Dataset S1). Interestingly, S. elongatus genome does not encode a ho-
mologous GPPS to synthesize geranyl pyrophosphate, the substrate
for LS. Instead, a farnesyl pyrophosphate synthase (Synpcc7942_0776)
could be multifunctional and be used as the first enzyme to condense
IPP and DMAPP into C10 terpene precursors, considering the high
limonene productivity achieved without introducing exogenous
GPPS. The experimental data successfully validated the compu-
tational modeling results, and revealed that LS is a key metabolic
node to enhance terpene flux. By enhancing this key flux-controlling
node, we achieved a high productivity for limonene production
in cyanobacteria, and over 10-fold increase compared with the
maximum productivity in a recent study with multiple pathway
genes engineered (7). Computational modeling coupled with syn-
thetic biology-based engineering thus provides a powerful tool to
identify key carbon flux-controlling nodes in various metabolic
pathways. Understanding how these nodes are regulated in a larger
metabolic network will bring valuable information on carbon par-
tition, and further guide metabolic engineering efforts.

Synergy Between Photosynthesis and Downstream
Limonene Biosynthesis
With the establishment of a strong limonene flux, we conducted a
proteomics study to analyze metabolism changes between S. elongatus
wild type and L1118. Compared with wild type, many ribosomal
proteins and chaperons were found in higher abundance in L1118
line (Fig. 3A and Dataset S1), which could be explained by the in-
creased protein translation and turnover rate to generate LS and
other enzymes. Moreover, the majority of proteins accumulated in
the limonene line L1118 belong to those involved in photosynthe-
sis metabolism (Fig. 3). Several enzymes in the Calvin–Benson–
Bassham (CBB) cycle had translational regulation. A subunit of
ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO) in the
carbon fixation stage of CBB cycle, phosphoglycerate kinase

Fig. 3. Proteomics analysis of S. elongatuswild-type and L1118 cells. (A) Heat map showing differentially expressed proteins in WT and L1118 cells. Up-regulated
and down-regulated proteins in L1118 were categorized into their relative metabolism (for full protein identities, see Dataset S1). (B) Up-regulated proteins in
L1118 were labeled in red, and mapped into pathways. The majority of these proteins were found belonging to photosynthesis metabolism including both light
and dark reactions. ATPase subunits (three subunits encoded by genes atpC, atpF, and atpA); NDH-1 (NAD(P)H-quinone oxidoreductase subunit O and subunit I);
RuBisCO, ribulose-1,5-bisphosphate carboxylase/oxygenase; PGK, phosphoglycerate kinase; GAPDH, glyceraldehyde 3-phosphate dehydrogenase; ENO, enolase.
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(PGK), and glyceraldehyde 3-phosphate dehydrogenase (GAPDH)
(encoded by gap2) in the carbon reduction stage of CBB cycle were
all up-regulated, potentially leading to enhanced CBB cycle effi-
ciency and increased G3P generation. A previous study showed
that carbon partition between carbon fixation and pyruvate gen-
eration could be altered through manipulating 3-phophoglycerate
(3PG) catabolic enzymes (22). In the L1118 line, enolase from the
3PG catabolic pathway was also found in higher abundance, which
could lead to enhanced pyruvate generation from 3PG (Fig. 3B and
Dataset S1). The concurrent up-regulation of G3P and pyruvate-
generating enzymes suggests enhanced carbon input into the MEP
pathway to support limonene biosynthesis.
In addition, a cell absorbance spectral scan showed that L1118

cells had a reduced amount of phycobilin, whereas chlorophyll a
and carotenoid contents were unaltered (Fig. 4A). This obser-
vation corroborates proteomics results, in which the majority of
down-regulated proteins in L1118 belonged to phycobilisome
(PBS) components, ranging from 1.8- to over 20-fold decrease in
abundance (Fig. 3A and Dataset S1). Because IPP and DMAPP
can also be used for the synthesis of chlorophyll and carotenoid,
their unaltered contents further indicate that limonene flux
increase was from enhanced MEP flux rather than precursor redis-
tribution. These results revealed potential synergy between photo-
synthate output and downstream limonene biosynthesis, and
indicated enhanced carbon flux into the MEP pathway through
upstream photosynthetic regulations.
Evolutionally speaking, biomass accumulation has evolved as

the native photosynthesis carbon sink. A "nonnative" carbon sink
has the potential to enhance photosynthesis, and drive bio-
product production. Indeed, ethylene-producing cyanobacteria
diverted over 5% fixed carbon to ethylene, surpassing carbon
partition into the tricarboxylic acid (TCA) cycle (21). Enhanced
carbon fixation was also observed in sucrose-exporting cyano-
bacteria (19). An efficient terpene carbon sink would have
enormous applications, provided photosynthesis could support
the terpene production.

