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Th17 cells accrue in the intestine in response to particular microbes.
In rodents, segmented filamentous bacteria (SFB) induce intestinal
Th17 cells, but analogously functioning microbes in humans remain
undefined. Here, we identified human symbiont bacterial species, in
particular Bifidobacterium adolescentis, that could, alone, induce
Th17 cells in the murine intestine. Similar to SFB, B. adolescentis
was closely associated with the gut epithelium and engendered cog-
nate Th17 cells without attendant inflammation. However, B. ado-
lescentis elicited a transcriptional program clearly distinct from that
of SFB, suggesting an alternative mechanism of promoting Th17 cell
accumulation. Inoculation of mice with B. adolescentis exacerbated
autoimmune arthritis in the K/BxN mouse model. Several off-the-
shelf probiotic preparations that include Bifidobacterium strains also
drove intestinal Th17 cell accumulation.
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The mammalian gut harbors hundreds of species of symbiont
bacteria that play a crucial function in various facets of host

physiology, including metabolism, tissue development, and matu-
ration of the immune system (1, 2). Germfree (GF) and antibiotic-
treated mice have several defects in T-cell compartments of both
their gut-associated and -distal organs, including a paucity of in-
testinal Th17 and Treg cells and a systemic skewing toward Th2
responses (3, 4). Importantly, specific members or subsets of the
microbiota can rescue a dearth of Treg or Th17 cells. Although
early reports argued that a consortium of Clostridium species from
either the murine or human gut is needed to induce Treg cells in the
murine colon (5, 6), more recent studies showed that an assortment
of individual bacterial species, including Clostridium and Bacteroides
family members, also possess this property (7, 8). Similarly, a single
bacterial strain, segmented filamentous bacteria (SFB), is sufficient
to drive the accumulation of Th17 cells in the small-intestinal
lamina propria (SI-LP) of mice (9, 10); however, Th17-inducing
microbes derived from the human gut have not yet been identified.
A recent report did document an increase in colonic Th17 cells in
GF mice inoculated with fecal material from healthy people and
patients with ulcerative colitis, thus showing the existence of Th17-
inducing species in the human microbiota (11). However, the
microbiota composition differs substantially across both healthy
individuals and colitis patients, and the symbionts responsible for
Th17 cell induction at steady state remain uncharacterized (11).
In both mice (10, 12) and humans (13, 14), Th17 cells are

normally at their highest levels in the SI-LP. They secrete the
cytokines IL-17A, IL-17F, and IL-22, which induce the production
of antimicrobial peptides and tight junction proteins from intestinal
epithelial cells, thereby buttressing gut barrier integrity (15–17).
Moreover, IL-17A and IL-17F promote the recruitment of neutro-
phils via the release of granulocyte colony-stimulating factor, thereby
helping to defend the host against infections by fungi and extracel-
lular bacteria (18). Consequently, humans genetically deficient in IL-
17 signaling because of mutations in genes such as STAT3 and
IL17RA suffer from an increased susceptibility to mucosal infections

by Candida albicans and Staphylococcus aureus (18, 19). Over-
exuberant Th17 responses, however, have been implicated in various
inflammatory and autoimmune disorders, including multiple scle-
rosis, rheumatoid arthritis (RA), and inflammatory bowel disease
(IBD) (19, 20). Many of these disorders in both mice and humans
are also associated with intestinal dysbiosis (21, 22). An example of
the dichotomous effects of symbiont-dependent Th17 cells is pro-
vided by SFB, which confers resistance to the enteropathogen Cit-
robacter rodentium in mice but exacerbates disease severity in murine
models of multiple sclerosis and RA (10, 23, 24). Hence, fluctua-
tions in the human microbiome are likely to exert important effects
on host mucosal defenses and the development of inflammatory
conditions, in part via modulation of Th17 responses.
Therefore, we set out to identify bacterial species from the

human gut microbiota capable of inducing Th17 cells in the
mouse intestine. Focusing on the most robust inducer, Bifido-
bacterium adolescentis, we compared its activities and mecha-
nisms with those of SFB, uncovering distinct modi operandi but
similar promotion of autoinflammatory and inflammatory dis-
eases. Several off-the-shelf probiotic preparations—touted to
improve human gastrointestinal and metabolic health—promoted
SI-LP Th17 cell accumulation in mice, highlighting the potential
therapeutic application of Th17-inducing bacteria.

