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The number of joints and muscles in a human arm is more than
what is required for reaching to a desired point in 3D space.
Although previous studies have emphasized how such redun-
dancy and the associated flexibility may play an important role
in path planning, control of noise, and optimization of motion,
whether and how redundancy might promote motor learning
has not been investigated. In this work, we quantify redundancy
space and investigate its significance and effect on motor learn-
ing. We propose that a larger redundancy space leads to faster
learning across subjects. We observed this pattern in subjects
learning novel kinematics (visuomotor adaptation) and dynam-
ics (force-field adaptation). Interestingly, we also observed differ-
ences in the redundancy space between the dominant hand and
nondominant hand that explained differences in the learning of
dynamics. Taken together, these results provide support for the
hypothesis that redundancy aids in motor learning and that the
redundant component of motor variability is not noise.

supervised learning | minimum-intervention principle | reaching |
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Redundancy is a ubiquitous property that renders biological
systems robust to disruptions. Goal-directed movements also

display redundancy because a given movement, such as touch-
ing one’s nose, can be made in many different ways with dif-
ferent combinations of joint angles. Although redundancy gen-
erates flexibility, it also poses a fundamental problem for the
motor system because a large component of motor variability is
attributed to muscle noise (1). Thus, if muscles operated inde-
pendently, the total noise (reflected in the trajectory) would be
a summation of the noise due to the component parts. How-
ever, if the covariation of muscles or joints occurs such that the
effect of individual muscle or joint variability is mitigated, it is
possible to maintain acceptable levels of variability while main-
taining a reasonable degree of redundancy that allows flexibil-
ity in behavior. Consistent with this view, it has been observed
in a wide range of tasks (2–7) that variability is not eliminated
but optimized (8–11) to accumulate in a task-relevant dimen-
sions using a minimum-intervention principle (12). Such variabil-
ity, that is a consequence of redundancy, can be quantified as an
uncontrolled manifold (13–15) in which task-independent vari-
ability is constrained to a redundant subspace (or “uncontrolled
manifold”).

Although minimizing variability is expected to improve task-
related performance, recent evidence suggests that motor
variability paradoxically helps in motor learning (16–20). Such
findings are supported by ideas in reinforcement learning (21,
22), which suggest that baseline variability increases explo-
ration, which in turn facilitates learning. Interestingly, motor
variability has also been shown to help learning during super-
vised error-based learning tasks (16), suggesting a more gen-
eral role of variability in motor learning. In this study, we tested
whether variability arising from joint redundancy plays a role in
supervised motor learning.

Results
We used two experimental setups shown in Fig. S1A. The subject
moves the end-effector of a robot manipulator or hand from an
initial point to a task-space target point. As shown in Fig. 1, the
experiment had three phases—a preadaptation baseline period,
followed by a phase with either one of two kinds of perturbations:
a visuomotor (kinematic perturbation) or an applied viscous
curl force (dynamic perturbation) and finally a postadaptation
phase when the perturbation was removed. We simultaneously
measured the end point and joint angles while subjects reached
to the target during the baseline period as shown in Fig. S1B.
The map between the joint angles and the end point (x , y) point
is many-to-one, i.e., there is redundancy. The joint variability in
the baseline period was quantified into two components—the
joint variability due to the redundancy termed as the null-space
variability that did not affect end point and the joint vari-
ability that caused changes in end point termed as task-space
variability (Fig. S1C). In this work, we studied the effect of
these two types of variability on the learning of kinematic and
dynamic perturbations. We have studied learning in (i) sim-
ple visuomotor adaptations (two directions), (ii) generalized
visuomotor adaptation (eight directions), and (iii) generalized
force-field adaptation when subjects used their dominant and
nondominant hand.