Photosynthesis Limitations in Enhancing Limonene
Production
To reflect the photosynthesis activity during limonene pro-
duction, we measured the whole cell O2 evolution in wild type
and L1118. Surprisingly, L1118 limonene cells showed a relatively
slower photosynthesis efficiency compared with wild-type cells (Fig.
4B). A closer look at the proteome led us to think the slower O2
evolution in L1118 could be caused by electron halt in the electron
transport chain. We first noticed the increased level of protein
CP12 in L1118 cells (Dataset S1). CP12 can reversibly bind
phosphoribulokinase (PRK) and GAPDH to form a large PRK/
CP12/GAPDH protein complex to regulate the CBB cycle (23). In
S. elongatus, the association/dissociation of the PRK/CP12/GAPDH
protein complex was found to be dependent on the ratio of NAD(H)/
NADP(H), in which NADPH could bind with CP12 and release
PRK from the complex to enhance PRK activity (24). The increased
CP12 level could indicate the accumulation of NADPH in L1118,
leading to increased free subunits of CP12. The measurement of
NADPH confirmed this hypothesis as NADPH levels were higher in
L1118 during limonene production (Fig. 4C). NADPH accumulation
limits the availability of terminal electron acceptor for photosynthesis,
leading to slower electron flow in photosynthesis light reaction (4),
thus slower O2 evolution. Interestingly, certain photosystem II (PSII)
and photosystem I (PSI) subunits proteins were found in higher
abundance in the L1118 line. We found PSII protein Psb28 increased
threefold in the L1118 limonene line (Dataset S1). Psb28 is involved
in biosynthesis of PSII chlorophylls and structurally associated with
PSII inner antenna CP47 in Synechocystis PCC6803 (25). PsaD, a
peripheral protein of PSI on the stromal side playing major roles in
both the function and assembly of PSI (26), had over twofold increase
in L1118. In addition, a certain cytochrome b6f complex subunit,
and NAD(P)H-quinone oxidoreductase subunits were also found in
higher abundance in L1118 cells (Dataset S1). These increased pro-
teins all belong to protein complexes involved in photosynthetic light
reaction. Considering that we saw a decrease in O2 evolution, it is
likely that the increased subunits are not functionally assembled in the
active protein complex, instead existing as free subunits. In addition,
higher NADPH level might be linked to the decreased phycobilin in

Fig. 4. Photosynthesis efficiency and energy requirement during limonene production. (A) Whole-cell absorbance spectra of WT and L1118 cells. The ab-
sorption peaks for different pigments were indicated. (B) O2 evolution rate for WT and L1118. The paired t test showed a significant difference between WT
and L1118 with a P value of 0.0014 (<0.01). (C) NADPH measurement by spectrofluorometer (Ex 340 nm; Em 460 nm) for WT and L1118 cells. The paired t test
showed a significant difference between WT and L1118 with a P value of 0.0051 (<0.01). (D) ATP measurement of WT and L1118 cells. The paired t test
showed no significant difference between WT and L1118 with a P value of 0.04 (> 0.01). Error bars indicate the SD.
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L1118, because NADPH accumulation could lead to overreduc-
tion of plastoquinone pool and photoinhibition (27), which can
potentially lead to PBS degradation to protect cells from pho-
toinhibition (27).
To further elucidate changes in photosynthesis light reaction, we

measured the ATP contents in both wild-type and L1118 cells. ATP
level was found at similar levels during log-phase growth of wild-type
and L1118 cells, but both cell lines accumulated ATP when cells en-
tered stationary phase (Fig. 3D and SI Appendix, Fig. S4). However,
the paired t test showed no significant differences between wild-type
and L1118 cells. Considering NADPH accumulation throughout the
growth, it seems that efficient limonene production requires a lower
ratio of ATP/NADPH. This observation is in agreement with a pre-
vious modeling study which revealed the lower ATP/NADPH ratio
requirement for many biofuel molecules (28). In photosynthesis light
reaction, linear electron flow is believed to produce ATP/NADPH in a
ratio of approximately 1.28/1 (4). Biomass accumulation is believed to
require ATP/NADPH in a ratio of at least 1.51/1 (29), in which ad-
ditional ATP is supplied by alternative electron flows (4). However, a
nonnative carbon sink usually lacks the pathway complexity, and re-
quires a smaller ATP/NADPH ratio compared with biomass accu-
mulation (28). The photosynthesis light reaction thus might not require
additional stimulation to accommodate the energy needs in these
nonnative carbon sinks. Our results suggest a lower ATP/NADPH
ratio requirement in MEP-derived limonene biosynthesis, leading
to an imbalance of ATP/NADPH production and consumption.
In conclusion, LS was identified as a key metabolic flux-controlling

node in enhancing cyanobacterial limonene flux. We successfully tack-
led this problem and created a strong limonene sink in cyanobacteria.
However, the still-elusiveMEP pathway regulation (30) presents further
obstacles in directing sufficient carbon to downstream terpene synthesis.
More importantly, we show that the strong limonene sink led to
NADPH accumulation and slowed down photosynthesis electron flow.
Fine-tuning the ATP/NADPH ratio could be an important direction
to modulate photosynthesis to support the production of biofuel/bio-
products. Enhancing photosynthesis to support terpene production is
key to realize an efficient cyanobacterial terpene platform.