Significance

Th17 cells accumulate in the gut, where they mediate barrier
defenses and repair but can also provoke inflammatory disease.
In mice, segmented filamentous bacteria (SFB) is sufficient to in-
duce Th17 cells in the gut, but functionally analogous microbes in
humans have not been defined. Here, we identified Bifido-
bacterium adolescentis as one of several human symbiont bac-
terial species that could, alone, induce Th17 cells in the small
intestine of mice. B. adolescentis and SFB exhibited overlapping
but also distinct activities, suggesting multiple routes to intestinal
Th17 induction. Like SFB, B. adolescentis exacerbated autoim-
mune arthritis, arguing for its pathological relevance. Our results
help to inform the search for therapeutic targets in diseases as-
sociated with Th17 responses and mucosal dysfunction.
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Results
B. adolescentis Is a Human Gut Symbiont That Strongly Induces
Intestinal Th17 Cells in Mice. To identify human gut symbionts
capable of influencing host immunity, we screened a large set of

microbes by monocolonizing GF mice and evaluating a variety of
immunologic parameters 2 wk later. The screen revealed a few
phylogenetically diverse species that elicited SI-LP Th17 pop-
ulations as large as those induced by SFB (Fig. 1A). Of the
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Fig. 1. B. adolescentis (BA) induces a robust intestinal Th17 population. (A) Frequency of SI-LP Th17 cells in GF mice monocolonized with individual symbiont bacteria
as described in Materials and Methods. White and gray symbols represent GF and SFB-monocolonized mice, respectively. Arrow indicates BA-monocolonized mice.
(B) Inflammatory cytokine production by SI-LP CD4+ T cells in mice colonized as indicated. (Left) Representative flow cytometric dot plot. (Right) Summary data. (C)
Frequencies of (Upper) Th17 and (Lower) Th1 cells in various tissues of mice colonized as indicated. (D) Frequencies of (Left) Th17 and (Right) Th1 cells in the SI-LP of SPF
mice gavaged as described in Materials and Methods with the indicated microbes. SFB+ SPF mice were bred at Harvard Medical School and naturally colonized with
SFB. (E) Induction of intestinal RORγt expressers. (Left) Representative flow cytometric dot plot of SI-LP CD4+ T cells; summary data for frequencies of (Center) RORγt+

Foxp3− cells and (Right) RORγt+ Helios− Treg cells. Numbers in B and E refer to the fractions of cells in the identical gates. (B–E) Mean ± SEM pooled from two to four
independent experiments. BF, B. fragilis; Ce, cecum; CH, C. histolyticum; Co, colon; IEL, intraepithelial lymphocyte layer; ILN, inguinal lymph node; MLN, mesenteric
lymph nodes; PP, Peyer’s patches; SI, small intestine. *P < 0.05 (Mann–Whitney u test); **P < 0.01 (Mann–Whitney u test); ***P < 0.001 (Mann–Whitney u test).
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species examined, B. adolescentis (strain L2-32) promoted the
greatest increase in Th17 cell frequencies and numbers in the SI-
LP (Fig. 1 A and B). In addition to the SI-LP, colonization with
B. adolescentis significantly increased Th17 cell levels in several

other gut-associated organs, including the cecum, intraepithelial
layer, and Peyer’s patches, although these effects were often
much milder (Fig. 1C, Upper). In contrast, neither the percent-
ages of Th17 cells in extraintestinal tissues (Fig. 1C, Upper) nor
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the fractions of Th1 cells in any organ (Fig. 1C, Lower) were
substantially altered by B. adolescentis. Inoculation of specific-
pathogen–free (SPF) mice with B. adolescentis recapitulated the
immunologic phenotypes observed in monocolonized mice,
augmenting Th17 frequencies in the SI-LP while leaving Th1
responses intact, in contrast to the lack of a significant response
to a control microbe, Bacteroides fragilis (Fig. 1D). [Hereafter, we
used either B. fragilis or Clostridium histolyticum as a control
microbe because neither elicited significant SI-LP Th17 cell ac-
cumulation relative to GF mice (Fig. 1 A and B).]
Because along with Th17 cells some intestinal Tregs express