Redundancy in Kinematic Learning. We trained 40 subjects to learn
point-to-point reaching movements using their dominant hand,
along two directions, in a visuomotor perturbation that was set
using Eq. 1. In this experiment, the cursor was rotated by −45◦

from the hand trajectory (Fig. S2A). The trajectory of the hand
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Fig. 1. Experiment setup and design. Experiments were divided into
preadaptation (baseline), adaptation, and postadaptation (washout)
epochs. Subjects adapted to a visuomotor perturbation (Top) or a force-field
perturbation (Bottom) in separate experiments.

for a typical subject in the preadaptation (baseline) (Fig. S2B),
visuomotor adaptation (Fig. S2C), and postadaptation epochs
(Fig. S2D) are shown. Overall, the pattern of trajectories are con-
sistent with previous work showing that whereas typical move-
ments follow a nearly straight trajectory in the baseline con-
dition, they show strong curved trajectories in the presence of
a visuomotor perturbation. The curved trajectories gradually
become straighter with practice over the course of about 60 trials
(Fig. 2A). In addition, as a consequence of motor learning, sub-
jects showed a washout effect (postadaptation) where errors in
trajectory invert direction when the learned visuomotor pertur-
bation is turned off.

To quantify the error, we used the error at peak velocity along
the trajectory. The reduction in peak velocity error (Eq. 9) was
used as a metric to quantify the learning rate for each subject.
To test whether the learning rate of a subject could be predicted
on the basis of motor redundancy exhibited during the preadap-
tation (baseline period), we computed N(J) (Eq. 8), the chosen
measure of variability due to redundancy space called null-space
variability. We divided the population into two groups based
on their learning rate (above-mean and below-mean learning
group), as quantified by the fitted exponential β value (Fig. 2B).
In support of the hypothesis, the null-space variability was sig-
nificantly different between the two learning groups (Fig. 2C).
Interestingly, we also found a strong positive correlation between
baseline null-space variability and learning rate in the visuomo-
tor adaptation task (Fig. 2D; r =0.55,P =0.0002). However, we
found no correlation between baseline task-space variability and
learning rate (r =0.13,P =0.43).

Redundancy in Generalized Kinematic Learning. To test whether
redundancy could aid in learning a generalized task, we next
examined 10 subjects while they learned point-to-point reach-
ing movements with the visuomotor perturbation (Eq. 1) along
eight directions, where in each case, the cursor was rotated by 45◦

from the hand trajectory (Fig. S2E). The trajectory of the hand
for a typical subject in the preadaptation (baseline) (Fig. S2F),
visuomotor adaptation (Fig. S2G), and postadaptation epochs
(Fig. S2H) are shown. Each individual subject’s learning curve
is shown in Fig. S3, and a representative subject is shown in
Fig. 3A. The average behavior pooled across 10 subjects showed
a similar learning pattern (Fig. 3B; goodness of fit, r2 =0.90).
Again, the learning rate in the visuomotor perturbation and the

null-space and task-space variability in the preadaptation base-
line period was computed. A significant correlation between the
null-space variability with learning rate was observed (Fig. 3C;
r =0.71,P =0.021). Interestingly, we found no correlation of
the baseline task-space variability with the learning rate (Fig. 3D;
r =0.42,P =0.22).