Materials and Methods
Growth Conditions. S. elongatus wild-type and engineered strains were grown in
BG11 medium (Sigma) supplemented with 10 mM N-[Tris(hydroxymethyl)methyl]-
2-aminoethanesulfonic acid (TES, pH 8.2) at 30 °C. Unless indicated otherwise, cells
grown in the 1-L Roux bottle were aerated with 5% (vol/vol) CO2 under 100-μmol
photonsm−2·s−1 illumination from cool white fluorescent lamps. Seed cultures were
grown in 250-mL Erlenmeyer flasks in BG11 medium supplemented with 20 mM
NaHCO3 and 10 mM TES under 50-μmol photons m−2 s−1 illumination. Engineered
strains were grown with the addition of 2 mg/l spectinomycin/streptomycin (neu-
tral site I targeting strains) and/or 5 mg/l kanamycin (neutral site II targeting
strains). Details of strain information are available in SI Appendix, SI Methods.

Limonene Collection and Measurement by Gas Chromatography–Mass Spectrometry.
The hydrophobicity and high vapor pressure of limonene enabled in situ product
collection by a hydrocarbon absorbent trap coupled to the photobioreactor. Cya-
nobacterial cells (500mL)weregrown in triplicates in 1-L Rouxbottle coupledwith a
HayeSep porous polymer absorbent (Sigma) to trap limonene. The trap was col-
lected each day, and limonene was eluted with 1 mL hexane supplemented with
10 μg/mL cedrene (Sigma) as the internal standard. One μL of the eluted sample

was analyzed by gas chromatography–mass spectrometry (GC-MS) (Shimadzu
Scientific Instruments, Inc.). The sample was injected into a Shimadzu SH-Rxi-5Sil
column (30m × 250 μm × 0.25 μm)with a helium flow rate of 1.0 mL/min. The GC
program was set as follows: 40 °C hold for 3 min, followed by temperature in-
crease to 140 °C at the rate of 20 °C/min, and finally to 300 °C at the increment
of 25 °C/min. Limonene concentration was calculated based on a standard curve
established with known limonene concentrations. The final limonene yield was
adjusted by the trap recovery rate, which was determined by supplementing
500 mL of S. elongatuswild-type cells with various concentrations of limonene.
Limonene was collected the next day following the same procedure described
above, and a standard curve was generated to calculate the limonene recovery
(SI Appendix, Fig. S5). The average limonene productivity was calculated from
a 2-day limonene production during the log-phase cell growth.

O2 Evolution. Two mL of both wild-type and limonene-producing cells from
biological triplicates were collected each day for photosynthesis activity mea-
surement following the previously described method (31). Briefly, cells were
pelleted and resuspended in the TES buffer (20 mM TES; 100 mMNaHCO3, and
230 μM K2HPO4). The O2 evolution rate was measured at room temperature
with saturated light (1,000 μE m−1·s−1) using a dissolved oxygen cuvette elec-
trode equipped with light-emitting diode light source (Qubit Systems).

ATP Extraction and Measurement. Cyanobacterial cells (1.5 mL) from biological
triplicateswere collected each day. Cell pelletswere collected by centrifugation
at 13,000 rpm for 3 min, followed by resuspension in 100 μL 1% ice-cold tri-
chloroacetic acid solution. After vortexing for 30 s in 1% trichloroacetic acid,
the supernatant was collected by centrifuging at 13,000 rpm for 10 min at
4 °C. One hundred μL 1 M Tris-Acetate buffer (pH 7.8) was used to neutralize
the trichloroacetic acid solution. The ATP-containing solution was further di-
luted to 1 mL with deionized water. Ten μL of the ATP solution was used to
measure the ATP content using the ATP determination kit (Molecular Probes
Inc.) following manufacturer’s instructions. ATP concentration was calculated
from a standard curve prepared together with the sample measurement.

NADPH Measurement. Biological triplicates of 500 mL of S. elongatus wild-type
and limonene-producing cells were grownwith 5% (vol/vol) CO2 under 100-μmol
photons m−2·s−1 illumination. Three mL of cells were collected each day and used
for NADPH measurement using a FluoroMax-4 spectrofluorometer (HORIBA
Scientific). Wild-type and limonene cells were excited at 340 nm, and fluores-
cence signal was collected over the range of 350–550 nm. Because pyrimidine
contents consist of mainly NADPH in S. elongatus (24), the maximum fluores-
cence emission for NAD(P)H (460 nm) (32) was normalized by cell density (OD730),
and used to compare NADPH contents between wild-type and limonene cells.

Kinetics Modeling. See SI Appendix, SI Methods.

Proteomics Sample Preparation and Data Analysis. See SI Appendix, SI Methods.
The mass spectrometry proteomics data have been deposited to the
ProteomeXchange Consortium via the PRIDE (33) partner repository with the
dataset identifier PXD005105.
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