the transcription factor RORγt (8, 25), we looked more broadly
at RORγt-expressing CD4+ T-cell populations in the gut.
RORγt+ Foxp3− CD4+ T cells and RORγt+ Foxp3+ Tregs were
both significantly enriched in the SI-LP and colonic lamina
propria (LP) compartments of B. adolescentis-monocolonized
mice (Fig. 1E). However, RORγt+ Treg induction was relatively
modest, seldom reaching the levels found in SFB+ SPF mice or
mice monocolonized with human-gut–derived Clostridium or
Bacteroides species (Fig. 1E) (8). In addition, there was no cor-
relation between RORγt+ Th17 and Treg cell induction across
the panel of strains originally screened (Fig. S1 A and B). In-
terestingly, Th17 cell frequencies in the colonic LP were not
elevated in B. adolescentis-monocolonized mice (Fig. 1C), de-
spite a significant induction of RORγt in Foxp3− CD4+ T cells
(Fig. 1E), implying a disjunction between RORγt expression and
cytokine production (26). Indeed, the proportion of RORγt+ T
cells producing IL-17A was diminished in the colon relative to
the small intestine (Fig. S1C). Unlike the RORγt+ Treg subset,
overall Foxp3+ Treg and IL-10+ T-cell frequencies were not al-
tered by B. adolescentis (Fig. S1D). Hence, B. adolescentis pref-
erentially induced Th17 cells in the intestine, with modest
concomitant expansion of RORγt+ Treg cells.

Apart from CD4+ T cells, an array of leukocyte subsets also
secretes IL-17A and IL-22, often in response to similar cytokine
cues, including IL-1 and IL-23 (27). We, thus, investigated the
effects of B. adolescentis on cytokine production from other
immunocyte populations. This microbe mildly increased cytokine
production from intestinal γδ T cells (Fig. S1E) and RORγt+
type 3 innate lymphoid cells (Fig. S1 F and G), although this
effect was also detected for other human symbiont bacteria that
did not induce Th17 cells in our screen, in line with a previous
report (11).
In rodents, SFB colonization leads to robust germinal center

(GC) B-cell responses in the Peyer’s patches and the subsequent
accumulation of T-cell–dependent IgA-producing plasma cells in
the SI-LP (28, 29). Additionally, Th17 cells promote IgA class
switching in the Peyer’s patches (30). We, therefore, assessed the
impact of B. adolescentis on intestinal B-cell responses but found
enhancement of neither the Peyer’s patch GC B-cell levels
(Fig. S1H) nor SI-LP IgA-producing plasma cell frequencies
(Fig. S1I). Taken together, our findings indicate that B. ado-
lescentis exerted a potent and specific effect only on CD4+ T
cells, primarily in the small intestine.

B. adolescentis Does Not Provoke Either Intestinal or Systemic
Inflammation. Because Th17 cells manifest potent proinflammatory
effector functions and have been associated with both intestinal and
systemic inflammatory diseases, we sought to determine whether
expansion of the intestinal Th17 compartment in B. adolescentis-
monocolonized mice was accompanied by inflammation in the gut or
extragut organs. Multiple findings argue against B. adolescentis trig-
gering generalized inflammation. First, Th1 cell numbers are often
elevated in cases of inflammation and immunopathology, but we saw
no increase in gut or systemic Th1 responses (Fig. 1C). Second, the
number of CD45+ leukocytes and frequencies of various intestinal
myeloid subsets that typically expand during colitis or gut infections
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(31) remained similar in GF and B. adolescentis-monocolonized mice
(Fig. 2 A–D and Fig. S2 A and B). Although Ly6Chi monocytes were
slightly expanded by B. adolescentis in the SI-LP, this increase was
not significant, and several other intestinal symbionts produced the
same effect without attendant histological signs of inflammation
(Fig. 2A). Thus, the modest increase in Ly6Chi monocytes driven by
B. adolescentis likely reflects a physiological response to colonization
by broad classes of microbes. Third, histological examination
revealed the absence of gross signs of inflammation in the small
intestine and colon (Fig. 2 E and F and Fig. S2C). Fourth, tran-
scriptional profiling of small-intestinal CD4+ T cells showed only a
modest up-regulation of genes associated with pathogenic Th17 cells
(32) in GF mice on colonization with B. adolescentis; this increase
was comparable with that elicited by SFB and weaker than the up-
regulation of canonical Th17 transcripts observed for both microbes
(e.g., Rorc and Ccr6) (33) (Fig. 2G). Therefore, B. adolescentis seems
to be a bona fide intestinal symbiont akin to SFB in mice, capable of
peaceful coexistence in the gut of a healthy host, despite its profound
impact on the Th17 compartment.