Redundancy and Dynamic Learning. To test whether redundancy
could aid in learning in other types of perturbation, we trained
10 subjects to learn point-to-point reaching movements using
their dominant hand, along 8 directions, in a force-field that was
set using the force-field perturbation defined by Eq. 2. In this
experiment, the perturbation was proportional to the velocity
of the hand but perpendicular to the hand movement direction
(Fig. S2I). The trajectory of the hand for a typical subject in the
preadaptation (baseline) (Fig. S2J), force-field adaptation (Fig.
S2K), and postadaptation epochs (Fig. S2L) are shown. Similar
to the visuomotor perturbation, and consistent with literature,
typical hand movements follow a nearly straight trajectory in the
baseline condition, and they show strong curved trajectories in
the presence of a viscous curl force-field. The curved trajecto-
ries gradually become straighter with practice over the course
of about 200 trials (Fig. 4A). In addition, as a consequence of
motor learning, subjects showed a washout effect, where errors
in trajectory inverted in direction when the learned force-field
was turned off in the postadaptation period. This washout error
converged to baseline levels within approximately 100 trials. The
average behavior pooled across the 10 subjects showed a sim-
ilar learning pattern (Fig. 4B; goodness of fit, r2 =0.93). The
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Fig. 2. Joint redundancy predicts learning rate in a visuomotor adaptation
task. (A) Error at peak velocity in preadaptation, visuomotor adaptation,
and postadaptation for a representative subject showing the progression
of adaptation. Errors in each of the two directions are color-coded. Fit-
ted exponential (black line) significantly accounts for most of the pro-
gression of errors across trials during adaptation. (B) Three-trial running
mean ± SEM across subjects (shading is SEM). Fitted exponential curves
across subjects significantly account for most of the progression of errors
during adaptation (red indicates above-mean learning group; blue indicates
below-mean learning group). (C) Comparison of baseline null-space vari-
ability with learning rate between the above-mean learning group (red)
and below-mean learning group (blue) reveal corresponding differences
in null-space variability between groups. (D) Subject-by-subject comparison
(n = 40) of baseline null-space variability with learning rate shows a signifi-
cant positive relationship. Two subjects whose learning rates were negative
have been clamped to 0. Asterisks indicate statistically significant differences
(∗P < 0.05, ∗∗P < 0.005, ∗∗∗P < 0.0005).
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Fig. 3. Joint redundancy predicts the learning rate in a generalized visuo-
motor adaptation task. (A) Error at peak velocity in preadaptation, adapta-
tion, and postadaptation showing the progression of adaptation for a sub-
ject. Errors in each of the eight directions are color-coded. (B) Eight-trial
running mean ± SEM across subjects (shading is SEM). Fitted exponential
curves across subjects significantly account for most of the progression of
errors in the adaptation. (C) The comparison of baseline null-space variabil-
ity at peak velocity with learning rate shows a significant positive relation-
ship between joint redundancy and motor learning. (D) The comparison of
baseline task-space variability at peak velocity with learning rate shows no
significant relationship between variability and motor learning.

learning curves of each individual subject with the dominant and
nondominant hand are shown in Figs. S4 and S5, respectively.
As before, the reduction in error at peak velocity (Eq. 9) was
used as a metric to quantify the learning rate for each subject.
In the force-field adaptation period, the mean learning rate was
0.006 ± 0.002 for the dominant hand and 0.004 ± 0.001 for the
nondominant hand. To test whether the learning rate of a sub-
ject under a viscous perturbing force could be predicted on the
basis of motor redundancy exhibited during the preadaptation
(baseline period), we again computed null-space variability as in
Eq. 8. We found a strong positive correlation between baseline
null-space variability and learning rate in the force-field [Fig. 4C;
r =0.69,P =0.027 (dominant hand), r =0.60,P =0.067 (non-
dominant hand)]. Consistent with that observed for the kine-
matic perturbation task, we found poor correlation between the
learning rate and task-space variability in the baseline period
[Fig. 4D; r =0.22,P =0.53 (dominant hand), r =0.13,P =0.72
(nondominant hand)].

Redundancy and Dominant and Nondominant Hand Learning. Dif-
ferences between the learning of the dominant and nondomi-
nant arm across subjects is consistent with previous work (23)
and was used as an additional approach to test the relation
between null-space variability and motor learning. To test this
notion, we compared the learning rate and null-space variabil-
ity between the dominant and nondominant hand in 10 sub-
jects. We observed that the mean learning rate for the nondom-
inant hand (mean, 0.004 ± 0.001) was significantly less than the
mean learning rate for the dominant hand (mean, 0.006±0.002)
(Fig. 5A; P=0.008, t(8)= 3.54). Interestingly, null-space vari-
ability was also lesser in the nondominant hand (mean, 0.054 ±
0.036) compared with the dominant hand (mean, 0.12 ± 0.066)
(Fig. 5B; P=0.035, t(8)= 2.54). We observed no difference in

the mean task-space variability between the dominant and non-
dominant hand, suggesting that task-space variability did not
influence learning rate. Furthermore, we observed a strong cor-
relation (Fig. 5D; r =0.84,P =0.002) between the difference in
the learning rate and the difference in the null-space variabil-
ity of the dominant and nondominant hand, suggesting that the
difference in the null-space variability could partly explain the
difference in learning rate. We also observed an outlier sub-
ject whose learning rate was higher in the nondominant hand
compared with the dominant hand (marked as a dotted line in
Fig. 5 A–C and marked in blue in Fig. 5D). Nevertheless, even
for this subject, the null-space variability was greater in the non-
dominant hand compared with the dominant hand, in support of
our hypothesis. Taken together, these findings indicate that the
difference in learning rate between the dominant and nondom-
inant hand may be a consequence of the greater redundancy in
the dominant hand.

Discussion
In contrast to previous work that has studied joint redundancy
and learning in isolation, this study tested the relation between
these two variables under the assumption that the extra degrees
of freedom conferred by the arm is used by the motor system
to facilitate learning. We have shown that task-space variability
in the baseline period while reaching a target in task-space has
low correlation with learning during perturbations, whereas the
variability in the null-space, resulting from redundancy, aids in
learning. We interpret these results as indicating that exploration
of redundancy aids in motor learning when a visuomotor pertur-
bation or a force-field perturbation is present.

Joint Redundancy. The uncontrolled manifold hypothesis (UCM),
that has its origin in the initial observations by Bernstein (24, 25)

C
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D

Fig. 4. Joint redundancy predicts rate of learning in a force-field adap-
tation task. (A) Error at peak velocity in preadaptation, adaptation, and
postadaptation showing the progression of adaptation for a subject.
(B) Eight-trial running mean ± SEM across subjects (shading is SEM). Fit-
ted exponential curves across subjects significantly account for most of the
progression of errors in the adaptation (red indicates dominant hand, blue
indicates nondominant hand. (C) Comparison of baseline null-space vari-
ability at peak velocity with learning rate shows a relationship. (D) Com-
parison of baseline task-space variability at peak velocity with learning rate
shows no significant relationship between task-space variability and motor
learning.
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Fig. 5. Learning differences between the dominant hand and nondomi-
nant hand. (A) Learning differences in the dominant hand (red) and non-
dominant hand (blue) (n = 10) reveal faster learning in the dominant hand.
(B) Baseline null-space variability in the dominant and nondominant hand
reveals differences in null-space variability between hands. (C) However,
baseline task-space variability in the dominant hand and nondominant hand
reveals no differences in task-space variability between hands. (D) Correla-
tion between the difference in null-space variability with the difference in
learning rate between the dominant hand and nondominant hand shows
a significant positive relationship. The outlier subject data are shown as a
dotted line (A–C) and as a green dot (D).

is the dominant framework to understand and quantify joint
redundancy (13–15). Such redundancy is now established as a
ubiquitous feature of behavior observed across a variety of tasks
(2–7). In the current study we followed the UCM framework
to quantify joint redundancy. However, unlike previous work,
we also quantified redundancy in individual subjects in addition
to measuring the group response and observed large variability,
suggesting that redundancy might be an idiosyncratic feature that
is unique to each subject and/or session. In addition, unlike past
work where redundancy was quantified at the maximum peak
velocity or at the target location, we restricted our computation
to the former in case of all perturbations. This choice was made
because task-space variability is known to be highest at the peak
velocity of the trajectory and smallest at the end point (target),
particularly when the targets are small. Thus, quantifying redun-
dancy at peak velocity is better suited to reveal the full scale of
variability across subjects, which may be essential to understand
its bearing on motor learning.

Previous work has suggested that the degree of redundancy
can be task specific and can be optimized such that the motor
system obeys the principle of minimum intervention in which
the brain only controls task relevant variability but does not
control task irrelevant or null-space variability. Although we
did not explicitly study the control of null-space variability, we
did observe interesting task specific differences indicating that
null-space variability or task irrelevant variability also may be
actively controlled and is not merely an epiphenomena of hav-
ing more degrees of freedom than required for the task. For
example, in our pool of subjects we observed that null-space
variability was on average greater in the dynamics condition
(mean, 0.11±0.069) than that in the kinematic condition (mean,
0.04 ± 0.020) even in the preadaptation period when the reach-
ing task was identical. This difference in null-space variability

is likely to be task-specific, the basis of which remains to be
elucidated.