Gut Th17 Cells Expanded by B. adolescentis Are Symbiont-Specific.
Recent studies have shown that gut Th17 cells in SFB-bearing hosts
are specific for SFB-derived antigens (34, 35). To determine if
B. adolescentis-induced intestinal Th17 cells are analogously specific
for B. adolescentis, we isolated CD4+ T cells from the small intestine
of monocolonized mice and measured their cytokine responses to
stimulation by lysates from various bacterial species. IL-17A pro-
duction was markedly enhanced on restimulation by B. adolescentis
lysate to levels comparable with those provoked by activation with
phorbol 12-myristate 13-acetate (PMA) plus ionomycin but was not
augmented by restimulation by B. fragilis or SFB lysates (Fig. 3A).
The increased Th17 response to B. adolescentis was also dependent

on MHC class II (MHC-II) molecules (Fig. 3A). Consistent with the
lack of Th1 cell induction by B. adolescentis, IFN-γ production was
uniformly low in response to all bacteria tested and remained un-
altered by antibody blockade of MHC-II molecules (Fig. 3B).
B. adolescentis-specific Th17 responses were detected only in mice
colonized with B. adolescentis but not in GF or B. fragilis-colonized
mice (Fig. 3C). Moreover, Th17 cells in SPF mice gavaged
with B. adolescentis did not display preferential Vβ14 T-cell re-
ceptor (TCR) chain use as exhibited by SFB-specific Th17 cells
(Fig. 3D) (35), suggesting that the gut Th17 cells elicited by
B. adolescentis and SFB were not recognizing a common
immunodominant microbial antigen. Collectively, the data in-
dicate that intestinal Th17 cells induced by B. adolescentis
were symbiont-specific.

B. adolescentis Colonizes the Gastrointestinal Tract Widely and
Closely Associates with the Epithelium. The enrichment of Th17
cells in the ileum of SFB-harboring mice corresponds to an
overrepresentation of SFB in that intestinal segment (36, 37) and
the ability of SFB to form intimate associations with the in-
testinal epithelium (11). To determine whether B. adolescentis
occupied an intestinal niche similar to that of SFB, we measured
bacterial titers in various intestinal compartments of mice
monocolonized with the former. B. adolescentis was found in
both the gut mucosa and lumen, with the overall bacterial load in
the lumen progressively increasing from the duodenum to the
colon, reflecting the distribution of overall bacterial burden in
SPF mice (38) (Fig. 4A). Bacterial loads did not, however, cor-
relate with Th17 levels, because the colon harbored relatively
few Th17 cells while hosting very high quantities of B. ado-
lescentis (Figs. 1C and 4 A and B), although the uniformly high
B. adolescentis titers throughout the small intestine might explain
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the increase in Th17 cells in the duodenum and jejunum as well
as the ileum (Fig. 4B).
To visualize the intestinal niche of B. adolescentis, we per-

formed FISH on ileum and colon sections from B. adolescentis-
monocolonized mice and quantified bacterial densities in re-
lation to their distance from the intestinal epithelium (Fig. 4C).
Like SFB, B. adolescentis associated closely with the ileal but not
the colonic epithelium. In contrast, C. histolyticum, a human
symbiont that did not promote Th17 cell expansion, was found
primarily in the ileal lumen. SEM revealed B. adolescentis but
not C. histolyticum to be localized close to the ileal surface in

mice, corroborating the FISH findings (Fig. 4D). The capacity
for tight association with the epithelium may thus represent a
conserved feature of Th17 cell-inducing microbes.