Inline with earlier work (23) that showed differences between
the dominant and nondominant hand during force-field pertur-
bation but not during visuomotor (kinematics) perturbation, we
tested null-space variability in the dominant versus nondominant
hand in the dynamic perturbation task. It is particularly interest-
ing to note that despite similar force application and task-space
variability (Fig. 5C), the null-space variability was greater in the
dominant hand, and further, differences within subjects correlate
with corresponding differences in the learning rates (Fig. 5D).
The larger null-space variability seen in the dominant hand may
thus provide a natural explanation of why learning might be more
potent in the dominant hand and reinforces the belief that null-
space variability not only reflects the biomechanical characteris-
tics of the arm but may reflect active control.

Dynamic and Kinematic Learning. To study motor learning, we fol-
lowed previous work that has tested the ability of subjects to
implicitly adapt their motor behavior in the presence of dynamic
and kinematic perturbations (26–29). In our learning paradigm,
subjects learned the perturbations while making movements in
two directions (Fig. 2) and also in all eight directions (Fig. 3),
picked at random. Hence, unlike some learning paradigms that
emphasize specific learning in one direction, our learning is
expected to generalize across directions. Thus, we used a single
exponential fit pooled across all directions to study the average
rate of learning as a single variable even though our data sug-
gest the presence of fast and slow learning phase that has been
reported in the literature (30). In the future, we hope to study
direction-specific motor learning to test whether joint redun-
dancy better correlates with the fast versus slow learning phase.
Nevertheless, our results revealed learning rates that are compa-
rable to the literature (26–28, 31). The data also revealed that
learning in the dominant hand was significantly faster than that
in the nondominant hand (23). Second, trends indicate that some
directions appear to be easier to learn, and like joint redundancy,
there is a large subject-specific variability in the data, the impli-
cations of which are discussed in Relating Joint Redundancy and
Motor Learning.

Relating Joint Redundancy and Motor Learning. The strong subject-
wise correlations observed in both the dynamic and kinematic
learning tasks support the hypothesis that joint redundancy
supports motor learning. Although our data are fundamentally
correlative in nature, we were able to exploit a feature in our
experiment that involved the use of the dominant and non-
dominant hand that resulted in differences in learning rates
and redundancy. Lending further credence to the hypothesis,
we found that the smaller redundancy in the nondominant
hand was associated with slower learning. Moreover, the dif-
ferences in learning and redundancy were also correlated (Fig.
5D). In addition, we showed similar group-wise differences in
the visuomotor adaptation task showing smaller redundancy for
below-mean learners compared with above-mean learners. This
result notwithstanding, we do not claim that redundancy is the
sole source of differences in motor learning. Kinematic learn-
ing is faster than dynamic learning despite smaller redundancy
in the kinematic task compared with the dynamic task, and
is likely to reflect differences in the mechanisms involved in
learning these two perturbations that involve the learning of
different internal models (27), with joint redundancy being a
common factor that confers greater flexibility to explore motor
space. Additionally, we also observed differences in the degree
of redundancy and learning across directions. Although these
differences were not statistically significant (they were also
poorly correlated), these results suggest that redundancy not
only possesses an active component that correlates with learning
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but also a passive component that reflects differences in the
biomechanics.

Although we observed strong correlations between joint
redundancy and motor learning, our results did not show a corre-
lation between task-space variability and motor learning. In con-
trast, recent work by Wu et al. (16), using both reinforcement
learning and error-based supervised learning, emphasizes the
selective role of task relevant variability in motor learning.
Although the basis of differences between these studies remain
unclear, it is interesting to note that other studies suggest that
task variability does not correlate with motor learning (see ref.
32 for a meta-analysis). Further research would be required
to reconcile these points of view. In addition, although it is
not still mechanistically clear how joint redundancy facilitates
motor learning, we suggest that such active exploration of
task-irrelevant space may be essential to motor learning, while
simultaneously ensuring optimal motor performance by mini-
mizing task-space variability. This possibility notwithstanding,
we believe that this relation between null-space variability and
motor learning can be leveraged to enhance motor learning skills
and motor rehabilitation.

Materials and Methods
Subjects. All subjects were paid for participation and gave informed consent
in accordance with the guidelines of the Human Ethics Committee of the
Indian Institute of Science that approved the protocol. Sixty naı̈ve subjects
participated in the study (aged 22–70 y; 42 male and 18 female). In exper-
iment 1, 40 subjects (30 male and 10 female, all right-handed) performed
a visuomotor task and in experiment 2, 10 subjects (5 male and 5 female;
all right-handed) performed a generalized visuomotor task. In experiment
3, 10 subjects (7 male and 3 female; 6 right-handed, 4 left-handed subjects)
performed the force-field experiment first with their dominant and after a
gap of ∼5 d with their nondominant hands. Handedness was tested using
the modified Edinburgh Handedness Index (33).

Experimental Setup. In experiment 1, subjects sat on a chair with their hand
placed on the table (Fig. S1A). A monitor that displayed the targets and the
cursor movement was placed in front of the subjects. The experiment was
performed using the psychophysics toolbox (34) that displayed visual stim-
uli, sampled, and stored the data and other behavioral parameters. Hand
positions and joint angles were recorded using an electromagnetic position
and orientation tracking device (Liberty; Polhemus).

In all other experiments, subjects sat on a chair while their chins were
supported by a chin rest, and their heads were locked with head bars on
both sides of their temple as shown in Fig. S1A. Subjects looked down
on a semitransparent mirror on which they saw the targets while they
moved a robotic arm handle (KINARM End-Point Robot; BKIN) in a hori-
zontal plane below the plane of the mirror. Targets were presented by an
inverted monitor above the mirror setup, which gave the impression that
the targets appeared in a virtual plane below the mirror aligned to the
plane in which the robotic arm handle moved. All experiments were per-
formed using TEMPO/VideoSYNC software (Reflective Computing) that dis-
played visual stimuli and sampled and stored the data and other behavioral
parameters in real time at a resolution of 1.04 ms. Hand positions and joint
angles were recorded (spatial resolution of 7.62 mm) using an electromag-
netic position and orientation tracking device (Liberty; Polhemus) interfac-
ing with TEMPO in real time at 240 Hz.

Experimental Paradigm. In experiment 1, trials were divided into three
phases: baseline or preadaptation, adaptation, and postadaptation. All sub-
jects performed ∼10 practice trials. Subjects performed about 100 trials per
session, with a typical session lasting about 15 min. Each trial started with
the presentation of a square fixation box (1 cm) at the center of a screen
where subjects had to fixate both their hand and eye. After successful fix-
ation, a square target of length 1 cm was displayed randomly in any one
of two locations that uniformly spanned a circle of 20-cm radius around
the central fixation box. Trials were aborted if a premature movement was
made. Auditory feedback was given when the subject performed a trial
correctly.

In all other experiments, trials were divided into three phases: baseline
or preadaptation, adaptation, and postadaptation. All subjects performed
∼30 practice trials. Subjects performed about 400 trials per session, with a

typical session lasting between 1.5–2 h. Each trial started with the presen-
tation of a square fixation box (0.4 cm) at the center of a screen where the
subjects had to fixate both their eye and the robotic end-effector. After suc-
cessful fixation, a square target (0.7 cm) was displayed randomly in any one
of eight locations that uniformly spanned a circle of 15-cm radius around
the central fixation box. Similar to experiment 1, trials were aborted if a
premature movement was made. Auditory feedback was given when the
subject performed a trial correctly.

To minimize the effect of transfer of learning (35), subjects were
always exposed to washout trials after perturbation trials. In addition,
typically and ∼5-d gap was given between recording the dominant and
nondominant hand.

Visuomotor Perturbation. During visuomotor perturbation (29), the cursor
movement is rotated according to Eq. 1,[

Px

Py

]
=

[
cos θ − sin θ
sin θ cos θ

] [
px

py

]
, [1]

where Px, Py correspond to the position of the cursor, px, py correspond
to the actual position of the hand, and θ denotes the perturbation angle
about the center of work space with θ equal to 45◦. This perturbation also
led to a trajectory error and to compensate the subjects altered their hand
trajectory.