B. adolescentis and SFB Induce Largely Distinct Transcriptional
Programs in the Intestine. Because the effects of SFB and
B. adolescentis on the host immune system seemed similar, and
because both microbes interacted closely with the small-intestinal
epithelium, we next profiled gene expression in whole ileal tissue
from GF mice and mice monocolonized with B. adolescentis, con-
trol C. histolyticum, or SFB to determine whether B. adolescentis
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and SFB triggered overlapping intestinal gene programs that might
account for their ability to elicit robust Th17 populations (Fig. 5 A
and B). A substantial number of genes was up- or down-regulated
in common by the Th17-cell–inducing bacteria, but we also de-
tected a microbe-specific transcriptional imprint for each of them
(Fig. 5A and Tables S1, S2, and S3). RNAs up-regulated by both
SFB and B. adolescentis were dominated by Ig gene transcripts
(Fig. 5A, red symbols). This induction likely reflected a robust IgA
response in the case of SFB (9, 39), but we did not observe any
signs of an enhanced IgA response (Fig. S1G) or a change in B-cell
numbers in mice monocolonized with B. adolescentis. In this case,
the induction of Ig transcripts was likely to be a consequence of
increased intestinal IgM+ plasma cells, because Igj and Igh-6,
encoding the J chain of secretory IgA/IgM and the constant region
of the IgM heavy chain, respectively, were among the Ig transcripts
most strongly induced. Quantitative comparison revealed that the
Ig transcripts up-regulated by SFB were significantly enriched in
B. adolescentis- and SFB-colonized mice compared with mice col-
onized with C. histolyticum (Fig. 5C, Upper).
RNAs specifically enriched in the intestines of SFB+ mice in-

cluded several previously imputed to SFB, such as MHC-II tran-
scripts (40) and mRNAs encoding molecules that augment Th17
responses (e.g., the serum amyloid A family of proteins), Duox2,
and Duoxa2 (11, 26) (Fig. 5A, blue symbols). Expression of these
transcripts was increased by B. adolescentis as well, but the level of
induction was much lower than that for SFB and comparable with
that provoked by non–Th17-inducing C. histolyticum (Fig. 5 B and
C, Lower). Parsing of the genes specifically induced by B. adolescentis
(Fig. 5A, black symbols) revealed an enrichment in non-
immunologic, particularly muscle-related, pathways that suggested
a role for nonhematopoietic intestinal cells in relaying bacterial
signals to the host immune system (Fig. 5D).
A clear divergence in gene expression profiles was also ob-

served in small-intestinal epithelial cells (S-IECs) purified from
mice colonized with B. adolescentis vs. SFB (Fig. 5E and Tables
S4–S6). Indeed, the S-IEC transcriptome responses elicited by
B. adolescentis and C. histolyticum were more concordant with
each other than with those provoked by SFB (Fig. 5 E and F),
and RNAs up-regulated by SFB were significantly more enriched
in SFB- and C. histolyticum-colonized mice compared with
B. adolescentis-colonized mice (Fig. 5G). Many of the SFB-spe-
cific transcripts in S-IECs (e.g., Duoxa2 and MHC-II transcripts)
were unique to SFB in the ileum as well, suggesting a primary role
for S-IECs in coordinating the host response to SFB but not to the

other two microbes. Accordingly, the number of transcripts in
S-IECs with expression that was differentially regulated by bacterial
colonization was far higher for SFB than for B. adolescentis, and the
identities of B. adolescentis-specific RNAs in the ileum and S-IECs
were distinct (Tables S1–S6).

B. adolescentis Exacerbates Autoimmune Arthritis in a Mouse Model.
Elevated Th17 cell responses have been associated with auto-
immune/inflammatory disease in both mice and humans (19, 20).
For example, SFB colonization promotes disease in the K/BxN
mouse model of RA, in part by inducing SI-LP Th17 cells that
emigrate from the gut to the spleen, where they promote pro-
duction of autoantibodies against glucose-6-phosphate isomerase
(24, 41). Such autoantibodies in and of themselves can induce
arthritis and, after they reach high levels, require no further in-
put from Th17 cells. To assess the role of symbiont-induced Th17
populations in autoimmune arthritis, we gavaged SPF K/BxN
mice with B. adolescentis, C. histolyticum, SFB, or PBS. Similar to
SFB, B. adolescentis, but not PBS or the control microbe
C. histolyticum, drove more severe arthritis, as evidenced by
increased joint thickening (Fig. 6A). Heightened disease in
B. adolescentis-treated mice was associated with increased num-
bers (although not frequencies) of SI-LP Th17 cells (Fig. 6B) and
elevated titers of antiglucose-6-phosphate isomerase autoanti-
bodies (Fig. 6C). Thus, B. adolescentis drives gut-distal Th17-cell–
associated disease progression.

Probiotics Containing Bifidobacterium Species Can Augment
Intestinal Th17 Cell Compartments. The genus Bifidobacterium, of
which B. adolescentis is a member, is a common component of
healthy infant and adult microbiotas and is often included in
probiotic formulations because of its purported benefits in pro-
moting gastrointestinal health. The question arose whether such
probiotic preparations share B. adolescentis’ ability to induce in-
testinal Th17 cells. We evaluated six probiotic formulations
available online, all but two of which (FiveLac and Bifidobacterium
infantis, which both contain one Bifidobacterium strain) contained
two or more Bifidobacterium species (Table S7). When introduced
into GF mice, four of the preparations significantly induced Th17
but not Th1 cell accumulation in the SI-LP (Fig. 7A) comparing
values fromGFmice. Similar to what was seen with B. adolescentis,
gavage of Nexabiotic highly induced canonical but not pathogenic
signature genes in whole SI-LP tissue. We also tested three of the
probiotic preparations in SPF-housed mice, given their complex,
more natural microbiotas. One of two Th17-inducing probiotic
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mixes reproducibly induced the accumulation of SI-LP Th17 cells
in SPF mice without significantly altering Th1 cell frequencies (Fig.
7B). Thus, it seems that Th17 cell induction in the gut may be a
feature widely shared by probiotics.

Discussion
We have identified individual symbiont microbes from the hu-
man gut that can induce robust Th17 populations in the murine
intestine. Interestingly, the mechanisms used by the most potent
inducer, B. adolescentis, differed from those of the well-known
Th17-promoting mouse symbiont SFB. B. adolescentis exacer-
bated autoimmune arthritis, arguing for its pathological rele-
vance. These findings raise several interesting issues meriting
additional elaboration.
First, bifidobacteria seem to be common inducers of intestinal

Th17 cells. A complex microbial community was insufficient for
generating a robust population of Th17 cells in the gut of SPF
mice lacking SFB (9, 10) and gnotobiotic mice colonized long
term with human fecal contents (42). Although SFB has been
detected in multiple vertebrate species (43), there exists only
sparse evidence of a related microbe colonizing humans (43–46).
A recent study showed that a consortium of 20 symbionts from
the feces of an IBD patient could induce Th17 cells in mice but
failed to identify the active microbes in healthy people (11).
Although B. adolescentis was 1 of 3 microbes (of a total of 39)

in our screen that was able to robustly induce intestinal Th17
cells, we think it highly plausible that many other symbiont
species, including other bifidobacteria, can act singly or in con-
cert with other microbes to promote Th17 cell accumulation in
the human gut. Given the tremendous diversity of the human
microbiota (47), our screen was perforce limited to testing a
fraction of it. Even with this restricted scope, we succeeded in
identifying three bacterial species spanning distinct phyla that
could induce intestinal Th17 cells to a degree comparable with
that of SFB. Wider sampling would almost certainly unveil more
microbes with this property. Indeed, most of the bifidobacteria-
containing probiotics that we tested potently expanded Th17
cells, arguing that this property might be a relatively common
bifidobacterial trait. Relatedly, as exemplified by SFB in rodents,
some intestinal symbionts show host specificity, consequent to
millennia of coevolution (11, 42). By design, our screen elides
symbiont strains capable of inducing Th17 cells in humans but
unable to do so in mice. Moreover, some symbionts might exert
their effects on the host immune system only in the presence of
other microbes, a restriction that might apply to certain bifido-
bacterial species, which could account for the prevalence of Th17
induction by probiotic mixes. Hence the results from our screen
likely underestimate the true number and diversity of Th17-
promoting human symbionts.
Bifidobacteria are ubiquitous symbionts, well-represented in