Force-Field Perturbation. During force-field perturbation (31), the robot
produced viscous curl forces depending on the instantaneous hand veloc-
ity as in Eq. 2, [

Fx

Fy

]
=

[
0 −K
K 0

] [
ẋ
ẏ

]
, [2]

where Fx , Fy correspond to the forces exerted on the robotic arm, ẋ, ẏ corre-
spond to the velocity components of hand, and K denotes the force pertur-
bation coefficient along the orthogonal directions with K equal to 20 Ns/m.
This force-field perturbation disturbed the hand trajectory.

Quantifying Redundancy. To calculate the joint-space variability in different
directions, a 2D forward-kinematics model was created for the human arm.
The model is given by[

x
y

]
=

[
l1 cos(θ1) + l2 cos(θ2) + l3 cos(θ3) + l4 cos(θ4)
l1 sin(θ1) + l2 sin(θ2) + l3 sin(θ3) + l4 sin(θ4)

]
, [3]

where the four joints rotations are clavicle protraction–retraction (θ1),
shoulder horizontal abduction–adduction (θ2), elbow flexion–extension (θ3),
and wrist medial–lateral (θ4) (Fig. S1B). In experiment 1, we also incor-
porated a fifth joint-index figure abduction–adduction, and accordingly
extended Eqs. 3 and 5. The distribution of variability in joint-space was com-
puted for baseline trials for each of the different directions at the maximum
reach velocity. The mean joint configuration across trials, along each of the
directions, was computed at the peak velocity v and is denoted by θ̄v . The
deviation of the joint configuration for a trial k, ∆θk, is obtained by sub-
tracting the joint configuration at the peak velocity, θv

k , from the mean as
below:

∆θk = θ̄
v − θv

k. [4]

Based on the 2D forward-kinematics model, the Jacobian matrix at peak
velocity was computed as

J(θ̄v ) =

 ∂x
∂θ1

∂x
∂θ2

∂x
∂θ3

∂x
∂θ4

∂y
∂θ1

∂y
∂θ2

∂y
∂θ3

∂y
∂θ4

. [5]

The joint configuration vector ξi lying in the null-space of the Jacobian
matrix was computed from

J(θ̄v ) ξi = 0. [6]

For each trial, the sum of the component of ∆θk along the null-space
directions is given by

θR =
m∑

i=1

〈∆θk, ξi〉 ξi, m = 2 or 3. [7]

We quantify redundancy as the sum of the squares of θR across all of the
trials divided by the number of trials n. Mathematically, this is written as

N(J) =

n∑
i=1

(θR)2

n
. [8]
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In this work, the scalar N(J) is used as a measure of redundancy space
as θR, from which N(J) is derived, lies in the null-space, and does not affect
task-space motion (Fig. S1C).

Task-Space Variability. We quantified the task-space variability from the
hand trajectory when it reached its peak velocity. The SD of the perpen-
dicular distance of this point from the straight line joining the start and end
of the trajectory was used as the metric of task-space variability.

Quantifying Learning. The error at the peak velocity was calculated as the
perpendicular distance of the hand trajectory at peak velocity from the
straight line joining the central fixation box to the target location. The error,
denoted by f(n), is related to the trial number by the following equation.

f(x) = ae−βx
. [9]

The above equation represents a first-order learning process, and in
this work, we concentrate on β, which represents the intrinsic learning
for a subject. To compute the population learning in perturbation tri-
als, errors were fitted with an exponential fit using robust least-squares

method, goodness of fit for the population learning curve for visuomo-
tor learning (r2 = 0.95), generalized visuomotor learning (r2 = 0.90),
and force-field learning (r2 = 0.93). To test for the significance of the
fits, we plotted the logarithm of error f(n) versus the number of tri-
als n assuming the above-mentioned exponential learning model. P val-
ues of the obtained linear regressions were <0.0005 in all experiment
conditions.

Statistical Analysis. All of the correlation analyses used Pearson’s correla-
tion. For pairwise comparisons between groups, we first checked for nor-
mality in the data using the Lilliefors test, and when it satisfied normality,
we performed a pairwise two-tailed t test.
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