the gut microbiota of healthy humans across age and geography
(47). In infants, they are among the first colonizers of the in-
testine, and their abundance serves as a biomarker of a healthy
microbiota (47, 48). With age, the frequency of bifidobacteria
in the gut wanes, and the dominant species change, although
members of the genus remain a substantial component in the
adult (48, 49). A metagenomic sequencing study of gut microbes
from 124 adults identified several Bifidobacterium strains as
dominant symbionts, with B. adolescentis exceeding 10% in rel-
ative abundance in two-thirds of the individuals (50). Thus,
B. adolescentis, along with other bifidobacteria, is well-poised to
be a universal Th17-inducing symbiont in humans throughout
ontogeny into adulthood.
Second, B. adolescentis induced Th17 cells by a mechanism

that clearly diverged from that of SFB. Overall, SFB triggered
more pronounced transcriptional changes than those elicited by
B. adolescentis, C. histolyticum, or the vast majority of human
symbionts that we have tested. A prosaic explanation for this

divergence is that SFB is a murine symbiont and thus better
adapted to interact with the mouse host, thereby inducing more
profound gene expression changes. Related or not to the host
species, B. adolescentis was located in considerable quantities in the
intestinal lumen in close association with the epithelium, whereas
SFB was found almost exclusively attached to the ileal surface. In
addition, the association of SFB seemed tighter, actually pen-
etrating the epithelium in places. SFB and B. adolescentis
seemed to mobilize distinct cell types and transcriptional pro-
grams to induce Th17 responses. The transcriptional changes
effected by B. adolescentis on S-IECs were relatively subtle and
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distinct from those on whole ileal tissue, where the up-regulated
RNAs were enriched in non–S-IEC–related pathways, such as
muscle contraction and interactions with the ECM. These
pathways could potentially regulate the activity of mechano-
sensitive integrins and cytokines (e.g., TGF-β) relevant to Th17
cell differentiation and trafficking. Interestingly, DNA from
SFB-like microbes was recently enriched in the gut of human
IBD patients, associated with cavernous fistulous tracts running
between muscle bundles (46). The enrichment for muscle-related
pathways in whole-tissue SI-LP preparations from mice colo-
nized with B. adolescentis hints at a more general relationship
between Th17-inducing microbes and intestinal muscle tissue. In
contrast, S-IECs seemed to be critical drivers of the ileal tran-
scriptional response to SFB, in line with previous studies (10,
11). Gut microbes also produce metabolites that can access the
stroma and immunocytes in the LP without directly interacting
with the gut epithelium (51), and intestinal antigen presenting
cells can extend their dendrites into the lumen to sample bacteria
directly (52). These mechanisms, in particular those accom-
plished by intestinal immunocytes, might explain the relatively
modest impact of B. adolescentis on the transcriptomes of S-IECs
and the ileum (where leukocytes are vastly outnumbered by
nonhematopoietic cells).
Third, Th17 cells seem to have a yin–yang role in human

health. Mice devoid of IL-17 signaling manifest alterations in
their microbiotas and suffer from increased intestinal perme-
ability and bacterial translocation to systemic sites after in-
fectious insults of the gut (15, 16, 53). Additionally, loss of Th17
populations during infections by either simian virus or HIV has
been associated with intestinal dysbiosis, systemic microbial
translocation, and disease progression (53–55). Moreover, SFB
confers heterologous protection from the murine enteropathogen
C. rodentium (10). Hence, symbiont-driven intestinal Th17 cells
seem to bolster host mucosal defenses via various mechanisms,
including the augmentation of barrier integrity, the provision of
cross-protective defenses against pathogens during early stages of
infection, and sculpting of the gut microbiota.
However, microbiota-dependent Th17 responses have been

implicated in IBD and other extraintestinal autoimmune disor-
ders, including psoriasis, multiple sclerosis, and RA. Elevated
Th17 frequencies have been observed in the intestinal mucosa of
IBD patients (20), and increased IL-17A titers can be detected in
the synovial fluid of people afflicted with RA (56, 57). Variants
in genes important for Th17 cell differentiation and function
(e.g., IL23R and CCR6) have also been associated with the severity
of these diseases (58–60). Furthermore, dysbiosis is concomitant
with new-onset, treatment-naïve IBD and RA, implying a po-
tential etiological role for the intestinal microbiota (21, 22). Of
note, the relative abundances of B. adolescentis and several
Bifidobacterium species were profoundly altered in the micro-
biotas of pediatric (22) and adult IBD subjects (Fig. S3) (50),
albeit in opposite directions, with an enrichment of bifidobacteria
in the microbiotas of the latter cohort of patients. In support of a
pathogenic role for symbiont-driven Th17 cells in inflammatory
diseases, we observed an exacerbation of spontaneous autoim-
mune arthritis in mice gavaged with B. adolescentis but not with
the non–Th17-inducing microbe, C. histolyticum.
In this context, how should one interpret the induction of

Th17 cells by several probiotic formulations in widespread use as
ad hoc nutritional supplements? Our in vivo data are in concert
with findings on cultured human immunocytes (61). One in-
terpretation is that this induction is part of their favorable action
in the setting of gastrointestinal infection and dysbiosis (62),
where Th17 cells elicited by probiotics might evince anti-
infectious benefits. However, one might also consider that these
Th17 cells contribute in an unrecognized manner to the fre-
quency or exacerbation of chronic inflammatory diseases linked
to Th17 responses, such as RA or multiple sclerosis.

Materials and Methods
Mice.Unless otherwise stated, SPF C57BL/6J (B6) mice were obtained from the
Jackson Laboratory and housed under SPF conditions at Harvard Medical
School. GF mice were bred and maintained in sterile isolators at Harvard
Medical School. Manipulations of mice are detailed in SI Materials and
Methods. Experiments were conducted according to the guidelines of the
Harvard Medical School Institutional Animal Care and Use Committee.

Bacteria and Probiotics. Bacteria were cultured as previously described (8).
Bacteria and probiotics used are detailed in SI Materials and Methods.

Isolation of S-IECs, Intraepithelial Lymphocytes, and Intestinal LP Leukocytes.
S-IECs, intraepithelial lymphocytes, and leukocytes were processed as pre-
viously described (8) and are further detailed in SI Materials and Methods.

Antibodies and Flow Cytometry. Single-cell suspensions from intestinal tissues
and lymphoid organs were stained with antibodies for flow cytometry and
analyzed as detailed in SI Materials and Methods.

Antigen Presentation Assays. Antigen presentation assays are detailed in
SI Materials and Methods.

Measurement of Bacterial Titers. Bacterial titers from monocolonized mice
were measured as detailed in SI Materials and Methods.

Histopathology. Histopathology of intestinal sections was scored as detailed
in SI Materials and Methods.

FISH and SEM. FISH and SEM were performed on intestinal sections as pre-
viously described (63, 64) and are detailed in SI Materials and Methods.

K/BxN Murine Arthritis Model and ELISA. Three-week-old K/BxN mice of both
sexes were pretreated with antibiotics [1 g/L ampicillin (Sigma), 1 g/L neomycin
(Fisher Scientific), 1 g/L metronidazole (Sigma), 0.5 g/L vancomycin (Amresco)]
for 10 d, rested for 1 d, and subsequently gavaged with PBS or bacteria (108 cfu
of C. histolyticum or B. adolescentis) for 3 consecutive days and every 3 d
thereafter until the time of euthanasia. Ankle thickness was measured with a
caliper (J15 Blet Micrometer) as previously described (24). All mice were housed
at the SPF animal facility at the University of Arizona. Antiglucose-6-phosphate
isomerase antibody titers were measured as previously described and further
detailed in SI Materials and Methods. (41).

Gene Expression Profiling and Analysis. Microarray or RNA sequencing analysis
was performed onwhole ileal tissue, S-IECs, or SI-LP CD4+ T cells ofmonocolonized
mice as detailed in SI Materials and Methods.

Comparison of the Microbiotas of Healthy Vs. IBD Subjects. Publicly available
metagenomic profiling reads from 124 adults from theMetaHIT database (50)
were analyzed as detailed in SI Materials and Methods.

Statistics. Unless otherwise stated, significance was assessed using the Mann–
Whitney u test or the Kruskal–Wallis test with Dunn’s multiple comparisons
test (Prism 6; Graph-Pad). P values were deemed significant if less than 0.05.
To compare ankle thickening, the area under the curve was calculated for
each mouse followed by the Mann–Whitney u test between groups. Mean ±
SEM was routinely used.
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